Agrégats monétaires - France

Data - BDF

Info

source dataset .html .RData

bdf

BSI1

2024-07-03 2024-06-14

Données sur l’immobilier

source dataset .html .RData

acpr

as151

2024-06-19 2024-04-05

bdf

BSI1

2024-07-03 2024-06-14

bdf

CPP

2024-07-03 2024-07-01

bdf

FM

2024-07-03 2024-06-18

bdf

immobilier

2024-07-03 2024-06-18

bdf

MIR

2024-07-03 2024-07-01

bdf

MIR1

2024-07-03 2024-07-01

bdf

RPP

2024-07-03 2024-07-01

insee

CONSTRUCTION-LOGEMENTS

2024-07-03 2024-07-03

insee

ENQ-CONJ-ART-BAT

2024-07-03 2024-07-02

insee

ENQ-CONJ-IND-BAT

2024-07-03 2024-07-02

insee

ENQ-CONJ-PROMO-IMMO

2024-07-03 2024-07-02

insee

ENQ-CONJ-TP

2024-07-03 2024-07-02

insee

ILC-ILAT-ICC

2024-07-03 2024-07-02

insee

INDICES_LOYERS

2024-07-03 2024-07-02

insee

IPLA-IPLNA-2015

2024-07-03 2024-07-03

insee

IRL

2024-07-04 2024-07-03

insee

PARC-LOGEMENTS

2024-07-04 2023-12-03

insee

SERIES_LOYERS

2024-07-04 2024-07-03

insee

t_dpe_val

2024-07-04 2024-07-01

notaires

arrdt

2024-06-30 2024-07-23

notaires

dep

2024-06-30 2024-07-23

Data on housing

source dataset .html .RData

bdf

RPP

2024-07-03 2024-07-01

bis

LONG_PP

2024-07-02 2024-05-10

bis

SELECTED_PP

2024-07-02 2024-05-10

ecb

RPP

2024-07-01 2024-07-03

eurostat

ei_hppi_q

2024-07-01 2024-07-03

eurostat

hbs_str_t223

2024-07-01 2024-07-03

eurostat

prc_hicp_midx

2024-07-01 2024-07-03

eurostat

prc_hpi_q

2024-07-01 2024-07-01

fred

housing

2024-07-03 2024-07-26

insee

IPLA-IPLNA-2015

2024-07-03 2024-07-03

oecd

housing

2024-07-01 2020-01-18

oecd

SNA_TABLE5

2024-07-01 2023-10-19

Derniers

  • Dernier. html

  • Crédits aux particuliers, Juin 2023. pdf

  • Liste Données BDF Crédit aux particuliers. html

  • Crédits aux particuliers, Avril 2021. html / pdf

  • Crédits aux particuliers, Octobre 2021. html / pdf

LAST_COMPILE

LAST_COMPILE
2024-07-26

Last

date Nobs
2024-03-31 2389

Data Structure

Code
BSI1_metadata %>%
  select(key, name) %>%
  unique %>%
  print_table_conditional()
key name
FREQ Périodicité
REF_AREA Zone géographique - ISO2
ADJUSTMENT Correction statistique
BS_REP_SECTOR Secteur de référence
BS_ITEM Poste de bilan
MATURITY_ORIG Maturité
DATA_TYPE Type de données
COUNT_AREA Zone géo. de contrepartie
BS_COUNT_SECTOR Secteur contrepartie
CURRENCY_TRANS Devise de transaction
BS_SUFFIX Suffixe

FREQ Frequency

Code
BSI1 %>%
  left_join(BSI1_var, by = "variable") %>%
  left_join(FREQ, by = "FREQ") %>%
  group_by(FREQ, Freq) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()
FREQ Freq Nobs
M Mensuel 797781
Q Trimestriel 141789

REF_AREA Reference area - ISO2

Code
BSI1 %>%
  left_join(BSI1_var, by = "variable") %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  group_by(REF_AREA, Ref_area) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()
REF_AREA Ref_area Nobs
FR France 426445
U2 Zone Euro (composition évolutive) 139829
ES Espagne 30723
PT Portugal 29865
DE Allemagne 29658
AT Autriche 29579
FI Finlande 28214
IE Irlande 27367
LU Luxembourg 26238
IT Italie 25735
BE Belgique 24784
NL Pays-Bas 22369
SI Slovénie 22006
CY Chypre 20064
EE Estonie 16710
MT Malte 15188
GR Grèce 14680
SK Slovaquie 10116

