HICP - country weights

Data - Eurostat

Info

source dataset .html .RData
eurostat prc_hicp_cow 2024-11-05 2024-10-08

Données sur l’inflation en France

source dataset .html .RData
insee bdf2017 2024-11-09 2023-11-21
insee ILC-ILAT-ICC 2024-11-09 2024-11-22
insee INDICES_LOYERS 2024-11-09 2024-11-22
insee IPC-1970-1980 2024-11-09 2024-11-22
insee IPC-1990 2024-11-09 2024-11-22
insee IPC-2015 2024-11-21 2024-11-22
insee IPC-PM-2015 2024-11-21 2024-11-22
insee IPCH-2015 2024-11-22 2024-11-22
insee IPGD-2015 2024-11-21 2024-11-21
insee IPLA-IPLNA-2015 2024-11-09 2024-11-22
insee IPPI-2015 2024-11-21 2024-11-21
insee IRL 2024-11-09 2024-11-09
insee SERIES_LOYERS 2024-11-09 2024-11-09
insee T_CONSO_EFF_FONCTION 2024-11-09 2024-07-18

Data on inflation

source dataset .html .RData
bis CPI 2024-07-01 2022-01-20
ecb CES 2024-11-21 2024-11-21
eurostat nama_10_co3_p3 2024-11-08 2024-10-09
eurostat prc_hicp_cow 2024-11-05 2024-10-08
eurostat prc_hicp_ctrb 2024-11-05 2024-10-08
eurostat prc_hicp_inw 2024-11-05 2024-11-21
eurostat prc_hicp_manr 2024-11-21 2024-11-21
eurostat prc_hicp_midx 2024-11-01 2024-11-21
eurostat prc_hicp_mmor 2024-11-05 2024-11-21
eurostat prc_ppp_ind 2024-11-05 2024-10-08
eurostat sts_inpp_m 2024-06-24 2024-11-21
eurostat sts_inppd_m 2024-11-21 2024-11-21
eurostat sts_inppnd_m 2024-06-24 2024-11-21
fred cpi 2024-11-21 2024-11-21
fred inflation 2024-11-21 2024-11-21
imf CPI 2024-06-20 2020-03-13
oecd MEI_PRICES_PPI 2024-09-15 2024-04-15
oecd PPP2017 2024-04-16 2023-07-25
oecd PRICES_CPI 2024-04-16 2024-04-15
wdi FP.CPI.TOTL.ZG 2023-01-15 2024-09-18
wdi NY.GDP.DEFL.KD.ZG 2024-09-18 2024-09-18

LAST_COMPILE

LAST_COMPILE
2024-11-22

Last

Code
prc_hicp_cow %>%
  group_by(time) %>%
  summarise(Nobs = n()) %>%
  arrange(desc(time)) %>%
  head(1) %>%
  print_table_conditional()
time Nobs
2024 91

statinfo

Code
prc_hicp_cow %>%
  left_join(statinfo, by = "statinfo") %>%
  group_by(statinfo, Statinfo) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) print_table(.) else .}
statinfo Statinfo Nobs
COWEA19 Country weights for EA19 (euro area 2015-2022) 580
COWEA20 Country weights for EA20 (euro area from 2023) 525
COWEA Country weights for the euro area (EA11-1999, EA12-2001, EA13-2007, EA15-2008, EA16-2009, EA17-2011, EA18-2014, EA19-2015, EA20-2023) 477
COWEEA Country weights for EEA (European Economic Area) 386
COWEU Country weights for European Union (EU6-1958, EU9-1973, EU10-1981, EU12-1986, EU15-1995, EU25-2004, EU27-2007, EU28-2013, EU27-2020) 328
COWEU27_2020 Country weights for EU27 (from 2020) 321
COWEU28 Country weights for EU28 (2013-2020) 304

geo

Code
prc_hicp_cow %>%
  left_join(geo, by = "geo") %>%
  group_by(geo, Geo) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Geo))),
         Flag = paste0('<img src="../../icon/flag/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

time

Code
prc_hicp_cow %>%
  group_by(time) %>%
  summarise(Nobs = n()) %>%
  arrange(desc(time)) %>%
  print_table_conditional()
time Nobs
2024 91
2023 91
2022 93
2021 93
2020 104
2019 106
2018 106
2017 106
2016 106
2015 106
2014 109
2013 112
2012 110
2011 110
2010 113
2009 113
2008 116
2007 122
2006 121
2005 121
2004 121
2003 101
2002 101
2001 101
2000 104
1999 46
1998 66
1997 66
1996 66

EA-19

time

Code
prc_hicp_cow %>%
  filter(statinfo == "COWEA19",
         geo != "EA19") %>%
  select(-statinfo) %>%
  group_by(time) %>%
  summarise(Nobs = n()) %>%
  arrange(desc(time)) %>%
  print_table_conditional()
time Nobs
2024 19
2023 19
2022 19
2021 19
2020 19
2019 19
2018 19
2017 19
2016 19
2015 19
2014 19
2013 19
2012 19
2011 19
2010 19
2009 19
2008 19
2007 19
2006 19
2005 19
2004 19
2003 19
2002 19
2001 19
2000 19
1999 19
1998 19
1997 19
1996 19

