source | dataset | .html | .RData |
---|---|---|---|
insee | IPLA-IPLNA-2015 | 2024-11-22 | 2024-12-22 |
Indices des prix des logements neufs et Indices Notaires-Insee des prix des logements anciens
Data - INSEE
Info
Données sur l’inflation en France
source | dataset | .html | .RData |
---|---|---|---|
insee | bdf2017 | 2024-12-22 | 2023-11-21 |
insee | ILC-ILAT-ICC | 2024-12-22 | 2024-12-22 |
insee | INDICES_LOYERS | 2024-12-22 | 2024-12-22 |
insee | IPC-1970-1980 | 2024-12-22 | 2024-12-22 |
insee | IPC-1990 | 2024-12-22 | 2024-12-22 |
insee | IPC-2015 | 2024-12-22 | 2024-12-22 |
insee | IPC-PM-2015 | 2024-12-22 | 2024-12-22 |
insee | IPCH-2015 | 2024-12-22 | 2024-12-22 |
insee | IPGD-2015 | 2024-12-22 | 2024-12-22 |
insee | IPLA-IPLNA-2015 | 2024-11-22 | 2024-12-22 |
insee | IPPI-2015 | 2024-12-22 | 2024-12-22 |
insee | IRL | 2024-11-22 | 2024-12-22 |
insee | SERIES_LOYERS | 2024-11-22 | 2024-12-22 |
insee | T_CONSO_EFF_FONCTION | 2024-11-22 | 2024-07-18 |
Données sur l’immobilier
source | dataset | .html | .RData |
---|---|---|---|
acpr | as151 | 2024-06-19 | 2024-04-05 |
bdf | BSI1 | 2024-12-09 | 2024-12-09 |
bdf | CPP | 2024-07-26 | 2024-07-01 |
bdf | FM | 2024-12-22 | 2024-12-22 |
bdf | immobilier | 2024-11-19 | 2024-11-19 |
bdf | MIR | 2024-07-26 | 2024-07-01 |
bdf | MIR1 | 2024-11-29 | 2024-12-09 |
bdf | RPP | 2024-11-19 | 2024-11-19 |
cgedd | nombre-vente-maison-appartement-ancien | 2024-09-26 | 2024-09-26 |
insee | CONSTRUCTION-LOGEMENTS | 2024-12-22 | 2024-12-22 |
insee | ENQ-CONJ-ART-BAT | 2024-12-22 | 2024-12-22 |
insee | ENQ-CONJ-IND-BAT | 2024-12-22 | 2024-12-22 |
insee | ENQ-CONJ-PROMO-IMMO | 2024-12-22 | 2024-12-22 |
insee | ENQ-CONJ-TP | 2024-12-22 | 2024-12-22 |
insee | ILC-ILAT-ICC | 2024-12-22 | 2024-12-22 |
insee | INDICES_LOYERS | 2024-12-22 | 2024-12-22 |
insee | IPLA-IPLNA-2015 | 2024-11-22 | 2024-12-22 |
insee | IRL | 2024-11-22 | 2024-12-22 |
insee | PARC-LOGEMENTS | 2024-11-22 | 2023-12-03 |
insee | SERIES_LOYERS | 2024-11-22 | 2024-12-22 |
insee | t_dpe_val | 2024-11-22 | 2024-12-21 |
notaires | arrdt | 2024-06-30 | 2024-09-09 |
notaires | dep | 2024-06-30 | 2024-09-08 |
Data on inflation
source | dataset | .html | .RData |
---|---|---|---|
bis | CPI | 2024-07-01 | 2022-01-20 |
ecb | CES | 2024-12-22 | 2024-12-22 |
eurostat | nama_10_co3_p3 | 2024-12-14 | 2024-12-14 |
eurostat | prc_hicp_cow | 2024-11-22 | 2024-10-08 |
eurostat | prc_hicp_ctrb | 2024-11-22 | 2024-10-08 |
eurostat | prc_hicp_inw | 2024-11-05 | 2024-11-23 |
eurostat | prc_hicp_manr | 2024-12-22 | 2024-12-22 |
eurostat | prc_hicp_midx | 2024-11-01 | 2024-12-22 |
eurostat | prc_hicp_mmor | 2024-11-22 | 2024-11-23 |
eurostat | prc_ppp_ind | 2024-11-22 | 2024-10-08 |
eurostat | sts_inpp_m | 2024-06-24 | 2024-12-22 |
eurostat | sts_inppd_m | 2024-12-22 | 2024-12-22 |
eurostat | sts_inppnd_m | 2024-06-24 | 2024-12-22 |
fred | cpi | 2024-12-22 | 2024-12-22 |
fred | inflation | 2024-12-22 | 2024-12-22 |
imf | CPI | 2024-06-20 | 2020-03-13 |
oecd | MEI_PRICES_PPI | 2024-09-15 | 2024-04-15 |
oecd | PPP2017 | 2024-04-16 | 2023-07-25 |
oecd | PRICES_CPI | 2024-04-16 | 2024-04-15 |
wdi | FP.CPI.TOTL.ZG | 2023-01-15 | 2024-09-18 |
wdi | NY.GDP.DEFL.KD.ZG | 2024-09-18 | 2024-09-18 |
Data on housing
source | dataset | .html | .RData |
---|---|---|---|
bdf | RPP | 2024-11-19 | 2024-11-19 |
bis | LONG_PP | 2024-08-09 | 2024-05-10 |
bis | SELECTED_PP | 2024-10-31 | 2024-10-31 |
ecb | RPP | 2024-10-08 | 2024-10-30 |
eurostat | ei_hppi_q | 2024-11-23 | 2024-11-23 |