ADJUSTMENT Adjustment

Code
BSI1 %>%
  left_join(BSI1_var, by = "variable") %>%
  left_join(ADJUSTMENT, by = "ADJUSTMENT") %>%
  group_by(ADJUSTMENT, Adjustment) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) print_table(.) else .}
ADJUSTMENT Adjustment Nobs
N Brut 822986
Y CVS/CJO 115389
S CVS 1195

BS_REP_SECTOR Reference sector breakdown

Code
BSI1 %>%
  left_join(BSI1_var, by = "variable") %>%
  left_join(BS_REP_SECTOR, by = "BS_REP_SECTOR") %>%
  group_by(BS_REP_SECTOR, Bs_rep_sector) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()
BS_REP_SECTOR Bs_rep_sector Nobs
A IFM ( hors Eurosystème) 561271
V IFM, administrations centrales et banques postales 167324
R Etablissements de crédit 72261
U Institutions monétaires et financières (IFM) 34515
N Banque Centrale Nationale 28852
C Eurosystème 22110
7 Agrégation IF métropole 16507
2 Banques 7992
G Administrations centrales et la poste 7984
1 Banques FBF 5262
4 CDC 5183
5 Banques mutualistes 5158
F OPCVM monétaires 2604
3 FCC 1163
6 Agrégation IFM 608
8 IFM divers non ventilé 608
AU Autres 56
CB Canal bancaire 56
CC Spécialisés crédit consommation 56

BS_ITEM Balance sheet item

Code
BSI1 %>%
  left_join(BSI1_var, by = "variable") %>%
  left_join(BS_ITEM, by = "BS_ITEM") %>%
  group_by(BS_ITEM, Bs_item) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()

MATURITY_ORIG Maturity origin

Code
BSI1 %>%
  left_join(BSI1_var, by = "variable") %>%
  left_join(MATURITY_ORIG, by = "MATURITY_ORIG") %>%
  group_by(MATURITY_ORIG, Maturity_orig) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()
MATURITY_ORIG Maturity_orig Nobs
A Total 710408
X Non applicable 63585
H Plus de 2 ans 38718
F Jusqu`à 1 an 30931
L Jusqu`à 2 ans 30030
G Supérieur à 1 an et inférieur à 2 ans 24746
D Jusqu`à 3 mois 18833
M Maturité jusqu`à 2 ans et remboursables avec préavis de moins de 3 mois 8828
E Supérieur à 3 mois 6999
K Plus de 1 an 2408
J Supérieur à 5 ans 2081
I Plus de 1 et jusqu`à 5 ans 2003

DATA_TYPE Data type

Code
BSI1 %>%
  left_join(BSI1_var, by = "variable") %>%
  left_join(DATA_TYPE, by = "DATA_TYPE") %>%
  group_by(DATA_TYPE, Data_type) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()
DATA_TYPE Data_type Nobs
1 Encours 482149
I Indices notionnels des stocks 289729
4 Flux 156956
S Flux cumulés sur 1 an 7251
Q Contribution au taux de croissance annuel de M3 1752
U Provisions 1036
8 Valorisation 565
D Variation d`encours 132

COUNT_AREA Counterpart area

Code
BSI1 %>%
  left_join(BSI1_var, by = "variable") %>%
  left_join(COUNT_AREA, by = "COUNT_AREA") %>%
  group_by(COUNT_AREA, Count_area) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()
COUNT_AREA Count_area Nobs
U2 Zone Euro (composition évolutive) 405306
U6 Résidents 308731
Z5 Monde non ventilé (geographiquement) 104616
U5 Autres pays de la Zone Euro (Tous pays excepté zone de référence) 45839
U4 Hors Zone Euro 31748
U3 Etats de l`Union Européenne n`appartenant pas à la Zone Euro 16943
U9 Toutes zones autres que Union Européenne et zone de référence 9717
Z9 Reste du Monde 1659
AT Autriche 1018
BE Belgique 1018
DE Allemagne 1018
LU Luxembourg 1018
ES Espagne 944
NL Pays-Bas 944
GR Grèce 870
IT Italie 796
FI Finlande 759
IE Irlande 759
PT Portugal 759
CY Chypre 518
EE Estonie 518
LV Lettonie 518
MT Malte 518
LT Lituanie 504
DK Danemark 500
GB Royaume-Uni 500
SE Suède 500
D4 Extra zone euro à 15 (composition fixe) 440
SK Slovaquie 333
SI Slovénie 259

