Indice des prix à la consommation - Base 2015

Data - INSEE

[1] "fr_CA.UTF-8"

Info

source dataset .html .RData
insee IPC-2015 2024-11-17 2024-11-17
insee IPCH-2015 2024-11-17 2024-11-17

Données sur l’inflation en France

Title source dataset .html .RData
Budget de famille 2017 insee bdf2017 2024-11-09 2023-11-21
Indices pour la révision d’un bail commercial ou professionnel insee ILC-ILAT-ICC 2024-11-09 2024-11-09
Indices des loyers - Base 2019 insee INDICES_LOYERS 2024-11-09 2024-11-09
Indice des prix à la consommation - Base 1970, 1980 insee IPC-1970-1980 2024-11-09 2024-11-09
Indices des prix à la consommation - Base 1990 insee IPC-1990 2024-11-09 2024-11-09
Indice des prix à la consommation - Base 2015 insee IPC-2015 2024-11-17 2024-11-17
Prix moyens de vente de détail insee IPC-PM-2015 2024-11-17 2024-11-17
Indices des prix à la consommation harmonisés insee IPCH-2015 2024-11-17 2024-11-17
Indice des prix dans la grande distribution insee IPGD-2015 2024-11-17 2024-11-17
Indices des prix des logements neufs et Indices Notaires-Insee des prix des logements anciens insee IPLA-IPLNA-2015 2024-11-09 2024-11-09
Indices de prix de production et d'importation dans l'industrie insee IPPI-2015 2024-11-17 2024-11-17
Indice pour la révision d’un loyer d’habitation insee IRL 2024-11-09 2024-11-09
Variation des loyers insee SERIES_LOYERS 2024-11-09 2024-11-09
Consommation effective des ménages par fonction insee T_CONSO_EFF_FONCTION 2024-11-09 2024-07-18

LAST_COMPILE

LAST_COMPILE
2024-11-17

LAST_UPDATE

Code
`IPC-2015` %>%
  group_by(LAST_UPDATE) %>%
  summarise(Nobs = n()) %>%
  arrange(desc(LAST_UPDATE)) %>%
  print_table_conditional()
LAST_UPDATE Nobs
2024-11-15 419533
2024-10-24 29112
2024-08-30 1502
2024-08-29 24
2024-08-13 3
2024-02-16 44989
2024-01-12 42839
2023-01-23 1158
2021-02-19 155
2021-01-15 837
2020-02-20 88
2020-01-30 825
2020-01-22 275
2020-01-15 2202
2019-02-28 66
2019-02-22 510
2019-02-21 22
2019-01-15 812
2017-01-12 378
2016-04-13 3648
2016-02-22 78
2016-02-18 456

Last

Code
`IPC-2015` %>%
  group_by(TIME_PERIOD, FREQ) %>%
  summarise(Nobs = n()) %>%
  group_by(FREQ) %>%
  filter(TIME_PERIOD == max(TIME_PERIOD)) %>%
  print_table_conditional()
TIME_PERIOD FREQ Nobs
2024 A 1420
2024-10 M 1059

Definitions

  • Moyenne annuelle: l’évolution en moyenne annuelle compare les prix d’une année donnée à ceux de l’année précédente.

  • Glissement annuel: l’évolution en glissement annuel compare les prix d’un seul mois d’une année donnée à ceux du même mois de l’année précédente.

Méthodo

  • Indice des prix à la consommation (base 100=1998) (pdf, fr, 44 Ko, 01/02/2013)
  • Indice des prix à la consommation des ménages du premier quintile de la distribution des niveaux de vie (pdf, fr, 119 Ko, 18/02/2013)
  • Indice des prix à la consommation (base 100=2015) (pdf, fr, 145 Ko, 29/01/2016)
  • Indice des prix à la consommation des ménages - base 100 en 2015 (pdf, fr, 955 Ko, 29/01/2016)
  • Pour comprendre l’indice des prix - Édition 1998 (pdf, fr, 1 Mo, 01/01/1999)
  • Indice des prix à la consommation des ménages - base 100 en 1998 (pdf, fr, 50 Ko, 01/01/1999)
  • Dossier d’information méthodologique. Indice des prix, pouvoir d’achat (pdf, fr, 229 Ko, 01/02/2004)

Documents de travail

  • L’IPC, miroir de l’évolution du coût de la vie en France ? - Ce qu’apporte l’analyse des courbes d’Engel. (pdf, fr, 615 Ko, 02/04/2010)
  • Calcul d’un indice des prix des produits de grande consommation dans la grande distribution (pdf, fr, 204 Ko, 01/01/2014)
  • Ce qui change pour l’IPC à partir du 29 janvier 2016 (pdf, fr, 129 Ko, 29/01/2016)
  • L’expérience française des indices de prix a la consommation (pdf, fr, 107 Ko, 01/01/1996) Indice des prix à la consommation CVS et indice hors tarifs publics et produits à prix volatils corrigé des mesures fiscales, CVS (pdf, fr, 71 Ko, 27/03/1996)
  • Indices mensuels des prix dans la grande distribution (pdf, fr, 126 Ko, 18/02/2016)
  • Contenu des groupes avec les fonctions, les regroupements et les groupes publiés dans la nouvelle base 1998 (pdf, fr, 42 Ko, 01/01/1999)
  • Comparaisons spatiales de prix au sein du territoire français (pdf, fr, 91 Ko, 01/12/2000)
  • Les indices à utilité constante : une référence pour mesurer l’évolution des prix (pdf, fr, 219 Ko, 01/12/2000)
  • La mesure des prix dans les domaines de la santé et de l’action sociale : quelques problèmes méthodologiques (pdf, fr, 212 Ko, 01/06/2003)
  • Indice des prix à la consommation en base 100 en 1998 - Séries longues rétropolées, de 1990 à 2002 (pdf, fr, 201 Ko, 01/09/2003)
  • Impact des ajustements de qualité dans le calcul de l’indice des prix à la consommation (pdf, fr, 53 Ko, 01/05/2004)
  • Introduction à la pratique des indices statistiques (pdf, fr, 426 Ko, 01/11/2005)
  • Note additionnelle sur les changements de l’année 2017 (pdf, fr, 228 Ko, 23/02/2017)

TEF 2020

Code
ig_b("insee", "TEF2020", "114-IPC-poids")

INDICATEUR

Code
`IPC-2015` %>%
  left_join(INDICATEUR,  by = "INDICATEUR") %>%
  group_by(INDICATEUR, Indicateur) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()
INDICATEUR Indicateur Nobs
IPC Indice des prix à la consommation (IPC) 544460
ISJ Indice d'inflation sous-jacente (ISJ) 5052

PRIX_CONSO

Code
`IPC-2015` %>%
  left_join(PRIX_CONSO,  by = "PRIX_CONSO") %>%
  group_by(PRIX_CONSO, Prix_conso) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()

CORRECTION

Code
`IPC-2015` %>%
  left_join(CORRECTION,  by = "CORRECTION") %>%
  group_by(CORRECTION, Correction) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()
CORRECTION Correction Nobs
BRUT Non corrigé 543194
CVS-FISC Corrigé des mesures fiscales et des variations saisonnières 5052
CVS Corrigé des variations saisonnières 1266

NATURE

Code
`IPC-2015` %>%
  left_join(NATURE,  by = "NATURE") %>%
  group_by(NATURE, Nature) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()
NATURE Nature Nobs
INDICE Indice 454629
POND Pondérations d'indice 45859
VARIATIONS_M Variations mensuelles 24275
GLISSEMENT_ANNUEL Glissement annuel 23560
VARIATIONS_A Variations annuelles 1189

FREQ

Code
`IPC-2015` %>%
  left_join(FREQ,  by = "FREQ") %>%
  group_by(FREQ, Freq) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()
FREQ Freq Nobs
M Monthly 458407
A Annual 91105

MENAGES_IPC

Code
`IPC-2015` %>%
  left_join(MENAGES_IPC,  by = "MENAGES_IPC") %>%
  group_by(MENAGES_IPC, Menages_ipc) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()

COICOP2016

All

Code
`IPC-2015` %>%
  left_join(COICOP2016,  by = "COICOP2016") %>%
  group_by(COICOP2016, Coicop2016) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()

2-digit

Code
`IPC-2015` %>%
  filter(nchar(COICOP2016) == 2) %>%
  left_join(COICOP2016,  by = "COICOP2016") %>%
  group_by(COICOP2016, Coicop2016) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()
COICOP2016 Coicop2016 Nobs
SO Sans objet 111763
00 00 - Ensemble 2805
01 01 - Produits alimentaires et boissons non alcoolisées 1461
02 02 - Boissons alcoolisées, tabac et stupéfiants 1461
03 03 - Articles d'habillement et chaussures 1461
04 04 - Logement, eau, gaz, électricité et autres combustibles 1461
05 05 - Meubles, articles de ménage et entretien courant du foyer 1461
06 06 - Santé 1461
07 07 - Transports 1461
08 08 - Communications 1461
09 09 - Loisirs et culture 1461
10 10 - Enseignement 1461
11 11 - Restaurants et hôtels 1461
12 12 - Biens et services divers 1461

3-digit

Code
`IPC-2015` %>%
  filter(nchar(COICOP2016) == 3) %>%
  left_join(COICOP2016,  by = "COICOP2016") %>%
  group_by(COICOP2016, Coicop2016) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()

4-digit

Code
`IPC-2015` %>%
  filter(nchar(COICOP2016) == 4) %>%
  left_join(COICOP2016,  by = "COICOP2016") %>%
  group_by(COICOP2016, Coicop2016) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()

5-digit

Code
`IPC-2015` %>%
  filter(nchar(COICOP2016) == 5) %>%
  left_join(COICOP2016,  by = "COICOP2016") %>%
  group_by(COICOP2016, Coicop2016) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()

6-digit

Code
`IPC-2015` %>%
  filter(nchar(COICOP2016) == 6) %>%
  left_join(COICOP2016,  by = "COICOP2016") %>%
  group_by(COICOP2016, Coicop2016) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()

TITLE_FR

Code
`IPC-2015` %>%
  group_by(TITLE_FR, IDBANK) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional

REF_AREA

Code
`IPC-2015` %>%
  group_by(REF_AREA) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional
REF_AREA Nobs
FE 284530
FM 229642
D973 8418
D971 8396
D972 8396
D974 8396
D976 1734

TIME_PERIOD

Code
`IPC-2015` %>%
  group_by(TIME_PERIOD) %>%
  summarise(Nobs = n()) %>%
  arrange(desc(TIME_PERIOD)) %>%
  print_table_conditional

France Entiere (FE), France Métropolitaine (FM)