eurostat | hbs_str_t223 | 2024-11-23 | 2024-11-23 |
eurostat | prc_hicp_midx | 2024-11-01 | 2024-12-22 |
eurostat | prc_hpi_q | 2024-11-22 | 2024-10-09 |
fred | housing | 2024-12-22 | 2024-12-22 |
insee | IPLA-IPLNA-2015 | 2024-11-22 | 2024-12-22 |
oecd | housing | 2024-09-15 | 2020-01-18 |
oecd | SNA_TABLE5 | 2024-09-11 | 2023-10-19 |
LAST_COMPILE
LAST_COMPILE |
---|
2024-12-22 |
LAST_UPDATE
Code
`IPLA-IPLNA-2015` %>%
group_by(LAST_UPDATE) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
LAST_UPDATE | Nobs |
---|---|
2024-11-28 | 14332 |
2024-12-20 | 396 |
Last
Code
`IPLA-IPLNA-2015` %>%
group_by(TIME_PERIOD) %>%
summarise(Nobs = n()) %>%
filter(TIME_PERIOD == max(TIME_PERIOD)) %>%
print_table_conditional()
TIME_PERIOD | Nobs |
---|---|
2024-Q3 | 142 |
Info
Méthodo. Les indices Notaires-Insee des prix des logements anciens Méthodologie v4 Insee Méthodes n° 132 - juin 2019. pdf
4ème trimestre 2021. html
Code
i_g("bib/insee/IR48_NotairesIPLA-v1640/figure.png")
TITLE_FR
Code
`IPLA-IPLNA-2015` %>%
group_by(IDBANK, TITLE_FR) %>%
summarise(Nobs = n(),
date1 = first(TIME_PERIOD),
date2 = last(TIME_PERIOD)) %>%
arrange(-Nobs) %>%
print_table_conditional()
INDICATEUR
Code
`IPLA-IPLNA-2015` %>%
left_join(INDICATEUR, by = "INDICATEUR") %>%
group_by(INDICATEUR, Indicateur) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
INDICATEUR | Indicateur | Nobs |
---|---|---|
IPLA_A | Indice de prix des appartements (logements anciens) | 5800 |
IPLA_E | Indice de prix des logements anciens | 4528 |
IPLA_M | Indice de prix des maisons (logements anciens) | 4004 |
IPLN | Indice de prix des logements neufs | 198 |
IPLNA | Indice de prix des logements neufs et anciens | 198 |
CORRECTION
Code
`IPLA-IPLNA-2015` %>%
left_join(CORRECTION, by = "CORRECTION") %>%
group_by(CORRECTION, Correction) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
CORRECTION | Correction | Nobs |
---|---|---|
BRUT | Non corrigé | 7364 |
CVS | Corrigé des variations saisonnières | 7364 |
REF_AREA
Code
`IPLA-IPLNA-2015` %>%
left_join(REF_AREA, by = "REF_AREA") %>%
group_by(REF_AREA, Ref_area) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
TIME_PERIOD
Code
`IPLA-IPLNA-2015` %>%
group_by(TIME_PERIOD) %>%
summarise(Nobs = n()) %>%
arrange(desc(TIME_PERIOD)) %>%
print_table_conditional()
Paris, France
All
Code
`IPLA-IPLNA-2015` %>%
filter(CORRECTION == "BRUT",
== "IPLA_A",
INDICATEUR %in% c("D75", "FM")) %>%
REF_AREA %>%
quarter_to_date mutate(TITLE_FR = gsub("Indice des prix des logements anciens - ", "", TITLE_FR),
TITLE_FR = gsub(" - Appartements - Base 100 en moyenne annuelle 2015 - Série brute", "", TITLE_FR)) %>%
group_by(REF_AREA) %>%
mutate(OBS_VALUE = 100*OBS_VALUE / OBS_VALUE[date == as.Date("1998-01-01")]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
ggplot
theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2050, 2), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Indice des prix des logements anciens") +
scale_y_log10(breaks = seq(0, 7000, 50))
1996-
Code
`IPLA-IPLNA-2015` %>%
filter(CORRECTION == "BRUT",
== "IPLA_A",
INDICATEUR %in% c("D75", "FM")) %>%
REF_AREA %>%
quarter_to_date mutate(TITLE_FR = gsub("Indice des prix des logements anciens - ", "", TITLE_FR),
TITLE_FR = gsub(" - Appartements - Base 100 en moyenne annuelle 2015 - Série brute", "", TITLE_FR)) %>%
group_by(REF_AREA) %>%
filter(date >= as.Date("1996-01-01")) %>%
mutate(OBS_VALUE = 100*OBS_VALUE / OBS_VALUE[date == as.Date("1996-01-01")]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