BS_COUNT_SECTOR Counterpart sector

Code
BSI1 %>%
  left_join(BSI1_var, by = "variable") %>%
  left_join(BS_COUNT_SECTOR, by = "BS_COUNT_SECTOR") %>%
  group_by(BS_COUNT_SECTOR, Bs_count_sector) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()

CURRENCY_TRANS Currency of transaction

Code
BSI1 %>%
  left_join(BSI1_var, by = "variable") %>%
  left_join(CURRENCY_TRANS, by = "CURRENCY_TRANS") %>%
  group_by(CURRENCY_TRANS, Currency_trans) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()
CURRENCY_TRANS Currency_trans Nobs
Z01 Toutes monnaies confondues 929337
EUR Euro 2263
CHF Franc Suisse 1250
JPY Yen 1250
USD Dollar des Etats-Unis 1250
Z04 Autres devises (hors UE) 1250
Z05 Devises hors UE et hors USD, CHF et JPY 1250
XAU Or Monetaire 1109
Z03 Autres devises de l`UE (hors euro) 611

Tables

Comptes de patrimoine

Code
ig_b("insee", "ip1967", "table2")

Comptes financiers

Code
ig_b("insee", "ip1967", "table2")

Livrets réglementés

Panorama

  • L’épargne réglementée en 2022. pdf
Code
ig_b("bdf", "er-2022_rapport_web", "G1")

LEP: Livret Epargne Populaire

Code
BSI1 %>%
  filter(grepl("BSI1.M.FR.N.A.L23FRLP.A.1.U6.2251.Z01.E", variable)) %>%
  left_join(BSI1_var, by = "variable") %>%
  ggplot + theme_minimal() + xlab("") + ylab("Livret d'Epargne Populaire") +
  geom_line(aes(x = date, y = value / 1000)) +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2100, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.4, 0.9),
        legend.title = element_blank(),
        legend.direction = "vertical") +
  scale_y_continuous(breaks = seq(0, 100, 5),
                labels = dollar_format(suffix = " Mds€", prefix = "",  accuracy = 1))

Livrets A et Bleus, PEL

Code
BSI1 %>%
  filter(variable %in% c("BSI1.M.FR.N.A.L23FRLA.A.1.U6.2250.Z01.E",
                         "BSI1.M.FR.N.A.L23FRAB.A.1.U6.2250.Z01.E",
                         "BSI1.M.FR.N.A.L22FRPL.A.1.U6.2251.Z01.E")) %>%
  left_join(BSI1_var, by = "variable") %>%
  ggplot + theme_minimal() + xlab("") + ylab("Livret A , Livret Bleu") +
  geom_line(aes(x = date, y = value / 1000, color = Variable)) +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2100, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.4, 0.9),
        legend.title = element_blank(),
        legend.direction = "vertical") +
  scale_y_continuous(breaks = seq(0, 1000, 20),
                labels = dollar_format(suffix = " Mds€", prefix = "",  accuracy = 1))

Livret A et PEL, LEP, Déôts vue

Tous

Code
BSI1 %>%
  filter(variable %in% c("BSI1.M.FR.N.A.L23FRAB.A.1.U6.2250.Z01.E",
                         "BSI1.M.FR.N.A.L22FRPL.A.1.U6.2251.Z01.E",
                         "BSI1.M.FR.N.A.L21.A.1.U6.2250.Z01.E")) %>%
  left_join(BSI1_var, by = "variable") %>%
  ggplot + theme_minimal() + xlab("") + ylab("Livret A , Livret Bleu") +
  geom_line(aes(x = date, y = value / 1000, color = Variable)) +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2100, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.4, 0.9),
        legend.title = element_blank(),
        legend.direction = "vertical") +
  scale_y_continuous(breaks = seq(0, 1000, 20),
                labels = dollar_format(suffix = " Mds€", prefix = "",  accuracy = 1))