Mensuel

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         PRIX_CONSO %in% c("SO"),
         FREQ == "M",
         COICOP2016 %in% c("00"),
         REF_AREA %in% c("FE", "FM"),
         NATURE == "INDICE") %>%
  month_to_date %>%
  filter(date >= as.Date("1996-01-01")) %>%
  arrange(desc(date)) %>%
  group_by(REF_AREA) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = REF_AREA)) +
  
  scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.75, 0.3),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 200, 10),
                     labels = dollar_format(accuracy = 1, prefix = "")) +
  geom_text_repel(data = . %>%
              filter(date == max(date)), aes(x = date, y = OBS_VALUE, label = round(OBS_VALUE, 1)), size = 3)

Alimentation, loyers, chauffage, Ensemble

Hausse sur 2 ans

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         COICOP2016 %in% c("041", "00", "01", "045"),
         FREQ == "M",
         REF_AREA == "FM",
         NATURE == "INDICE") %>%
  month_to_date %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  filter(date >= max(date) - years(2)) %>%
  group_by(COICOP2016) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Coicop2016)) +
  theme_minimal() + xlab("") + ylab("") +
  scale_x_date(breaks = "1 month",
               labels = date_format("%b %Y")) +
  theme(legend.position = c(0.28, 0.87),
        legend.title = element_blank(),
        axis.text.x = element_text(angle = 45, vjust = 0.5, hjust=1)) +
  scale_y_log10(breaks = seq(100, 130, 2),
                labels = paste0(seq(0, 30, 2), "%")) +
  geom_text_repel(data = . %>%
              filter(date == max(date)), aes(x = date, y = OBS_VALUE, label = round(OBS_VALUE, 1)), size = 3)

Par type de ménages

3 déciles

Code
`IPC-2015` %>%
  filter(MENAGES_IPC %in% c("D6-D7", "INF-D1", "D9-PLUS")) %>%
  left_join(MENAGES_IPC, by = "MENAGES_IPC") %>%
  year_to_date %>%
  group_by(MENAGES_IPC) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot + geom_line(aes(x = date, y = OBS_VALUE, color = Menages_ipc)) +
  theme_minimal() + xlab("") + ylab("") +
  scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.7, 0.2),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 200, 5),
                     labels = dollar_format(accuracy = 1, prefix = "")) +
  geom_text_repel(data = . %>%
              filter(date == max(date)), aes(x = date, y = OBS_VALUE, label = round(OBS_VALUE, 1)), size = 3)

10 dixièmes

1998-

Code
`IPC-2015` %>%
  filter(MENAGES_IPC %in% c("INF-D1", "D1-D2", "D2-D3", "D3-D4", "D4-D5",
                            "D5-D6", "D6-D7", "D7-D8", "D8-D9", "D9-PLUS")) %>%
  left_join(MENAGES_IPC, by = "MENAGES_IPC") %>%
  year_to_date %>%
  group_by(MENAGES_IPC) %>%
  mutate(MENAGES_IPC = factor(MENAGES_IPC, levels = c("INF-D1", "D1-D2", "D2-D3", "D3-D4", "D4-D5",
                            "D5-D6", "D6-D7", "D7-D8", "D8-D9", "D9-PLUS"))) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot + geom_line(aes(x = date, y = OBS_VALUE, color = MENAGES_IPC)) +
  theme_minimal() + xlab("") + ylab("") +
  scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.25, 0.7),
        legend.title = element_blank()) +
  guides(color = guide_legend(ncol = 3)) +
  scale_y_log10(breaks = seq(0, 200, 5),
                     labels = dollar_format(accuracy = 1, prefix = ""))

2008-

Code
`IPC-2015` %>%
  filter(MENAGES_IPC %in% c("INF-D1", "D1-D2", "D2-D3", "D3-D4", "D4-D5",
                            "D5-D6", "D6-D7", "D7-D8", "D8-D9", "D9-PLUS")) %>%
  left_join(MENAGES_IPC, by = "MENAGES_IPC") %>%
  year_to_date %>%
  group_by(MENAGES_IPC) %>%
  mutate(MENAGES_IPC = factor(MENAGES_IPC,
                              levels = c("INF-D1", "D1-D2", "D2-D3", "D3-D4", "D4-D5",
                                         "D5-D6", "D6-D7", "D7-D8", "D8-D9", "D9-PLUS"))) %>%
  arrange(date) %>%
  filter(date >= as.Date("2008-01-01")) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot + geom_line(aes(x = date, y = OBS_VALUE, color = MENAGES_IPC)) +
  theme_minimal() + xlab("") + ylab("") +
  scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.25, 0.7),
        legend.title = element_blank()) +
  guides(color = guide_legend(ncol = 3)) +
  scale_y_log10(breaks = seq(0, 200, 2),
                     labels = dollar_format(accuracy = 1, prefix = ""))

1er quintile, Tous

All

Code
`IPC-2015` %>%
  filter(MENAGES_IPC %in% c("PREMIERQUINTILE", "ENSEMBLE"),
         FREQ == "M",
         PRIX_CONSO == "4018",
         REF_AREA == "FE",
         COICOP2016 == "SO",
         NATURE == "INDICE") %>%
  left_join(MENAGES_IPC, by = "MENAGES_IPC") %>%
  month_to_date %>%
  ggplot + geom_line(aes(x = date, y = OBS_VALUE, color = Menages_ipc)) +
  theme_minimal() + xlab("") + ylab("") +
  scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.7, 0.2),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 200, 5),
                     labels = dollar_format(accuracy = 1, prefix = ""))

1998-

Code
`IPC-2015` %>%
  filter(MENAGES_IPC %in% c("PREMIERQUINTILE", "ENSEMBLE"),
         FREQ == "M",
         PRIX_CONSO == "4018",
         REF_AREA == "FE",
         COICOP2016 == "SO",
         NATURE == "INDICE") %>%
  left_join(MENAGES_IPC, by = "MENAGES_IPC") %>%
  month_to_date %>%
  filter(date >= as.Date("1998-01-01")) %>%
  group_by(MENAGES_IPC) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot + geom_line(aes(x = date, y = OBS_VALUE, color = Menages_ipc)) +
  theme_minimal() + xlab("") + ylab("") +
  scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.6, 0.2),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 200, 5),
                     labels = dollar_format(accuracy = 1, prefix = ""))

2012-

Code
`IPC-2015` %>%
  filter(MENAGES_IPC %in% c("PREMIERQUINTILE", "ENSEMBLE"),
         FREQ == "M",
         PRIX_CONSO == "4018",
         REF_AREA == "FE",
         COICOP2016 == "SO",
         NATURE == "INDICE") %>%
  left_join(MENAGES_IPC, by = "MENAGES_IPC") %>%
  month_to_date %>%
  filter(date >= as.Date("2012-01-01")) %>%
  group_by(MENAGES_IPC) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot + geom_line(aes(x = date, y = OBS_VALUE, color = Menages_ipc)) +
  theme_minimal() + xlab("") + ylab("") +
  scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.4, 0.9),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 200, 2),
                     labels = dollar_format(accuracy = 1, prefix = "")) +
  geom_text_repel(data = . %>%
              filter(date == max(date)), aes(x = date, y = OBS_VALUE, label = round(OBS_VALUE, 1)), size = 3)

Glissement sur 2 ans

Code
`IPC-2015` %>%
  filter(MENAGES_IPC %in% c("PREMIERQUINTILE", "ENSEMBLE"),
         FREQ == "M",
         PRIX_CONSO == "4018",
         REF_AREA == "FE",
         COICOP2016 == "SO",
         NATURE == "INDICE") %>%
  left_join(MENAGES_IPC, by = "MENAGES_IPC") %>%
  month_to_date %>%
  filter(date >= as.Date("2021-09-01")) %>%
  group_by(MENAGES_IPC) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot + geom_line(aes(x = date, y = OBS_VALUE, color = Menages_ipc)) +
  theme_minimal() + xlab("") + ylab("") +
  scale_x_date(breaks = "1 month",
               labels = date_format("%b %Y")) +
  theme(legend.position = c(0.65, 0.2),
        legend.title = element_blank(),
        axis.text.x = element_text(angle = 45, vjust = 0.5, hjust=1)) +
  scale_y_log10(breaks = seq(0, 200, 1),
                     labels = dollar_format(accuracy = 1, prefix = "")) +
  geom_text_repel(aes(x = date, y = OBS_VALUE, label = round(OBS_VALUE, 1)), 
                  fontface ="plain", color = "black", size = 3)

Cadres, Ouvriers, Retraités

Code
`IPC-2015` %>%
  filter(MENAGES_IPC %in% c("CADRE", "OUVRIER", "RETRAITE", "ACTIF")) %>%
  left_join(MENAGES_IPC, by = "MENAGES_IPC") %>%
  year_to_date %>%
  group_by(MENAGES_IPC) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot + geom_line(aes(x = date, y = OBS_VALUE, color = Menages_ipc)) +
  theme_minimal() + xlab("") + ylab("") +
  scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.7, 0.2),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 200, 5),
                     labels = dollar_format(accuracy = 1, prefix = "")) +
  geom_text_repel(data = . %>%
              filter(date == max(date)), aes(x = date, y = OBS_VALUE, label = round(OBS_VALUE, 1)), size = 3)

Inflation - Tous

Table - COICOP2016

All

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         REF_AREA == "FE",
         NATURE == "INDICE",
         PRIX_CONSO == "SO",
         TIME_PERIOD %in% c("1990", "2000", "2010", "2020")) %>%
  left_join(COICOP2016,  by = "COICOP2016") %>%
  select(COICOP2016, Coicop2016, TIME_PERIOD, OBS_VALUE) %>%
  spread(TIME_PERIOD, OBS_VALUE) %>%
  mutate(`% 1990-2019` = (100*((`2020`/`1990`)^(1/29)-1)) %>% round(., 2)) %>%
  print_table_conditional

2-digit

Javascript

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         REF_AREA == "FE",
         NATURE == "INDICE",
         PRIX_CONSO == "SO",
         TIME_PERIOD %in% c("1990", "2000", "2010", "2020"),
         nchar(COICOP2016) == 2) %>%
  left_join(COICOP2016,  by = "COICOP2016") %>%
  select(COICOP2016, Coicop2016, TIME_PERIOD, OBS_VALUE) %>%
  spread(TIME_PERIOD, OBS_VALUE) %>%
  mutate(`% 1990-2019` = (100*((`2020`/`1990`)^(1/29)-1)) %>% round(., 2)) %>%
  print_table_conditional()
COICOP2016 Coicop2016 1990 2000 2010 2020 % 1990-2019
00 00 - Ensemble 67.4 79.9 94.71 104.73 1.53
01 01 - Produits alimentaires et boissons non alcoolisées 68.7 77.6 94.63 108.33 1.58
02 02 - Boissons alcoolisées, tabac et stupéfiants 34.9 55.2 83.63 126.07 4.53
03 03 - Articles d'habillement et chaussures 85.7 93.2 97.60 99.71 0.52
04 04 - Logement, eau, gaz, électricité et autres combustibles 53.6 66.9 88.46 105.24 2.35
05 05 - Meubles, articles de ménage et entretien courant du foyer 74.6 85.1 96.11 100.67 1.04
06 06 - Santé 92.9 101.9 104.31 96.67 0.14
07 07 - Transports 58.6 74.4 93.57 105.24 2.04
08 08 - Communications 158.4 142.1 124.87 91.96 -1.86
09 09 - Loisirs et culture 101.5 109.2 101.30 103.29 0.06
10 10 - Enseignement 55.3 70.0 92.09 107.42 2.32
11 11 - Restaurants et hôtels 53.3 69.9 89.63 108.04 2.47
12 12 - Biens et services divers 60.8 71.7 91.54 105.68 1.92

png

Code
i_g("bib/insee/IPC-2015_2digit.png")