ggplot
theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2050, 2), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Indice des prix des logements anciens") +
scale_y_log10(breaks = seq(0, 7000, 50))
1998-
Code
`IPLA-IPLNA-2015` %>%
filter(CORRECTION == "BRUT",
== "IPLA_A",
INDICATEUR %in% c("D75", "FM")) %>%
REF_AREA %>%
quarter_to_date mutate(TITLE_FR = gsub("Indice des prix des logements anciens - ", "", TITLE_FR),
TITLE_FR = gsub(" - Appartements - Base 100 en moyenne annuelle 2015 - Série brute", "", TITLE_FR)) %>%
group_by(REF_AREA) %>%
filter(date >= as.Date("1998-01-01")) %>%
mutate(OBS_VALUE = 100*OBS_VALUE / OBS_VALUE[date == as.Date("1998-01-01")]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
ggplot
theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2050, 2), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Indice des prix des logements anciens") +
scale_y_log10(breaks = seq(0, 7000, 50))
1998-2021
Code
`IPLA-IPLNA-2015` %>%
filter(CORRECTION == "BRUT",
== "IPLA_A",
INDICATEUR %in% c("D75", "FM")) %>%
REF_AREA %>%
quarter_to_date mutate(TITLE_FR = gsub("Indice des prix des logements anciens - ", "", TITLE_FR),
TITLE_FR = gsub(" - Appartements - Base 100 en moyenne annuelle 2015 - Série brute", "", TITLE_FR)) %>%
group_by(REF_AREA) %>%
filter(date >= as.Date("1998-01-01"),
<= as.Date("2021-09-01")) %>%
date mutate(OBS_VALUE = 100*OBS_VALUE / OBS_VALUE[date == as.Date("1998-01-01")]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
ggplot scale_color_manual(values = viridis(3)[1:2]) +
theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2050, 2), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Indice des prix des logements anciens") +
scale_y_log10(breaks = seq(0, 7000, 50))
2000-
Code
`IPLA-IPLNA-2015` %>%
filter(CORRECTION == "BRUT",
== "IPLA_A",
INDICATEUR %in% c("D75", "FM")) %>%
REF_AREA %>%
quarter_to_date mutate(TITLE_FR = gsub("Indice des prix des logements anciens - ", "", TITLE_FR),
TITLE_FR = gsub(" - Appartements - Base 100 en moyenne annuelle 2015 - Série brute", "", TITLE_FR)) %>%
group_by(REF_AREA) %>%
filter(date >= as.Date("2000-01-01")) %>%
mutate(OBS_VALUE = 100*OBS_VALUE / OBS_VALUE[date == as.Date("2000-01-01")]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
ggplot
theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2050, 2), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Indice des prix des logements anciens") +
scale_y_log10(breaks = seq(0, 7000, 50))
2014-
Code
`IPLA-IPLNA-2015` %>%
filter(CORRECTION == "BRUT",
== "IPLA_A",
INDICATEUR %in% c("D75", "FM")) %>%
REF_AREA %>%
quarter_to_date mutate(TITLE_FR = gsub("Indice des prix des logements anciens - ", "", TITLE_FR),
TITLE_FR = gsub(" - Appartements - Base 100 en moyenne annuelle 2015 - Série brute", "", TITLE_FR)) %>%
group_by(REF_AREA) %>%
filter(date >= as.Date("2014-01-01")) %>%
mutate(OBS_VALUE = 100*OBS_VALUE / OBS_VALUE[date == as.Date("2014-01-01")]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
ggplot
theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1960,2100, 1), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Indice des prix des logements anciens") +
scale_y_log10(breaks = seq(0, 7000, 5))
Paris, Lyon, Marseille, France
All
Code
`IPLA-IPLNA-2015` %>%
filter(CORRECTION == "BRUT",
== "IPLA_A",
INDICATEUR %in% c("A_69123", "A_13055", "D75", "FM")) %>%
REF_AREA %>%
quarter_to_date mutate(TITLE_FR = gsub("Indice des prix des logements anciens - ", "", TITLE_FR),