Livret A et PEL

Tous

Code
BSI1 %>%
  filter(variable %in% c("BSI1.M.FR.N.A.L23FRAB.A.1.U6.2250.Z01.E",
                         "BSI1.M.FR.N.A.L22FRPL.A.1.U6.2251.Z01.E")) %>%
  left_join(BSI1_var, by = "variable") %>%
  ggplot + theme_minimal() + xlab("") + ylab("Livret A , Livret Bleu") +
  geom_line(aes(x = date, y = value / 1000, color = Variable)) +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2100, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.4, 0.9),
        legend.title = element_blank(),
        legend.direction = "vertical") +
  scale_y_continuous(breaks = seq(0, 1000, 20),
                labels = dollar_format(suffix = " Mds€", prefix = "",  accuracy = 1))

2012-

Code
BSI1 %>%
  filter(variable %in% c("BSI1.M.FR.N.A.L23FRAB.A.1.U6.2250.Z01.E",
                         "BSI1.M.FR.N.A.L22FRPL.A.1.U6.2251.Z01.E")) %>%
  left_join(BSI1_var, by = "variable") %>%
  filter(date >= as.Date("2011-12-31")) %>%
  ggplot + theme_minimal() + xlab("") + ylab("Livret A , Livret Bleu") +
  geom_line(aes(x = date, y = value / 1000, color = Variable)) +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2100, 1), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.4, 0.9),
        legend.title = element_blank(),
        legend.direction = "vertical") +
  scale_y_continuous(breaks = seq(0, 1000, 20),
                labels = dollar_format(suffix = " Mds€", prefix = "",  accuracy = 1))

PEL, tous

Code
BSI1 %>%
  left_join(BSI1_var, by = "variable") %>%
  filter(BS_ITEM %in% c("L22FRPL")) %>%
  ggplot + theme_minimal() + xlab("") + ylab("Livret A , Livret Bleu") +
  geom_line(aes(x = date, y = value / 1000, color = Variable)) +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2100, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.5, 0.6),
        legend.title = element_blank(),
        legend.direction = "vertical") +
  scale_y_continuous(breaks = seq(0, 1000, 20),
                labels = dollar_format(suffix = " Mds€", prefix = "",  accuracy = 1))

Dépôts à vue (L21)

2300

Code
BSI1 %>%
  left_join(BSI1_var, by = "variable") %>%
  filter(BS_ITEM %in% c("L21"),
         variable == "BSI1.M.FR.N.A.L21.A.1.U6.2300.Z01.E") %>%
  ggplot + theme_minimal() + xlab("") + ylab("Dépôts à vue") +
  geom_line(aes(x = date, y = value / 1000, color = Variable)) +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2100, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.5, 0.6),
        legend.title = element_blank(),
        legend.direction = "vertical") +
  scale_y_log10(breaks = seq(100, 3000, 100),
                labels = dollar_format(suffix = " Mds€", prefix = "",  accuracy = 1))

2250 - Ménages

Code
BSI1 %>%
  left_join(BSI1_var, by = "variable") %>%
  filter(BS_ITEM %in% c("L21"),
         variable == "BSI1.M.FR.N.A.L21.A.1.U6.2250.Z01.E") %>%
  ggplot + theme_minimal() + xlab("") + ylab("Dépôts à vue") +
  geom_line(aes(x = date, y = value / 1000, color = Variable)) +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2100, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.5, 0.6),
        legend.title = element_blank(),
        legend.direction = "vertical") +
  scale_y_log10(breaks = seq(100, 3000, 100),
                labels = dollar_format(suffix = " Mds€", prefix = "",  accuracy = 1))

Dépôts (L20)

Tous

Code
BSI1 %>%
  left_join(BSI1_var, by = "variable") %>%
  filter(variable %in% c("BSI1.M.FR.N.A.L20.A.1.U6.2250.Z01.E",
                         "BSI1.M.FR.N.A.L20.A.1.U6.2254FR.Z01.E",
                         "BSI1.M.FR.N.A.L21.A.1.U6.2300.Z01.E")) %>%
  ggplot + theme_minimal() + xlab("") + ylab("Dépôts à vue") +
  geom_line(aes(x = date, y = value / 1000, color = Variable)) +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2100, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.5, 0.6),
        legend.title = element_blank(),
        legend.direction = "vertical") +
  scale_y_log10(breaks = seq(100, 3000, 100),
                labels = dollar_format(suffix = " Mds€", prefix = "",  accuracy = 1))