3-digit

Javascript

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         REF_AREA == "FE",
         NATURE == "INDICE",
         PRIX_CONSO == "SO",
         TIME_PERIOD %in% c("1990", "2000", "2010", "2020"),
         nchar(COICOP2016) == 3) %>%
  left_join(COICOP2016,  by = "COICOP2016") %>%
  select(COICOP2016, Coicop2016, TIME_PERIOD, OBS_VALUE) %>%
  spread(TIME_PERIOD, OBS_VALUE) %>%
  mutate(`% 1990-2019` = (100*((`2020`/`1990`)^(1/29)-1)) %>% round(., 2)) %>%
  print_table_conditional()

png

Code
i_g("bib/insee/IPC-2015_3digit-0.png")

Code
i_g("bib/insee/IPC-2015_3digit-1.png")

4-digit

Javascript

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         REF_AREA == "FE",
         NATURE == "INDICE",
         PRIX_CONSO == "SO",
         TIME_PERIOD %in% c("1990", "2000", "2010", "2020"),
         nchar(COICOP2016) == 4) %>%
  left_join(COICOP2016,  by = "COICOP2016") %>%
  select(COICOP2016, Coicop2016, TIME_PERIOD, OBS_VALUE) %>%
  spread(TIME_PERIOD, OBS_VALUE) %>%
  mutate(`% 1990-2019` = (100*((`2020`/`1990`)^(1/29)-1)) %>% round(., 2)) %>%
  print_table_conditional()

png

Code
i_g("bib/insee/IPC-2015_4digit-0.png")

Code
i_g("bib/insee/IPC-2015_4digit-1.png")

Code
i_g("bib/insee/IPC-2015_4digit-2.png")

Code
i_g("bib/insee/IPC-2015_4digit-3.png")

5-digit

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         REF_AREA == "FE",
         NATURE == "INDICE",
         PRIX_CONSO == "SO",
         TIME_PERIOD %in% c("1990", "2000", "2010", "2020"),
         nchar(COICOP2016) == 5) %>%
  left_join(COICOP2016,  by = "COICOP2016") %>%
  select(COICOP2016, Coicop2016, TIME_PERIOD, OBS_VALUE) %>%
  spread(TIME_PERIOD, OBS_VALUE) %>%
  mutate(`% 1990-2019` = (100*((`2020`/`1990`)^(1/29)-1)) %>% round(., 2)) %>%
  print_table_conditional()

6-digit

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         REF_AREA == "FE",
         NATURE == "INDICE",
         PRIX_CONSO == "SO",
         TIME_PERIOD %in% c("1990", "2000", "2010", "2020"),
         nchar(COICOP2016) == 6) %>%
  left_join(COICOP2016,  by = "COICOP2016") %>%
  select(COICOP2016, Coicop2016, TIME_PERIOD, OBS_VALUE) %>%
  spread(TIME_PERIOD, OBS_VALUE) %>%
  mutate(`% 1990-2019` = (100*((`2020`/`1990`)^(1/29)-1)) %>% round(., 2)) %>%
  print_table_conditional()

Table - PRIX_CONSO

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         REF_AREA == "FE",
         NATURE == "INDICE",
         COICOP2016 == "SO",
         TIME_PERIOD %in% c("1990", "2000", "2010", "2020")) %>%
  left_join(COICOP2016,  by = "COICOP2016") %>%
  left_join(PRIX_CONSO,  by = "PRIX_CONSO") %>%
  select(PRIX_CONSO, Prix_conso, TIME_PERIOD, OBS_VALUE) %>%
  spread(TIME_PERIOD, OBS_VALUE) %>%
  print_table_conditional
PRIX_CONSO Prix_conso 1990 2000 2010 2020
4000 Alimentation NA NA 94.14 108.10
4001 Produits frais NA NA 91.27 126.16
4002 Autres produits alimentaires NA NA 94.57 105.27
4003 Produits manufacturés NA NA 101.42 97.95
4004 Habillement, chaussures NA NA 97.80 99.42
4005 Produits de santé NA NA 114.95 88.35
4006 Autres produits manufacturés NA NA 99.31 99.98
4007 Énergie NA NA 88.98 108.34
4008 Produits pétroliers NA NA 97.83 106.18
4009 Services NA NA 92.90 105.22
4010 Services : Loyers, eau et enlèvement des ordures ménagères NA NA 92.41 101.88
4011 Services : Services de santé NA NA 96.55 102.75
4012 Services : Transports et communications NA NA 106.69 98.90
4013 Autres services NA NA 89.91 107.75
4014 Alimentation, y compris tabac NA NA 92.35 111.91
4015 Produits manufacturés, y compris énergie NA NA 98.65 100.37
4016 Produits manufacturés, y compris services liés, hors habillement et chaussures NA NA 102.07 NA
4017 Ensemble hors énergie NA NA 95.24 104.42
4018 Ensemble hors tabac NA NA 95.06 103.98
4023 Ensemble hors tabac et alcool NA NA 95.16 103.94
4024 Ensemble non alimentaire, y compris tabac NA NA 94.82 104.09
4025 Ensemble hors produits frais NA NA 94.80 104.26
4026 Alimentation, y compris restaurants, cantines, cafés NA NA 92.97 107.88
4037 Biens durables NA NA 102.00 99.95
4038 Produits manufacturés, hors habillement, biens durables et produits de santé NA NA 96.65 100.09
4566 Services : Transports, communications, hôtellerie NA NA 95.54 104.09
4600 Ensemble hors loyers et hors tabac NA NA 95.12 104.18
5272 Services : Transports 60.7 76.6 93.18 100.27
5273 Services : Communications 144.8 131.4 121.85 97.39
5329 Produits manufacturés, hors habillement et chaussures NA NA NA 97.54

Inflation par catégorie

Tabac, Loyers, Ensemble, Carburants

Code
`IPC-2015` %>%
  filter(COICOP2016 %in% c("00", "045", "022", "0722"),
         NATURE == "INDICE",
         REF_AREA == "FE",
         FREQ == "M",
         is.na(MENAGES_IPC) | MENAGES_IPC == "ENSEMBLE",
         is.na(PRIX_CONSO) | PRIX_CONSO == "SO") %>%
  month_to_date %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  group_by(COICOP2016) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = OBS_VALUE/lag(OBS_VALUE, 12)-1) %>%
  filter(date >= max(date) - years(2)) %>%
  select(date, OBS_VALUE, Coicop2016) %>%
  na.omit %>%
  ggplot() + ylab("Inflation sur un an (IPC, IPCH)") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Coicop2016)) +
  
  scale_x_date(breaks = "1 month",
               labels = date_format("%b %Y")) +
  theme(legend.position = c(0.72, 0.9),
        legend.title = element_blank(),
        axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
  scale_y_continuous(breaks = 0.01*seq(-100, 300, 5),
                     labels = percent_format(accuracy = 1, prefix = "")) +
  geom_text_repel(aes(x = date, y = OBS_VALUE, label = percent(OBS_VALUE, acc = 0.1)), 
                  fontface ="plain", color = "black", size = 3)

Tabac, Loyers, Ensemble

Glissement 1 an

Code
`IPC-2015` %>%
  filter(COICOP2016 %in% c("00", "01", "022"),
         NATURE == "INDICE",
         REF_AREA == "FE",
         FREQ == "M",
         is.na(MENAGES_IPC) | MENAGES_IPC == "ENSEMBLE",
         is.na(PRIX_CONSO) | PRIX_CONSO == "SO") %>%
  month_to_date %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  group_by(COICOP2016) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = OBS_VALUE/lag(OBS_VALUE, 12)-1) %>%
  filter(date >= max(date) - years(2)) %>%
  select(date, OBS_VALUE, Coicop2016) %>%
  na.omit %>%
  ggplot() + ylab("Inflation sur un an (IPC, IPCH)") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Coicop2016)) +
  
  scale_x_date(breaks = "1 month",
               labels = date_format("%b %Y")) +
  theme(legend.position = c(0.3, 0.9),
        legend.title = element_blank(),
        axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
  scale_y_continuous(breaks = 0.01*seq(-100, 300, 1),
                     labels = percent_format(accuracy = 1, prefix = "")) +
  geom_text_repel(aes(x = date, y = OBS_VALUE, label = percent(OBS_VALUE, acc = 0.1)), 
                  fontface ="plain", color = "black", size = 3)

Glissement 2 ans

Code
`IPC-2015` %>%
  filter(COICOP2016 %in% c("00", "01", "022"),
         NATURE == "INDICE",
         REF_AREA == "FE",
         FREQ == "M",
         is.na(MENAGES_IPC) | MENAGES_IPC == "ENSEMBLE",
         is.na(PRIX_CONSO) | PRIX_CONSO == "SO") %>%
  month_to_date %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  group_by(COICOP2016) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = OBS_VALUE/lag(OBS_VALUE, 24)-1) %>%
  filter(date >= max(date) - years(2)) %>%
  select(date, OBS_VALUE, Coicop2016) %>%
  na.omit %>%
  ggplot() + ylab("Glissement sur 2 ans (IPC, IPCH)") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Coicop2016)) +
  
  scale_x_date(breaks = "1 month",
               labels = date_format("%b %Y")) +
  theme(legend.position = c(0.3, 0.9),
        legend.title = element_blank(),
        axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
  scale_y_continuous(breaks = 0.01*seq(-100, 300, 1),
                     labels = percent_format(accuracy = 1, prefix = "")) +
  geom_text_repel(aes(x = date, y = OBS_VALUE, label = percent(OBS_VALUE, acc = 0.1)), 
                  fontface ="plain", color = "black", size = 3)