TITLE_FR = gsub(" - Appartements - Base 100 en moyenne annuelle 2015 - Série brute", "", TITLE_FR)) %>%
group_by(REF_AREA) %>%
mutate(OBS_VALUE = 100*OBS_VALUE / OBS_VALUE[date == as.Date("1998-01-01")]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
ggplot
theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2050, 2), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Indice des prix des logements anciens") +
scale_y_log10(breaks = seq(0, 7000, 50))
1996-
Code
`IPLA-IPLNA-2015` %>%
filter(CORRECTION == "BRUT",
== "IPLA_A",
INDICATEUR %in% c("A_69123", "A_13055", "D75", "FM")) %>%
REF_AREA %>%
quarter_to_date mutate(TITLE_FR = gsub("Indice des prix des logements anciens - ", "", TITLE_FR),
TITLE_FR = gsub(" - Appartements - Base 100 en moyenne annuelle 2015 - Série brute", "", TITLE_FR)) %>%
filter(date >= as.Date("1996-01-01")) %>%
group_by(REF_AREA) %>%
mutate(OBS_VALUE = 100*OBS_VALUE / OBS_VALUE[date == as.Date("1996-01-01")]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
ggplot
theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2050, 2), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Indice des prix des logements anciens") +
scale_y_log10(breaks = seq(0, 7000, 50))
1998-
Code
`IPLA-IPLNA-2015` %>%
filter(CORRECTION == "BRUT",
== "IPLA_A",
INDICATEUR %in% c("A_69123", "A_13055", "D75", "FM")) %>%
REF_AREA %>%
quarter_to_date mutate(TITLE_FR = gsub("Indice des prix des logements anciens - ", "", TITLE_FR),
TITLE_FR = gsub(" - Appartements - Base 100 en moyenne annuelle 2015 - Série brute", "", TITLE_FR)) %>%
filter(date >= as.Date("1998-01-01")) %>%
group_by(REF_AREA) %>%
mutate(OBS_VALUE = 100*OBS_VALUE / OBS_VALUE[date == as.Date("1998-01-01")]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
ggplot
theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2050, 2), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Indice des prix des logements anciens") +
scale_y_log10(breaks = seq(0, 7000, 50))
2000-
Code
`IPLA-IPLNA-2015` %>%
filter(CORRECTION == "BRUT",
== "IPLA_A",
INDICATEUR %in% c("A_69123", "A_13055", "D75", "FM")) %>%
REF_AREA %>%
quarter_to_date mutate(TITLE_FR = gsub("Indice des prix des logements anciens - ", "", TITLE_FR),
TITLE_FR = gsub(" - Appartements - Base 100 en moyenne annuelle 2015 - Série brute", "", TITLE_FR)) %>%
filter(date >= as.Date("2000-01-01")) %>%
group_by(REF_AREA) %>%
mutate(OBS_VALUE = 100*OBS_VALUE / OBS_VALUE[date == as.Date("2000-01-01")]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
ggplot
theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2050, 2), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Indice des prix des logements anciens") +
scale_y_log10(breaks = seq(0, 7000, 50))
2008-
Code
`IPLA-IPLNA-2015` %>%
filter(CORRECTION == "BRUT",
== "IPLA_A",
INDICATEUR %in% c("A_69123", "A_13055", "D75", "FM")) %>%
REF_AREA %>%
quarter_to_date mutate(TITLE_FR = gsub("Indice des prix des logements anciens - ", "", TITLE_FR),
TITLE_FR = gsub(" - Appartements - Base 100 en moyenne annuelle 2015 - Série brute", "", TITLE_FR)) %>%
filter(date >= as.Date("2008-01-01")) %>%
group_by(REF_AREA) %>%
mutate(OBS_VALUE = 100*OBS_VALUE / OBS_VALUE[date == as.Date("2008-01-01")]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
ggplot
theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2050, 2), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Indice des prix des logements anciens") +
scale_y_log10(breaks = seq(0, 7000, 10))