2012-

Code
BSI1 %>%
  left_join(BSI1_var, by = "variable") %>%
  filter(variable %in% c("BSI1.M.FR.N.A.L20.A.1.U6.2250.Z01.E",
                         "BSI1.M.FR.N.A.L20.A.1.U6.2254FR.Z01.E",
                         "BSI1.M.FR.N.A.L21.A.1.U6.2300.Z01.E"),
         date >= as.Date("2011-12-31")) %>%
  ggplot + theme_minimal() + xlab("") + ylab("Dépôts, Dépôts à vue") +
  geom_line(aes(x = date, y = value / 1000, color = Variable)) +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2100, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.4, 0.9),
        legend.title = element_blank(),
        legend.direction = "vertical") +
  scale_y_log10(breaks = seq(100, 3000, 100),
                labels = dollar_format(suffix = " Mds€", prefix = "",  accuracy = 1))

Encours crédit entreprises

2240: crédits entrerpises

Linear

Code
data_ombeline <- BSI1 %>%
  group_by(variable) %>%
  summarise(max_date = max(date),
            min_date = min(date)) %>%
  left_join(variable, by = "variable") %>%
  filter(BS_COUNT_SECTOR == "2240") %>%
  arrange(desc(max_date))

save(data_ombeline, file = "~/data_ombeline.RData")

Encours crédit à l’habitat

Linear

Code
BSI1 %>%
  filter(grepl("BSI1.M.FR.N.R.A220Z.A.1.U6.2250.Z01.E", variable) |
           grepl("BSI1.M.FR.N.R.A220Z.A.1.U6.2254FR.Z01.E", variable) |
           grepl("BSI1.M.FR.N.2.A22.A.1.U6.2251.Z01.E", variable)) %>%
  left_join(BSI1_var, by = "variable") %>%
  ggplot + theme_minimal() + xlab("") + ylab("") +
  geom_line(aes(x = date, y = value / 1000, color = Variable)) +
  
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2100, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.4, 0.9),
        legend.title = element_blank(),
        legend.direction = "vertical") +
  scale_y_continuous(breaks = seq(-10000, 10000, 100),
                labels = dollar_format(suffix = " Mds€", prefix = "",  accuracy = 1))

Log

Code
BSI1 %>%
  filter(grepl("BSI1.M.FR.N.R.A220Z.A.1.U6.2250.Z01.E", variable) |
           grepl("BSI1.M.FR.N.R.A220Z.A.1.U6.2254FR.Z01.E", variable) |
           grepl("BSI1.M.FR.N.2.A22.A.1.U6.2251.Z01.E", variable)) %>%
  left_join(BSI1_var, by = "variable") %>%
  ggplot + theme_minimal() + xlab("") + ylab("") +
  geom_line(aes(x = date, y = value / 1000, color = Variable)) +
  
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2100, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.4, 0.9),
        legend.title = element_blank(),
        legend.direction = "vertical") +
  scale_y_log10(breaks = seq(-10000, 10000, 100),
                labels = dollar_format(suffix = " Mds€", prefix = "",  accuracy = 1))

Encours crédit à la consommation

Linear

Code
BSI1 %>%
  filter(grepl("BSI1.M.FR.N.R.A210Z.A.1.U6.2254FR.Z01.E", variable) |
           grepl("BSI1.M.FR.N.R.A210Z.A.1.U6.2250.Z01.E", variable)) %>%
  left_join(BSI1_var, by = "variable") %>%
  ggplot + theme_minimal() + xlab("") + ylab("") +
  geom_line(aes(x = date, y = value / 1000, color = Variable)) +
  
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2100, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.5, 0.9),
        legend.title = element_blank(),
        legend.direction = "vertical") +
  scale_y_continuous(breaks = seq(-10000, 10000, 10),
                labels = dollar_format(suffix = " Mds€", prefix = "",  accuracy = 1))

Log

Code
BSI1 %>%
  filter(grepl("BSI1.M.FR.N.R.A210Z.A.1.U6.2254FR.Z01.E", variable) |
           grepl("BSI1.M.FR.N.R.A210Z.A.1.U6.2250.Z01.E", variable)) %>%
  left_join(BSI1_var, by = "variable") %>%
  ggplot + theme_minimal() + xlab("") + ylab("") +
  geom_line(aes(x = date, y = value / 1000, color = Variable)) +
  
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2100, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.5, 0.9),
        legend.title = element_blank(),
        legend.direction = "vertical") +
  scale_y_log10(breaks = seq(-10000, 10000, 10),
                labels = dollar_format(suffix = " Mds€", prefix = "",  accuracy = 1))