Alimentation, Loyers, Ensemble

Glissement 1 an

Code
`IPC-2015` %>%
  filter(COICOP2016 %in% c("00", "01", "041"),
         NATURE == "INDICE",
         REF_AREA == "FE",
         FREQ == "M",
         is.na(MENAGES_IPC) | MENAGES_IPC == "ENSEMBLE",
         is.na(PRIX_CONSO) | PRIX_CONSO == "SO") %>%
  month_to_date %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  group_by(COICOP2016) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = OBS_VALUE/lag(OBS_VALUE, 12)-1) %>%
  filter(date >= max(date) - years(2)) %>%
  select(date, OBS_VALUE, Coicop2016) %>%
  na.omit %>%
  ggplot() + ylab("Glissement sur 1 an (IPC, IPCH)") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Coicop2016)) +
  
  scale_x_date(breaks = "1 month",
               labels = date_format("%b %Y")) +
  theme(legend.position = c(0.3, 0.9),
        legend.title = element_blank(),
        axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
  scale_y_continuous(breaks = 0.01*seq(-100, 300, 1),
                     labels = percent_format(accuracy = 1, prefix = "")) +
  geom_text_repel(aes(x = date, y = OBS_VALUE, label = percent(OBS_VALUE, acc = 0.1)), 
                  fontface ="plain", color = "black", size = 3)

Glissement 2 ans

Code
`IPC-2015` %>%
  filter(COICOP2016 %in% c("00", "01", "041"),
         NATURE == "INDICE",
         REF_AREA == "FE",
         FREQ == "M",
         is.na(MENAGES_IPC) | MENAGES_IPC == "ENSEMBLE",
         is.na(PRIX_CONSO) | PRIX_CONSO == "SO") %>%
  month_to_date %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  group_by(COICOP2016) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = OBS_VALUE/lag(OBS_VALUE, 24)-1) %>%
  filter(date >= max(date) - years(2)) %>%
  select(date, OBS_VALUE, Coicop2016) %>%
  na.omit %>%
  ggplot() + ylab("Glissement sur 2 ans (IPC, IPCH)") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Coicop2016)) +
  
  scale_x_date(breaks = "1 month",
               labels = date_format("%b %Y")) +
  theme(legend.position = c(0.3, 0.9),
        legend.title = element_blank(),
        axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
  scale_y_continuous(breaks = 0.01*seq(-100, 300, 1),
                     labels = percent_format(accuracy = 1, prefix = "")) +
  geom_text_repel(aes(x = date, y = OBS_VALUE, label = percent(OBS_VALUE, acc = 0.1)), 
                  fontface ="plain", color = "black", size = 3)

Chauffage du logement, Loyers, Ensemble

Glissement 1 an

Code
`IPC-2015` %>%
  filter(COICOP2016 %in% c("00", "041", "045"),
         NATURE == "INDICE",
         REF_AREA == "FE",
         FREQ == "M",
         is.na(MENAGES_IPC) | MENAGES_IPC == "ENSEMBLE",
         is.na(PRIX_CONSO) | PRIX_CONSO == "SO") %>%
  month_to_date %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  group_by(COICOP2016) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = OBS_VALUE/lag(OBS_VALUE, 12)-1) %>%
  filter(date >= max(date) - years(2)) %>%
  select(date, OBS_VALUE, Coicop2016) %>%
  na.omit %>%
  ggplot() + ylab("Inflation sur un an (IPC, IPCH)") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Coicop2016)) +
  
  scale_x_date(breaks = "1 month",
               labels = date_format("%b %Y")) +
  theme(legend.position = c(0.4, 0.45),
        legend.title = element_blank(),
        axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
  scale_y_continuous(breaks = 0.01*seq(-100, 300, 2),
                     labels = percent_format(accuracy = 1, prefix = "")) +
  geom_text_repel(aes(x = date, y = OBS_VALUE, label = percent(OBS_VALUE, acc = 0.1)), 
                  fontface ="plain", color = "black", size = 3)

Glissement 2 ans

Code
`IPC-2015` %>%
  filter(COICOP2016 %in% c("00", "041", "045"),
         NATURE == "INDICE",
         REF_AREA == "FE",
         FREQ == "M",
         is.na(MENAGES_IPC) | MENAGES_IPC == "ENSEMBLE",
         is.na(PRIX_CONSO) | PRIX_CONSO == "SO") %>%
  month_to_date %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  group_by(COICOP2016) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = OBS_VALUE/lag(OBS_VALUE, 24)-1) %>%
  filter(date >= max(date) - years(2)) %>%
  select(date, OBS_VALUE, Coicop2016) %>%
  na.omit %>%
  ggplot() + ylab("Glissement sur 2 ans (IPC, IPCH)") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Coicop2016)) +
  
  scale_x_date(breaks = "1 month",
               labels = date_format("%b %Y")) +
  theme(legend.position = c(0.4, 0.45),
        legend.title = element_blank(),
        axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
  scale_y_continuous(breaks = 0.01*seq(-100, 300, 2),
                     labels = percent_format(accuracy = 1, prefix = "")) +
  geom_text_repel(aes(x = date, y = OBS_VALUE, label = percent(OBS_VALUE, acc = 0.1)), 
                  fontface ="plain", color = "black", size = 3)

Pondérations d’indice

Table - COICOP2016

All

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         REF_AREA == "FE",
         NATURE == "POND",
         PRIX_CONSO == "SO",
         CORRECTION == "BRUT",
         TIME_PERIOD %in% c("1990", "2000", "2010", "2020")) %>%
  left_join(COICOP2016,  by = "COICOP2016") %>%
  select(COICOP2016, Coicop2016, TIME_PERIOD, OBS_VALUE) %>%
  spread(TIME_PERIOD, OBS_VALUE) %>%
  print_table_conditional

2-digit

Javascript

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         REF_AREA == "FE",
         NATURE == "POND",
         PRIX_CONSO == "SO",
         TIME_PERIOD %in% c("1990", "2000", "2010", "2020"),
         nchar(COICOP2016) == 2) %>%
  left_join(COICOP2016,  by = "COICOP2016") %>%
  select(COICOP2016, Coicop2016, TIME_PERIOD, OBS_VALUE) %>%
  spread(TIME_PERIOD, OBS_VALUE) %>%
  print_table_conditional
COICOP2016 Coicop2016 1990 2000 2010 2020
00 00 - Ensemble 10000 10000 10000 10000
01 01 - Produits alimentaires et boissons non alcoolisées 1999 1558 1474 1423
02 02 - Boissons alcoolisées, tabac et stupéfiants 378 382 329 392
03 03 - Articles d'habillement et chaussures 844 552 487 394
04 04 - Logement, eau, gaz, électricité et autres combustibles 1233 1364 1348 1399
05 05 - Meubles, articles de ménage et entretien courant du foyer 736 644 617 495
06 06 - Santé 774 896 1005 1050
07 07 - Transports 1659 1669 1634 1581
08 08 - Communications 188 254 303 248
09 09 - Loisirs et culture 851 859 916 854
10 10 - Enseignement 33 23 25 5
11 11 - Restaurants et hôtels 818 805 685 810
12 12 - Biens et services divers 487 994 1177 1349

png

Code
i_g("bib/insee/IPC-2015_2digit_weights.png")

3-digit

Javascript

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         REF_AREA == "FE",
         NATURE == "POND",
         PRIX_CONSO == "SO",
         CORRECTION == "BRUT",
         TIME_PERIOD %in% c("1990", "2000", "2010", "2020"),
         nchar(COICOP2016) == 3) %>%
  left_join(COICOP2016,  by = "COICOP2016") %>%
  select(COICOP2016, Coicop2016, TIME_PERIOD, OBS_VALUE) %>%
  spread(TIME_PERIOD, OBS_VALUE) %>%
  print_table_conditional

png

Code
i_g("bib/insee/IPC-2015_3digit_weights-0.png")

Code
i_g("bib/insee/IPC-2015_3digit_weights-1.png")

4-digit

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         REF_AREA == "FE",
         NATURE == "POND",
         PRIX_CONSO == "SO",
         CORRECTION == "BRUT",
         TIME_PERIOD %in% c("1990", "2000", "2010", "2020"),
         nchar(COICOP2016) == 4) %>%
  left_join(COICOP2016,  by = "COICOP2016") %>%
  select(COICOP2016, Coicop2016, TIME_PERIOD, OBS_VALUE) %>%
  spread(TIME_PERIOD, OBS_VALUE) %>%
  print_table_conditional

5-digit

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         REF_AREA == "FE",
         NATURE == "POND",
         PRIX_CONSO == "SO",
         CORRECTION == "BRUT",
         TIME_PERIOD %in% c("1990", "2000", "2010", "2020"),
         nchar(COICOP2016) == 5) %>%
  left_join(COICOP2016,  by = "COICOP2016") %>%
  select(COICOP2016, Coicop2016, TIME_PERIOD, OBS_VALUE) %>%
  spread(TIME_PERIOD, OBS_VALUE) %>%
  print_table_conditional

Table - PRIX_CONSO

1990, 2000, 2010, 2020

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         REF_AREA == "FE",
         NATURE == "POND",
         CORRECTION == "BRUT",
         COICOP2016 == "SO",
         TIME_PERIOD %in% c("1990", "2000", "2010", "2020")) %>%
  left_join(COICOP2016,  by = "COICOP2016") %>%
  left_join(PRIX_CONSO,  by = "PRIX_CONSO") %>%
  select(PRIX_CONSO, Prix_conso, TIME_PERIOD, OBS_VALUE) %>%
  spread(TIME_PERIOD, OBS_VALUE) %>%
  print_table_conditional