2014-
Code
`IPLA-IPLNA-2015` %>%
filter(CORRECTION == "BRUT",
== "IPLA_A",
INDICATEUR %in% c("A_69123", "A_13055", "D75", "FM")) %>%
REF_AREA %>%
quarter_to_date mutate(TITLE_FR = gsub("Indice des prix des logements anciens - ", "", TITLE_FR),
TITLE_FR = gsub(" - Appartements - Base 100 en moyenne annuelle 2015 - Série brute", "", TITLE_FR)) %>%
filter(date >= as.Date("2014-01-01")) %>%
group_by(REF_AREA) %>%
mutate(OBS_VALUE = 100*OBS_VALUE / OBS_VALUE[date == as.Date("2014-01-01")]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
ggplot
theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1960,2100, 1), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Indice des prix des logements anciens") +
scale_y_log10(breaks = seq(0, 7000, 10))
Paris, Lyon, Marseille
All
Code
`IPLA-IPLNA-2015` %>%
filter(CORRECTION == "BRUT",
== "IPLA_A",
INDICATEUR %in% c("A_69123", "A_13055", "D75")) %>%
REF_AREA %>%
quarter_to_date mutate(TITLE_FR = gsub("Indice des prix des logements anciens - ", "", TITLE_FR),
TITLE_FR = gsub(" - Appartements - Base 100 en moyenne annuelle 2015 - Série brute", "", TITLE_FR)) %>%
group_by(REF_AREA) %>%
mutate(OBS_VALUE = 100*OBS_VALUE / OBS_VALUE[date == as.Date("1998-01-01")]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
ggplot
theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2050, 2), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Indice des prix des logements anciens") +
scale_y_log10(breaks = seq(0, 7000, 50))
1998-
Code
`IPLA-IPLNA-2015` %>%
filter(CORRECTION == "BRUT",
== "IPLA_A",
INDICATEUR %in% c("A_69123", "A_13055", "D75")) %>%
REF_AREA %>%
quarter_to_date mutate(TITLE_FR = gsub("Indice des prix des logements anciens - ", "", TITLE_FR),
TITLE_FR = gsub(" - Appartements - Base 100 en moyenne annuelle 2015 - Série brute", "", TITLE_FR)) %>%
filter(date >= as.Date("1998-01-01")) %>%
group_by(REF_AREA) %>%
mutate(OBS_VALUE = 100*OBS_VALUE / OBS_VALUE[date == as.Date("1998-01-01")]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
ggplot
theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2050, 2), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Indice des prix des logements anciens") +
scale_y_log10(breaks = seq(0, 7000, 50))
2000-
Code
`IPLA-IPLNA-2015` %>%
filter(CORRECTION == "BRUT",
== "IPLA_A",
INDICATEUR %in% c("A_69123", "A_13055", "D75")) %>%
REF_AREA %>%
quarter_to_date mutate(TITLE_FR = gsub("Indice des prix des logements anciens - ", "", TITLE_FR),
TITLE_FR = gsub(" - Appartements - Base 100 en moyenne annuelle 2015 - Série brute", "", TITLE_FR)) %>%
filter(date >= as.Date("2000-01-01")) %>%
group_by(REF_AREA) %>%
mutate(OBS_VALUE = 100*OBS_VALUE / OBS_VALUE[date == as.Date("2000-01-01")]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
ggplot
theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2050, 2), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Indice des prix des logements anciens") +
scale_y_log10(breaks = seq(0, 7000, 50))
2008-
Code
`IPLA-IPLNA-2015` %>%
filter(CORRECTION == "BRUT",
== "IPLA_A",
INDICATEUR %in% c("A_69123", "A_13055", "D75")) %>%
REF_AREA %>%
quarter_to_date mutate(TITLE_FR = gsub("Indice des prix des logements anciens - ", "", TITLE_FR),
TITLE_FR = gsub(" - Appartements - Base 100 en moyenne annuelle 2015 - Série brute", "", TITLE_FR)) %>%
filter(date >= as.Date("2008-01-01")) %>%
group_by(REF_AREA) %>%
mutate(OBS_VALUE = 100*OBS_VALUE / OBS_VALUE[date == as.Date("2008-01-01")]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