2016, 2017, 2018, 2019, 2020

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         REF_AREA == "FE",
         NATURE == "POND",
         CORRECTION == "BRUT",
         COICOP2016 == "SO",
         TIME_PERIOD %in% c("2016", "2017", "2018", "2019", "2020")) %>%
  left_join(COICOP2016,  by = "COICOP2016") %>%
  left_join(PRIX_CONSO,  by = "PRIX_CONSO") %>%
  select(PRIX_CONSO, Prix_conso, TIME_PERIOD, OBS_VALUE) %>%
  spread(TIME_PERIOD, OBS_VALUE) %>%
  print_table_conditional()
PRIX_CONSO Prix_conso 2016 2017 2018 2019 2020
4000 Alimentation 1615 1627 1627 1619 1610
4001 Produits frais 217 235 243 244 230
4002 Autres produits alimentaires 1398 1392 1384 1375 1380
4003 Produits manufacturés 2651 2617 2594 2556 2491
4004 Habillement, chaussures 414 433 416 400 380
4005 Produits de santé 466 433 425 416 412
4006 Autres produits manufacturés 1771 1751 1753 1740 1699
4007 Énergie 773 748 777 804 808
4008 Produits pétroliers 419 378 408 425 439
4009 Services 4766 4820 4809 4830 4886
4010 Services : Loyers, eau et enlèvement des ordures ménagères 768 779 764 746 752
4011 Services : Services de santé 598 600 617 604 604
4012 Services : Transports et communications 524 524 505 504 515
4013 Autres services 2876 2917 2923 2976 3015
4014 Alimentation, y compris tabac 1810 1815 1820 1810 1815
4015 Produits manufacturés, y compris énergie 3434 3375 3382 3371 3311
4016 Produits manufacturés, y compris services liés, hors habillement et chaussures 2247 2194 2189 2167 2123
4017 Ensemble hors énergie 9227 9252 9223 9196 9192
4018 Ensemble hors tabac 9805 9812 9807 9809 9795
4024 Ensemble non alimentaire, y compris tabac 8385 8373 8373 8381 8390
4025 Ensemble hors produits frais 9798 9785 9776 9777 9790
4026 Alimentation, y compris restaurants, cantines, cafés 2185 2214 2229 2238 2239
4034 Tabac 195 188 193 191 205
4037 Biens durables 745 739 753 755 730
4038 Produits manufacturés, hors habillement, biens durables et produits de santé 1033 1019 1005 990 975
4566 Services : Transports, communications, hôtellerie 2304 2289 2359 2403 2440
4600 Ensemble hors loyers et hors tabac 9183 9183 9192 9208 9185
5272 Services : Transports 279 282 282 285 300
5273 Services : Communications 245 242 223 219 215
5329 Produits manufacturés, hors habillement et chaussures 2237 2184 2178 2156 2111

Alimentation, Produits alimentaires

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         COICOP2016 %in% c("01", "011"),
         REF_AREA == "FE",
         NATURE == "POND") %>%
  year_to_date %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  mutate(OBS_VALUE = OBS_VALUE/10000) %>%
  ggplot() + ylab("Poids de l'alimentation dans l'indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Coicop2016)) +
  scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.65, 0.9),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 40, 0.5),
                     labels = percent_format(accuracy = .1))

Tabac

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         COICOP2016 %in% c("022"),
         REF_AREA == "FE",
         NATURE == "POND") %>%
  year_to_date %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  mutate(OBS_VALUE = OBS_VALUE/10000) %>%
  ggplot() + ylab("Poids du tabac dans l'indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE)) +
  
  scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(0, 10, 0.1),
                     labels = percent_format(accuracy = .1))

1253 - Assurance Santé Complémentaire

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         COICOP2016 %in% c("1253"),
         REF_AREA == "FE",
         NATURE == "POND") %>%
  year_to_date %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  mutate(OBS_VALUE = OBS_VALUE/10000) %>%
  ggplot() + ylab("Poids de l'assurance santé dans l'indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE)) +
  
  scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.15, 0.9),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 10, 0.1),
                     labels = percent_format(accuracy = .1))

Santé

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         COICOP2016 %in% c("06"),
         REF_AREA == "FE",
         NATURE == "POND") %>%
  year_to_date %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  mutate(OBS_VALUE = OBS_VALUE/10000) %>%
  ggplot() + ylab("Poids de la santé dans l'indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE)) +
  
  scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(0, 20, 0.5),
                     labels = percent_format(accuracy = .1))

Santé, Assurance santé complémentaire

All

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         COICOP2016 %in% c("06", "1253"),
         REF_AREA == "FE",
         NATURE == "POND") %>%
  year_to_date %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  mutate(OBS_VALUE = OBS_VALUE/10000) %>%
  ggplot() + ylab("Poids de la santé dans l'indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Coicop2016)) +
  scale_color_manual(values = viridis(2)[1:2]) +
  scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.15, 0.9),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 20, 0.5),
                     labels = percent_format(accuracy = .1))

1996-

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         COICOP2016 %in% c("06", "1253"),
         REF_AREA == "FE",
         NATURE == "POND") %>%
  year_to_date %>%
  filter(date >= as.Date("1996-01-01")) %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  mutate(OBS_VALUE = OBS_VALUE/10000) %>%
  ggplot() + ylab("Poids de la santé dans l'indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Coicop2016)) +
  scale_color_manual(values = viridis(2)[1:2]) +
  scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.15, 0.9),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 20, 0.5),
                     labels = percent_format(accuracy = .1))

Santé

Santé, Assurance Santé vs. Ensemble

1990-

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         PRIX_CONSO == "SO",
         COICOP2016 %in% c("06", "1253", "00"),
         FREQ == "M",
         REF_AREA == "FE",
         NATURE == "INDICE") %>%
  month_to_date %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  group_by(Coicop2016) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Coicop2016)) +
  
  scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.15, 0.9),
        legend.title = element_blank()) +
  scale_y_log10(breaks = c(100, 164, 200, 400, 816, seq(100, 180, 10)),
                     labels = dollar_format(accuracy = 1, prefix = ""))

1996-

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         PRIX_CONSO == "SO",
         COICOP2016 %in% c("06", "1253", "00"),
         FREQ == "M",
         REF_AREA == "FE",
         NATURE == "INDICE") %>%
  month_to_date %>%
  filter(date >= as.Date("1996-01-01")) %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  group_by(Coicop2016) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot() + ylab("Indice des prix, IPC") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Coicop2016)) +
  
  scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.15, 0.9),
        legend.title = element_blank()) +
  scale_y_log10(breaks = c(100, 164, 200, 400, 816, seq(100, 180, 10)),
                     labels = dollar_format(accuracy = 1, prefix = ""))

Péages

Péages vs. Ensemble

1990-

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         PRIX_CONSO == "SO",
         COICOP2016 %in% c("07242", "0724", "00"),
         FREQ == "M",
         REF_AREA == "FE",
         NATURE == "INDICE") %>%
  month_to_date %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  group_by(Coicop2016) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Coicop2016)) +
  
  scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.35, 0.9),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(100, 400, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

1996-

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         PRIX_CONSO == "SO",
         COICOP2016 %in% c("07242", "0724", "00"),
         FREQ == "M",
         REF_AREA == "FE",
         NATURE == "INDICE") %>%
  month_to_date %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  filter(date >= as.Date("1996-01-01")) %>%
  group_by(Coicop2016) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Coicop2016)) +
  
  scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.35, 0.9),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(100, 400, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

Pondération des péages, services divers dans l’IPC

1990-

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         COICOP2016 %in% c("07242", "0724"),
         REF_AREA == "FE",
         NATURE == "POND") %>%
  year_to_date %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  mutate(OBS_VALUE = OBS_VALUE/10000) %>%
  ggplot() + ylab("Poids des péages dans l'indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Coicop2016)) +
  
  theme(legend.position = c(0.35, 0.9),
        legend.title = element_blank()) +
  scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(0, 10, 0.1),
                     labels = percent_format(accuracy = .1),
                     limits = c(0, 0.016))

1996-

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         COICOP2016 %in% c("07242", "0724"),
         REF_AREA == "FE",
         NATURE == "POND") %>%
  year_to_date %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  mutate(OBS_VALUE = OBS_VALUE/10000) %>%
  filter(date >= as.Date("1996-01-01")) %>%
  ggplot() + ylab("Poids des péages dans l'indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Coicop2016)) +
  
  theme(legend.position = c(0.35, 0.9),
        legend.title = element_blank()) +
  scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(0, 10, 0.1),
                     labels = percent_format(accuracy = .1),
                     limits = c(0, 0.016))

Services à domicile

Services à domicile vs. Ensemble

1998-

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         PRIX_CONSO == "SO",
         COICOP2016 %in% c("05621", "00"),
         FREQ == "M",
         REF_AREA == "FE",
         NATURE == "INDICE") %>%
  month_to_date %>%
  filter(date >= as.Date("1998-01-01")) %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  group_by(Coicop2016) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Coicop2016)) +
  
  scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.35, 0.9),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(100, 200, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

Tabac

Tabac vs. Ensemble

1990-

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         PRIX_CONSO == "SO",
         COICOP2016 %in% c("022", "00"),
         FREQ == "M",
         REF_AREA == "FE",
         NATURE == "INDICE") %>%
  month_to_date %>%
  arrange(date) %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  group_by(Coicop2016) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Coicop2016)) +
  
  scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.15, 0.9),
        legend.title = element_blank()) +
  scale_y_log10(breaks = c(100, 164, 200, 400, 600, 800, 1000),
                     labels = dollar_format(accuracy = 1, prefix = "")) +
  geom_text(data = . %>%
              filter(date == max(date)), aes(x = date, y = OBS_VALUE, label = round(OBS_VALUE, 1)), size = 3)

1992-

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         COICOP2016 %in% c("022", "00"),
         FREQ == "M",
         PRIX_CONSO == "SO",
         REF_AREA == "FE",
         NATURE == "INDICE") %>%
  month_to_date %>%
  filter(date >= as.Date("1992-01-01")) %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  group_by(Coicop2016) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Coicop2016)) +
  
  scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.25, 0.8),
        legend.title = element_blank()) +
  scale_y_log10(breaks = c(100, 164, 200, 400, 816),
                     labels = dollar_format(accuracy = 1, prefix = "")) +
  geom_text(data = . %>%
              filter(date == max(date)), aes(x = date, y = OBS_VALUE, label = round(OBS_VALUE, 1)), size = 3)

1996-

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         COICOP2016 %in% c("022", "00"),
         FREQ == "M",
         PRIX_CONSO == "SO",
         REF_AREA == "FE",
         NATURE == "INDICE") %>%
  month_to_date %>%
  filter(date >= as.Date("1996-01-01")) %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  group_by(Coicop2016) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Coicop2016)) +
  
  scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.25, 0.8),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(100, 1000, 100),
                     labels = dollar_format(accuracy = 1, prefix = "")) +
  geom_text(data = . %>%
              filter(date == max(date)), aes(x = date, y = OBS_VALUE, label = round(OBS_VALUE, 1)), size = 3)

2000-

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         COICOP2016 %in% c("022", "00"),
         FREQ == "M",
         PRIX_CONSO == "SO",
         REF_AREA == "FE",
         NATURE == "INDICE") %>%
  month_to_date %>%
  filter(date >= as.Date("2000-01-01")) %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  group_by(Coicop2016) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Coicop2016)) +
  
  scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.25, 0.8),
        legend.title = element_blank()) +
  scale_y_log10(breaks = c(seq(0, 100, 20), seq(0, 1000, 50)),
                     labels = dollar_format(accuracy = 1, prefix = "")) +
  geom_text(data = . %>%
              filter(date == max(date)), aes(x = date, y = OBS_VALUE, label = round(OBS_VALUE, 1)), size = 3)

2012-

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         COICOP2016 %in% c("022", "00"),
         FREQ == "M",
         PRIX_CONSO == "SO",
         REF_AREA == "FE",
         NATURE == "INDICE") %>%
  month_to_date %>%
  filter(date >= as.Date("2012-01-01")) %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  group_by(Coicop2016) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Coicop2016)) +
  
  scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.25, 0.8),
        legend.title = element_blank()) +
  scale_y_log10(breaks = c(seq(0, 100, 10), seq(0, 1000, 10)),
                     labels = dollar_format(accuracy = 1, prefix = "")) +
  geom_text(data = . %>%
              filter(date == max(date)), aes(x = date, y = OBS_VALUE, label = round(OBS_VALUE, 1)), size = 3)

Ensemble avec Tabac (IdBank: 001763852, 001759970)

1990-

Code
`IPC-2015` %>%
  filter(IDBANK %in% c("001759970", "001763852")) %>%
  month_to_date %>%
  arrange(date) %>%
  filter(date >= as.Date("1990-01-01")) %>%
  left_join(PRIX_CONSO, by = "PRIX_CONSO") %>%
  group_by(Prix_conso) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Prix_conso)) +
  
  scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.75, 0.3),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 200, 10),
                     labels = dollar_format(accuracy = 1, prefix = "")) +
  geom_text(data = . %>%
              filter(date == max(date)), aes(x = date, y = OBS_VALUE, label = round(OBS_VALUE, 1)), size = 3)

1992-

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         PRIX_CONSO %in% c("4035", "4018", "00"),
         FREQ == "M",
         REF_AREA == "FE",
         NATURE == "INDICE") %>%
  month_to_date %>%
  filter(date >= as.Date("1992-01-01")) %>%
  left_join(PRIX_CONSO, by = "PRIX_CONSO") %>%
  group_by(Prix_conso) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Prix_conso)) +
  
  scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.75, 0.3),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 200, 10),
                     labels = dollar_format(accuracy = 1, prefix = "")) +
  geom_text_repel(data = . %>%
              filter(date == max(date)), aes(x = date, y = OBS_VALUE, label = round(OBS_VALUE, 1)), size = 3)

1996-

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         PRIX_CONSO %in% c("4035", "4018", "00"),
         FREQ == "M",
         REF_AREA == "FE",
         NATURE == "INDICE") %>%
  month_to_date %>%
  filter(date >= as.Date("1996-01-01")) %>%
  left_join(PRIX_CONSO, by = "PRIX_CONSO") %>%
  group_by(Prix_conso) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Prix_conso)) +
  
  scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.75, 0.3),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 200, 10),
                     labels = dollar_format(accuracy = 1, prefix = "")) +
  geom_text_repel(data = . %>%
              filter(date == max(date)), aes(x = date, y = OBS_VALUE, label = round(OBS_VALUE, 1)), size = 3)

2000-

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         PRIX_CONSO %in% c("4035", "4018", "00"),
         FREQ == "M",
         REF_AREA == "FE",
         NATURE == "INDICE") %>%
  month_to_date %>%
  filter(date >= as.Date("2000-01-01")) %>%
  left_join(PRIX_CONSO, by = "PRIX_CONSO") %>%
  group_by(Prix_conso) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Prix_conso)) +
  
  scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.75, 0.3),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 200, 5),
                     labels = dollar_format(accuracy = 1, prefix = "")) +
  geom_text_repel(data = . %>%
              filter(date == max(date)), aes(x = date, y = OBS_VALUE, label = round(OBS_VALUE, 1)), size = 3)

2012-

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         PRIX_CONSO %in% c("4035", "4018", "00"),
         FREQ == "M",
         REF_AREA == "FE",
         NATURE == "INDICE") %>%
  month_to_date %>%
  filter(date >= as.Date("2012-01-01")) %>%
  left_join(PRIX_CONSO, by = "PRIX_CONSO") %>%
  group_by(Prix_conso) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Prix_conso)) +
  
  scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.35, 0.8),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 200, 1),
                     labels = dollar_format(accuracy = 1, prefix = "")) +
  geom_text_repel(data = . %>%
              filter(date == max(date)), aes(x = date, y = OBS_VALUE, label = round(OBS_VALUE, 1)), size = 3)

2017-

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         PRIX_CONSO %in% c("4035", "4018", "00"),
         FREQ == "M",
         REF_AREA == "FE",
         NATURE == "INDICE") %>%
  month_to_date %>%
  filter(date >= as.Date("2017-01-01")) %>%
  left_join(PRIX_CONSO, by = "PRIX_CONSO") %>%
  group_by(Prix_conso) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Prix_conso)) +
  
  scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.35, 0.8),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 200, 1),
                     labels = dollar_format(accuracy = 1, prefix = "")) +
  geom_text_repel(data = . %>%
              filter(date == max(date)), aes(x = date, y = OBS_VALUE, label = round(OBS_VALUE, 1)), size = 3)

Glissement sur 3 ans

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         PRIX_CONSO %in% c("4035", "4018"),
         FREQ == "M",
         REF_AREA == "FE",
         NATURE == "INDICE") %>%
  left_join(PRIX_CONSO, by = "PRIX_CONSO") %>%
  month_to_date %>%
  filter(date >= max(date) - years(3)) %>%
  group_by(Prix_conso) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot + geom_line(aes(x = date, y = OBS_VALUE, color = Prix_conso)) +
  theme_minimal() + xlab("") + ylab("") +
  scale_x_date(breaks = "1 month",
               labels = date_format("%b %Y")) +
  theme(legend.position = c(0.65, 0.2),
        legend.title = element_blank(),
        axis.text.x = element_text(angle = 45, vjust = 0.5, hjust=1)) +
  scale_y_log10(breaks = seq(0, 200, 1),
                     labels = dollar_format(accuracy = 1, prefix = "")) +
  geom_text_repel(aes(x = date, y = OBS_VALUE, label = round(OBS_VALUE, 1)), 
                  fontface ="plain", color = "black", size = 3)

Glissement sur 2 ans

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         PRIX_CONSO %in% c("4035", "4018", "00"),
         FREQ == "M",
         REF_AREA == "FE",
         NATURE == "INDICE") %>%
  left_join(PRIX_CONSO, by = "PRIX_CONSO") %>%
  month_to_date %>%
  filter(date >= max(date) - years(2)) %>%
  group_by(Prix_conso) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot + geom_line(aes(x = date, y = OBS_VALUE, color = Prix_conso)) +
  theme_minimal() + xlab("") + ylab("") +
  scale_x_date(breaks = "1 month",
               labels = date_format("%b %Y")) +
  theme(legend.position = c(0.65, 0.2),
        legend.title = element_blank(),
        axis.text.x = element_text(angle = 45, vjust = 0.5, hjust=1)) +
  scale_y_log10(breaks = seq(0, 200, 1),
                     labels = dollar_format(accuracy = 1, prefix = "")) +
  geom_text_repel(aes(x = date, y = OBS_VALUE, label = round(OBS_VALUE, 1)), 
                  fontface ="plain", color = "black", size = 3)

Glissement sur 1 an

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         PRIX_CONSO %in% c("4035", "4018", "00"),
         FREQ == "M",
         REF_AREA == "FE",
         NATURE == "INDICE") %>%
  left_join(PRIX_CONSO, by = "PRIX_CONSO") %>%
  month_to_date %>%
  filter(date >= max(date) - years(1)) %>%
  group_by(Prix_conso) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot + geom_line(aes(x = date, y = OBS_VALUE, color = Prix_conso)) +
  theme_minimal() + xlab("") + ylab("") +
  scale_x_date(breaks = "1 month",
               labels = date_format("%b %Y")) +
  theme(legend.position = c(0.65, 0.2),
        legend.title = element_blank(),
        axis.text.x = element_text(angle = 45, vjust = 0.5, hjust=1)) +
  scale_y_log10(breaks = seq(0, 200, 1),
                     labels = dollar_format(accuracy = 1, prefix = "")) +
  geom_text_repel(aes(x = date, y = OBS_VALUE, label = round(OBS_VALUE, 1)), 
                  fontface ="plain", color = "black", size = 3)

Immobilier

4003, 4009, 4034

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         PRIX_CONSO %in% c("4003", "4009", "4034"),
         FREQ == "M",
         REF_AREA == "FE",
         NATURE == "INDICE") %>%
  month_to_date %>%
  left_join(PRIX_CONSO, by = "PRIX_CONSO") %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Prix_conso, linetype = Prix_conso)) +
  
  scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.75, 0.3),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 200, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

041, 043, 044

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         COICOP2016 %in% c("041", "043", "044"),
         FREQ == "M",
         REF_AREA == "FE",
         NATURE == "INDICE",
         #OBS_STATUS == "A"
         ) %>%
  month_to_date %>%
  left_join(PRIX_CONSO, by = "PRIX_CONSO") %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Coicop2016)) +
  
  scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.6, 0.3),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 200, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

041 Loyers effectifs, 00 Ensemble

1990-

All

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         COICOP2016 %in% c("041", "00"),
         FREQ == "M",
         REF_AREA == "FE",
         NATURE == "INDICE") %>%
  month_to_date %>%
  left_join(PRIX_CONSO, by = "PRIX_CONSO") %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  group_by(Coicop2016, Prix_conso) %>%
  filter(date >= as.Date("1990-01-01")) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == as.Date("1990-01-01")]) %>%
  mutate(Variable = paste0(Coicop2016, " - ", Prix_conso),
         Variable = gsub(" - Sans objet", "", Variable)) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Variable)) +
  
  scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.7, 0.2),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 200, 5),
                     labels = dollar_format(accuracy = 1, prefix = ""))

Loyers, Loyers Réels, IPC

Code
`IPC-2015-2020` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         COICOP2016 %in% c("041", "00"),
         FREQ == "M",
         REF_AREA == "FE",
         NATURE == "INDICE",
         #OBS_STATUS == "A"
         ) %>%
  #select(-OBS_VALUE, - TIME_PERIOD) %>%
  #distinct
  month_to_date %>%
  select(date, COICOP2016, OBS_VALUE) %>%
  spread(COICOP2016, OBS_VALUE) %>%
  mutate(`real_rents` = `041`/`00`) %>%
  gather(COICOP2016, OBS_VALUE, -date) %>%
  left_join(tibble(COICOP2016 = c("041", "00", "real_rents"),
                   Coicop2016 = c("Loyers", "IPC", "Loyers Réels")), 
            by = "COICOP2016") %>%
  group_by(COICOP2016) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == as.Date("1990-01-01")]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Coicop2016)) +
  
  scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.25, 0.8),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 200, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

1992-

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         COICOP2016 %in% c("041", "00"),
         FREQ == "M",
         REF_AREA == "FE",
         NATURE == "INDICE") %>%
  month_to_date %>%
  left_join(PRIX_CONSO, by = "PRIX_CONSO") %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  group_by(Coicop2016, Prix_conso) %>%
  filter(date >= as.Date("1992-01-01")) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == as.Date("1992-01-01")]) %>%
  mutate(Variable = paste0(Coicop2016, " - ", Prix_conso),
         Variable = gsub(" - Sans objet", "", Variable)) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Variable)) +
  
  scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.7, 0.2),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 200, 5),
                     labels = dollar_format(accuracy = 1, prefix = ""))