ggplot
theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1960,2100, 1), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Indice des prix des logements anciens") +
scale_y_log10(breaks = seq(0, 7000, 10))
2010-
Code
`IPLA-IPLNA-2015` %>%
filter(CORRECTION == "BRUT",
== "IPLA_A",
INDICATEUR %in% c("A_69123", "A_13055", "D75")) %>%
REF_AREA %>%
quarter_to_date mutate(TITLE_FR = gsub("Indice des prix des logements anciens - ", "", TITLE_FR),
TITLE_FR = gsub(" - Appartements - Base 100 en moyenne annuelle 2015 - Série brute", "", TITLE_FR)) %>%
filter(date >= as.Date("2010-01-01")) %>%
group_by(REF_AREA) %>%
mutate(OBS_VALUE = 100*OBS_VALUE / OBS_VALUE[date == as.Date("2010-01-01")]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
ggplot
theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1960,2100, 1), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Indice des prix des logements anciens") +
scale_y_log10(breaks = seq(0, 7000, 10))
2014-
Code
`IPLA-IPLNA-2015` %>%
filter(CORRECTION == "BRUT",
== "IPLA_A",
INDICATEUR %in% c("A_69123", "A_13055", "D75")) %>%
REF_AREA %>%
quarter_to_date mutate(TITLE_FR = gsub("Indice des prix des logements anciens - ", "", TITLE_FR),
TITLE_FR = gsub(" - Appartements - Base 100 en moyenne annuelle 2015 - Série brute", "", TITLE_FR)) %>%
filter(date >= as.Date("2014-01-01")) %>%
group_by(REF_AREA) %>%
mutate(OBS_VALUE = 100*OBS_VALUE / OBS_VALUE[date == as.Date("2014-01-01")]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
ggplot
theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1960,2100, 1), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Indice des prix des logements anciens") +
scale_y_log10(breaks = seq(0, 7000, 10))
Neuf vs. ancien
Indice = 2015
Code
`IPLA-IPLNA-2015` %>%
filter(CORRECTION == "BRUT",
%in% c("IPLN", "IPLNA", "IPLA_E"),
INDICATEUR == "FM") %>%
REF_AREA %>%
quarter_to_date left_join(INDICATEUR, by = "INDICATEUR") %>%
group_by(INDICATEUR) %>%
#mutate(OBS_VALUE = 100*OBS_VALUE / OBS_VALUE[date == as.Date("1998-01-01")]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = Indicateur)) +
ggplot theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2050, 2), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("") +
scale_y_log10(breaks = seq(0, 7000, 10))
Indice = 2000
Code
`IPLA-IPLNA-2015` %>%
filter(CORRECTION == "BRUT",
%in% c("IPLN", "IPLNA", "IPLA_E"),
INDICATEUR == "FM") %>%
REF_AREA %>%
quarter_to_date left_join(INDICATEUR, by = "INDICATEUR") %>%
group_by(INDICATEUR) %>%
mutate(OBS_VALUE = 100*OBS_VALUE / OBS_VALUE[date == as.Date("2000-01-01")]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = Indicateur)) +
ggplot theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2050, 2), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank()) +
xlab("") + ylab("") +
scale_y_log10(breaks = seq(0, 7000, 10))
Indice = 2000, post - 2000
Code
`IPLA-IPLNA-2015` %>%
filter(CORRECTION == "BRUT",
%in% c("IPLN", "IPLNA", "IPLA_E"),
INDICATEUR == "FM") %>%
REF_AREA %>%
quarter_to_date left_join(INDICATEUR, by = "INDICATEUR") %>%
group_by(INDICATEUR) %>%
mutate(OBS_VALUE = 100*OBS_VALUE / OBS_VALUE[date == as.Date("2000-01-01")]) %>%
filter(date >= as.Date("2000-01-01")) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = Indicateur)) +
ggplot theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2050, 2), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank()) +
xlab("") + ylab("") +
scale_y_log10(breaks = seq(0, 7000, 10))