1992- (fictifs)

Code
`IPC-2015-2020` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         COICOP2016 %in% c("041", "00", "4035"),
         FREQ == "M",
         REF_AREA == "FE",
         NATURE == "INDICE",
         #OBS_STATUS == "A"
         ) %>%
  #select(-OBS_VALUE, - TIME_PERIOD) %>%
  #distinct
  month_to_date %>%
  left_join(PRIX_CONSO, by = "PRIX_CONSO") %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  group_by(Coicop2016) %>%
  filter(date >= as.Date("1990-01-01")) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == as.Date("1992-01-01")]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Coicop2016)) +
  
  scale_x_date(breaks = seq(1920, 2022, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.75, 0.3),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 200, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

1990-

Code
`IPC-2015-2020` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         COICOP2016 %in% c("041", "00", "4035"),
         FREQ == "M",
         REF_AREA == "FE",
         NATURE == "INDICE",
         #OBS_STATUS == "A"
         ) %>%
  #select(-OBS_VALUE, - TIME_PERIOD) %>%
  #distinct
  month_to_date %>%
  left_join(PRIX_CONSO, by = "PRIX_CONSO") %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  group_by(Coicop2016) %>%
  filter(date >= as.Date("1990-01-01")) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == as.Date("1990-01-01")]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Coicop2016)) +
  scale_color_manual(values = viridis(3)[1:2]) +
  scale_x_date(breaks = seq(1920, 2022, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.75, 0.3),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 200, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

1996-

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         COICOP2016 %in% c("041", "00"),
         FREQ == "M",
         REF_AREA == "FE",
         NATURE == "INDICE") %>%
  month_to_date %>%
  left_join(PRIX_CONSO, by = "PRIX_CONSO") %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  group_by(Coicop2016, Prix_conso) %>%
  filter(date >= as.Date("1996-01-01")) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == as.Date("1996-01-01")]) %>%
  mutate(Variable = paste0(Coicop2016, " - ", Prix_conso),
         Variable = gsub(" - Sans objet", "", Variable)) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Variable)) +
  
  scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.7, 0.2),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 200, 5),
                     labels = dollar_format(accuracy = 1, prefix = ""))

1990-1999

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         COICOP2016 %in% c("041", "00"),
         FREQ == "M",
         REF_AREA == "FE",
         NATURE == "INDICE") %>%
  month_to_date %>%
  left_join(PRIX_CONSO, by = "PRIX_CONSO") %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  group_by(Coicop2016, Prix_conso) %>%
  filter(date >= as.Date("1990-01-01"),
         date <= as.Date("1999-01-01")) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == as.Date("1990-01-01")]) %>%
  mutate(Variable = paste0(Coicop2016, " - ", Prix_conso),
         Variable = gsub(" - Sans objet", "", Variable)) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Variable)) +
  
  scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.35, 0.85),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 200, 5),
                     labels = dollar_format(accuracy = 1, prefix = ""))

1999-

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         COICOP2016 %in% c("041", "00"),
         FREQ == "M",
         REF_AREA == "FE",
         NATURE == "INDICE") %>%
  month_to_date %>%
  left_join(PRIX_CONSO, by = "PRIX_CONSO") %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  group_by(Coicop2016, Prix_conso) %>%
  filter(date >= as.Date("1999-01-01")) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == as.Date("1999-01-01")]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = paste0(Coicop2016, " - ", Prix_conso))) +
  
  scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.7, 0.2),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 200, 5),
                     labels = dollar_format(accuracy = 1, prefix = ""))

2000-

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         COICOP2016 %in% c("041", "00"),
         FREQ == "M",
         REF_AREA == "FE",
         NATURE == "INDICE") %>%
  month_to_date %>%
  left_join(PRIX_CONSO, by = "PRIX_CONSO") %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  group_by(Coicop2016, Prix_conso) %>%
  filter(date >= as.Date("2000-01-01")) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == as.Date("2000-01-01")]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = paste0(Coicop2016, " - ", Prix_conso))) +
  
  scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.7, 0.2),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 200, 5),
                     labels = dollar_format(accuracy = 1, prefix = ""))

Glissement sur 2 ans

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         COICOP2016 %in% c("041", "00"),
         FREQ == "M",
         REF_AREA == "FE",
         NATURE == "INDICE") %>%
  month_to_date %>%
  filter(date >= max(date) - years(2)) %>%
  left_join(PRIX_CONSO, by = "PRIX_CONSO") %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  group_by(COICOP2016) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = paste0(Coicop2016, " - ", Prix_conso))) +
  theme_minimal() + xlab("") + ylab("") +
  scale_x_date(breaks = "1 month",
               labels = date_format("%b %Y")) +
  theme(legend.position = c(0.28, 0.87),
        legend.title = element_blank(),
        axis.text.x = element_text(angle = 45, vjust = 0.5, hjust=1)) +
  scale_y_log10(breaks = seq(0, 200, 2),
                     labels = dollar_format(accuracy = 1, prefix = "")) +
  geom_text_repel(aes(x = date, y = OBS_VALUE, label = round(OBS_VALUE, 1)), 
                  fontface ="plain", color = "black", size = 3)

Insee calcule y compris loyers fictifs

1990-

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         REF_AREA == "FE",
         PRIX_CONSO %in% c("00", "4035"),
         #PRIX_CONSO %in% c("00"),
         NATURE == "INDICE",
         FREQ == "M") %>%
  month_to_date %>%
  group_by(PRIX_CONSO) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE / OBS_VALUE[date == as.Date("1990-01-01")]) %>%
  left_join(PRIX_CONSO, by = "PRIX_CONSO") %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Prix_conso)) +
  
  scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.75, 0.3),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 200, 10),
                     labels = dollar_format(accuracy = 1, prefix = "")) +
  geom_text_repel(data = . %>%
              filter(date == max(date)), aes(x = date, y = OBS_VALUE, label = round(OBS_VALUE, 1)), size = 3)

1992-

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         REF_AREA == "FE",
         PRIX_CONSO %in% c("00", "4035"),
         #PRIX_CONSO %in% c("00"),
         NATURE == "INDICE",
         FREQ == "M") %>%
  month_to_date %>%
  group_by(PRIX_CONSO) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE / OBS_VALUE[date == as.Date("1992-01-01")]) %>%
  filter(date >= as.Date("1992-01-01")) %>%
  left_join(PRIX_CONSO, by = "PRIX_CONSO") %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Prix_conso)) +
  
  scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.75, 0.3),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 200, 5),
                     labels = dollar_format(accuracy = 1, prefix = "")) +
  geom_text_repel(data = . %>%
              filter(date == max(date)), aes(x = date, y = OBS_VALUE, label = round(OBS_VALUE, 1)), size = 3)

1995-

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         REF_AREA == "FE",
         PRIX_CONSO %in% c("00", "4035"),
         #PRIX_CONSO %in% c("00"),
         NATURE == "INDICE",
         FREQ == "M") %>%
  month_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  group_by(PRIX_CONSO) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE / OBS_VALUE[date == as.Date("1995-01-01")]) %>%
  left_join(PRIX_CONSO, by = "PRIX_CONSO") %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Prix_conso)) +
  
  scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.75, 0.3),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 200, 10),
                     labels = dollar_format(accuracy = 1, prefix = "")) +
  geom_text(data = . %>%
              filter(date == max(date)), aes(x = date, y = OBS_VALUE, label = round(OBS_VALUE, 1)), size = 3)

2008-

Code
`IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         REF_AREA == "FE",
         PRIX_CONSO %in% c("00", "4035"),
         #PRIX_CONSO %in% c("00"),
         NATURE == "INDICE",
         FREQ == "M") %>%
  month_to_date %>%
  group_by(PRIX_CONSO) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE / OBS_VALUE[date == as.Date("2008-01-01")]) %>%
  filter(date >= as.Date("2008-01-01")) %>%
  left_join(PRIX_CONSO, by = "PRIX_CONSO") %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Prix_conso)) +
  
  scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.75, 0.3),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 200, 2),
                     labels = dollar_format(accuracy = 1, prefix = "")) +
  geom_text_repel(data = . %>%
              filter(date == max(date)), aes(x = date, y = OBS_VALUE, label = round(OBS_VALUE, 1)), size = 3)

Categories

Par Deciles - INF-D1, D5-D6, D9-PLUS

Code
`IPC-2015` %>%
  filter(MENAGES_IPC %in% c("INF-D1", "D5-D6", "D9-PLUS")) %>%
  year_to_date %>%
  left_join(MENAGES_IPC, by = "MENAGES_IPC") %>%
  group_by(MENAGES_IPC) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Menages_ipc)) +
  
  scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.35, 0.9),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 200, 5),
                     labels = dollar_format(accuracy = 1, prefix = "")) +
  geom_text_repel(data = . %>%
              filter(date == max(date)), aes(x = date, y = OBS_VALUE, label = round(OBS_VALUE, 1)), size = 3)

Par CSP - Actif, Retraité, Cadre, Ouvrier

Code
`IPC-2015` %>%
  filter(MENAGES_IPC %in% c("ACTIF", "RETRAITE", "CADRE", "OUVRIER")) %>%
  year_to_date %>%
  left_join(MENAGES_IPC, by = "MENAGES_IPC") %>%
  group_by(MENAGES_IPC) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Menages_ipc)) +
  
  scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.35, 0.85),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 200, 5),
                     labels = dollar_format(accuracy = 1, prefix = "")) +
  geom_text_repel(data = . %>%
              filter(date == max(date)), aes(x = date, y = OBS_VALUE, label = round(OBS_VALUE, 1)), size = 3)

Par Age - 30-44, 45-59, 60-74

All

Code
`IPC-2015` %>%
  filter(MENAGES_IPC %in% c("MOINS-29", "30-44", "45-59", "60-74", "PLUS-75")) %>%
  year_to_date %>%
  left_join(MENAGES_IPC, by = "MENAGES_IPC") %>%
  group_by(MENAGES_IPC) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Menages_ipc)) +
  scale_color_manual(values = viridis(6)[1:5]) +
  scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.75, 0.3),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 200, 5),
                     labels = dollar_format(accuracy = 1, prefix = ""))

2008-

Code
`IPC-2015` %>%
  filter(MENAGES_IPC %in% c("MOINS-29", "ENSEMBLE", "45-59", "PLUS-75"),
         INDICATEUR == "IPC",
         PRIX_CONSO == "4035",
         NATURE == "INDICE",
         REF_AREA == "FM",
         FREQ == "A",
         COICOP2016 == "SO") %>%
  year_to_date %>%
  group_by(MENAGES_IPC) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE / OBS_VALUE[date == as.Date("2008-01-01")]) %>%
  filter(date >= as.Date("2008-01-01")) %>%
  left_join(MENAGES_IPC, by = "MENAGES_IPC") %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Menages_ipc)) +
  
  scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.75, 0.3),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 200, 1),
                     labels = dollar_format(accuracy = 1, prefix = ""))

Locataire VS Propriétaire VS Accédant

Code
`IPC-2015` %>%
  filter(MENAGES_IPC %in% c("ACCES-PROPRIETE", "LOCATAIRE", "PROPRIETAIRE")) %>%
  year_to_date %>%
  left_join(MENAGES_IPC, by = "MENAGES_IPC") %>%
  group_by(MENAGES_IPC) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Menages_ipc, linetype = Menages_ipc)) +
  
  scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.75, 0.3),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 200, 5),
                     labels = dollar_format(accuracy = 1, prefix = ""))

Cantines

1990-

Code
`IPC-2015` %>%
  filter(COICOP2016 %in% c("00", "1112"),
         REF_AREA == "FM",
         FREQ == "M") %>%
  month_to_date %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  filter(date >= as.Date("1990-01-01")) %>%
  group_by(COICOP2016) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Coicop2016)) +
  
  scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.25, 0.9),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 200, 5),
                     labels = dollar_format(accuracy = 1, prefix = ""))

2000-

Code
`IPC-2015` %>%
  filter(COICOP2016 %in% c("00", "1112"),
         REF_AREA == "FM",
         FREQ == "M") %>%
  month_to_date %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  filter(date >= as.Date("2000-01-01")) %>%
  group_by(COICOP2016) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Coicop2016)) +
  
  scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.25, 0.9),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 200, 5),
                     labels = dollar_format(accuracy = 1, prefix = ""))

2010-

Code
`IPC-2015` %>%
  filter(COICOP2016 %in% c("00", "1112"),
         REF_AREA == "FM",
         FREQ == "M") %>%
  month_to_date %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  filter(date >= as.Date("2010-01-01")) %>%
  group_by(COICOP2016) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Coicop2016)) +
  
  scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.25, 0.9),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 200, 5),
                     labels = dollar_format(accuracy = 1, prefix = ""))

Scolaire, Universitaire VS Entreprise ou Admin.

Code
`IPC-2015` %>%
  filter(COICOP2016 %in% c("111202", "111201"),
         NATURE == "INDICE") %>%
  year_to_date %>%
  arrange(desc(date)) %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  group_by(COICOP2016) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Coicop2016)) +
  
  scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.35, 0.9),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 200, 5),
                     labels = dollar_format(accuracy = 1, prefix = ""))

Assurance santé

1990-

Code
`IPC-2015` %>%
  filter(COICOP2016 %in% c("00", "12532", "1253"),
         REF_AREA == "FM",
         FREQ == "M") %>%
  month_to_date %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  filter(date >= as.Date("1990-01-01")) %>%
  group_by(COICOP2016) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Coicop2016)) +
  
  scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.25, 0.9),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 200, 5),
                     labels = dollar_format(accuracy = 1, prefix = ""))

2000-

Code
`IPC-2015` %>%
  filter(COICOP2016 %in% c("00", "12532", "1253"),
         REF_AREA == "FM",
         FREQ == "M") %>%
  month_to_date %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  filter(date >= as.Date("2000-01-01")) %>%
  group_by(COICOP2016) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Coicop2016)) +
  
  scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.25, 0.9),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 200, 5),
                     labels = dollar_format(accuracy = 1, prefix = ""))

2010-

Code
`IPC-2015` %>%
  filter(COICOP2016 %in% c("00", "12532"),
         REF_AREA == "FM",
         FREQ == "M") %>%
  month_to_date %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  filter(date >= as.Date("2010-01-01")) %>%
  group_by(COICOP2016) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Coicop2016)) +
  
  scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.25, 0.9),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 200, 5),
                     labels = dollar_format(accuracy = 1, prefix = ""))

2-digit

Boissons Alcoolisées, Logement, Restaurants et hôtels

All

Code
`IPC-2015` %>%
  filter(COICOP2016 %in% c("00", "02", "11", "04"),
         REF_AREA == "FM",
         FREQ == "M") %>%
  month_to_date %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  group_by(COICOP2016) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Coicop2016)) +
  
  scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.3, 0.85),
        legend.title = element_blank()) +
  scale_y_log10(breaks = c(100, 120, 150, 200, 220, 250, 300, 400, 500),
                     labels = dollar_format(accuracy = 1, prefix = ""))

Glissement sur 2 ans

Code
`IPC-2015` %>%
  filter(COICOP2016 %in% c("00", "02", "11", "04"),
         REF_AREA == "FM",
         FREQ == "M") %>%
  month_to_date %>%
  filter(date >= max(date) - years(2)) %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  group_by(COICOP2016) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot + geom_line(aes(x = date, y = OBS_VALUE, color = Coicop2016)) +
  theme_minimal() + xlab("") + ylab("") +
  scale_x_date(breaks = "1 month",
               labels = date_format("%b %Y")) +
  theme(legend.position = c(0.28, 0.87),
        legend.title = element_blank(),
        axis.text.x = element_text(angle = 45, vjust = 0.5, hjust=1)) +
  scale_y_log10(breaks = seq(0, 200, 1),
                     labels = dollar_format(accuracy = 1, prefix = "")) +
  geom_text_repel(aes(x = date, y = OBS_VALUE, label = round(OBS_VALUE, 1)), 
                  fontface ="plain", color = "black", size = 3)

Transports, Enseignement, B&S Divers

Tous

Code
`IPC-2015` %>%
  filter(COICOP2016 %in% c("00", "10", "07", "12"),
         REF_AREA == "FM",
         FREQ == "M") %>%
  month_to_date %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  group_by(COICOP2016) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Coicop2016)) +
  
  scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.3, 0.85),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(100, 300, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

Glissement sur 2 ans

Code
`IPC-2015` %>%
  filter(COICOP2016 %in% c("00", "10", "07", "12"),
         REF_AREA == "FM",
         FREQ == "M") %>%
  month_to_date %>%
  filter(date >= max(date) - years(2)) %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  group_by(COICOP2016) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot + geom_line(aes(x = date, y = OBS_VALUE, color = Coicop2016)) +
  theme_minimal() + xlab("") + ylab("") +
  scale_x_date(breaks = "1 month",
               labels = date_format("%b %Y")) +
  theme(legend.position = c(0.18, 0.87),
        legend.title = element_blank(),
        axis.text.x = element_text(angle = 45, vjust = 0.5, hjust=1)) +
  scale_y_log10(breaks = seq(0, 200, 2),
                     labels = dollar_format(accuracy = 1, prefix = "")) +
  geom_text_repel(aes(x = date, y = OBS_VALUE, label = round(OBS_VALUE, 1)), 
                  fontface ="plain", color = "black", size = 3)

Alimentation, Habillement, Meubles

Tous

Code
`IPC-2015` %>%
  filter(COICOP2016 %in% c("00", "05", "01", "03"),
         REF_AREA == "FM",
         FREQ == "M") %>%
  month_to_date %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  group_by(COICOP2016) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Coicop2016)) +
  
  scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.35, 0.85),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(100, 300, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

Glissement sur 2 ans

Code
`IPC-2015` %>%
  filter(COICOP2016 %in% c("00", "05", "01", "03"),
         REF_AREA == "FM",
         FREQ == "M") %>%
  month_to_date %>%
  filter(date >= max(date) - years(2)) %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  group_by(COICOP2016) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot + geom_line(aes(x = date, y = OBS_VALUE, color = Coicop2016)) +
  theme_minimal() + xlab("") + ylab("") +
  scale_x_date(breaks = "1 month",
               labels = date_format("%b %Y")) +
  theme(legend.position = c(0.28, 0.87),
        legend.title = element_blank(),
        axis.text.x = element_text(angle = 45, vjust = 0.5, hjust=1)) +
  scale_y_log10(breaks = seq(0, 200, 2),
                     labels = dollar_format(accuracy = 1, prefix = "")) +
  geom_text_repel(aes(x = date, y = OBS_VALUE, label = round(OBS_VALUE, 1)), 
                  fontface ="plain", color = "black", size = 3)

Santé, Communications, Loisirs

Tous

Code
`IPC-2015` %>%
  filter(COICOP2016 %in% c("00", "06", "09", "08"),
         REF_AREA == "FM",
         FREQ == "M") %>%
  month_to_date %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  group_by(COICOP2016) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Coicop2016)) +
  
  scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.2),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(10, 300, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

1996-

Code
`IPC-2015` %>%
  filter(COICOP2016 %in% c("00", "06", "09", "08"),
         REF_AREA == "FM",
         FREQ == "M") %>%
  month_to_date %>%
  filter(date >= as.Date("1996-01-01")) %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  group_by(COICOP2016) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Coicop2016)) +
  
  scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.2),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(10, 300, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

2000-

Code
`IPC-2015` %>%
  filter(COICOP2016 %in% c("00", "06", "09", "08"),
         REF_AREA == "FM",
         FREQ == "M") %>%
  month_to_date %>%
  filter(date >= as.Date("2000-01-01")) %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  group_by(COICOP2016) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Coicop2016)) +
  
  scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.18, 0.22),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(10, 300, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

Glissement sur 2 ans

Code
`IPC-2015` %>%
  filter(COICOP2016 %in% c("00", "06", "09", "08"),
         REF_AREA == "FM",
         FREQ == "M") %>%
  month_to_date %>%
  filter(date >= max(date) - years(2)) %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  group_by(COICOP2016) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot + geom_line(aes(x = date, y = OBS_VALUE, color = Coicop2016)) +
  theme_minimal() + xlab("") + ylab("") +
  scale_x_date(breaks = "1 month",
               labels = date_format("%b %Y")) +
  theme(legend.position = c(0.28, 0.87),
        legend.title = element_blank(),
        axis.text.x = element_text(angle = 45, vjust = 0.5, hjust=1)) +
  scale_y_log10(breaks = seq(0, 200, 2),
                     labels = dollar_format(accuracy = 1, prefix = "")) +
  geom_text_repel(aes(x = date, y = OBS_VALUE, label = round(OBS_VALUE, 1)), 
                  fontface ="plain", color = "black", size = 3)

Comparer l’IPC et le déflateur de la consommation

Revenu primaire au RDB

Code
ig_b("insee", "FPS2021", "revenu-primaire-RDB")

Déflateur consommation finale des ménages

Code
ig_b("insee", "FPS2021", "depense-consommation-finale-menages")