2022 Table

Code
prc_hicp_cow %>%
  filter(time == "2022",
         statinfo == "COWEA19",
         geo != "EA19") %>%
  left_join(geo, by = "geo") %>%
  select(-time) %>%
  spread(statinfo, values) %>%
  arrange(-COWEA19) %>%
  mutate(cumsum = cumsum(COWEA19)) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Geo))),
         Flag = paste0('<img src="../../icon/flag/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

2019 Table

Code
prc_hicp_cow %>%
  filter(time == "2019",
         statinfo == "COWEA19",
         geo != "EA19") %>%
  left_join(geo, by = "geo") %>%
  select(-time) %>%
  spread(statinfo, values) %>%
  arrange(-COWEA19) %>%
  mutate(cumsum = cumsum(COWEA19)) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Geo))),
         Flag = paste0('<img src="../../icon/flag/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

Germany, France, Italy, Spain

Code
prc_hicp_cow %>%
  filter(statinfo == "COWEA19",
         geo %in% c("DE", "FR", "IT", "ES")) %>%
  year_to_date %>%
  left_join(geo, by = "geo") %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/1000) %>%
  ggplot(.) + geom_line(aes(x = date, y = values, color = color)) + 
  theme_minimal() + xlab("") + ylab("") +
  scale_x_date(breaks = seq(1960, 2022, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-100, 100, 2),
                     labels = percent_format(a = 1)) + 
  scale_color_identity() + add_4flags +
  theme(legend.position = c(0.75, 0.90),
        legend.title = element_blank())

Netherlands, Belgium, Austria, Portugal

Code
prc_hicp_cow %>%
  filter(statinfo == "COWEA19",
         geo %in% c("NL", "BE", "AT", "PT")) %>%
  year_to_date %>%
  left_join(geo, by = "geo") %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/1000) %>%
  ggplot(.) + geom_line(aes(x = date, y = values, color = color)) + 
  theme_minimal() + xlab("") + ylab("") +
  scale_x_date(breaks = seq(1960, 2022, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-100, 100, .5),
                     labels = percent_format(a = .1)) + 
  scale_color_identity() + add_4flags +
  theme(legend.position = c(0.75, 0.90),
        legend.title = element_blank())

Greece, Finland, Ireland, Slovakia

Code
prc_hicp_cow %>%
  filter(statinfo == "COWEA19",
         geo %in% c("EL", "FI", "IE", "SK")) %>%
  year_to_date %>%
  left_join(geo, by = "geo") %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/1000) %>%
  ggplot(.) + geom_line(aes(x = date, y = values, color = color)) + 
  theme_minimal() + xlab("") + ylab("") +
  scale_x_date(breaks = seq(1960, 2022, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-100, 100, .5),
                     labels = percent_format(a = .1)) + 
  scale_color_identity() + add_4flags +
  theme(legend.position = c(0.75, 0.90),
        legend.title = element_blank())

Lithuania, Slovenia, Luxembourg, Latvia

Code
prc_hicp_cow %>%
  filter(statinfo == "COWEA19",
         geo %in% c("LT", "SI", "LU", "LV")) %>%
  year_to_date %>%
  left_join(geo, by = "geo") %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/1000) %>%
  ggplot(.) + geom_line(aes(x = date, y = values, color = color)) + 
  theme_minimal() + xlab("") + ylab("") +
  scale_x_date(breaks = seq(1960, 2022, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-100, 100, .1),
                     labels = percent_format(a = .1)) + 
  scale_color_identity() + add_4flags +
  theme(legend.position = c(0.75, 0.90),
        legend.title = element_blank())

Estonia, Cyprus, Malta

Code
prc_hicp_cow %>%
  filter(statinfo == "COWEA19",
         geo %in% c("EE", "CY", "MT")) %>%
  year_to_date %>%
  left_join(geo, by = "geo") %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/1000) %>%
  ggplot(.) + geom_line(aes(x = date, y = values, color = color)) + 
  theme_minimal() + xlab("") + ylab("") +
  scale_x_date(breaks = seq(1960, 2022, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-100, 100, .05),
                     labels = percent_format(a = .01)) + 
  scale_color_identity() + add_3flags +
  theme(legend.position = c(0.75, 0.90),
        legend.title = element_blank())

All

2022

Code
prc_hicp_cow %>%
  filter(time == "2022") %>%
  left_join(geo, by = "geo") %>%
  select(-time) %>%
  spread(statinfo, values) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Geo))),
         Flag = paste0('<img src="../../icon/flag/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

2019

Code
prc_hicp_cow %>%
  filter(time == "2019") %>%
  left_join(geo, by = "geo") %>%
  select(-time) %>%
  spread(statinfo, values) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Geo))),
         Flag = paste0('<img src="../../icon/flag/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

PECO

Bulgarie, Croatie, Estonie, Hongrie, Lettonie, Lituanie, Pologne, Roumanie, Slovénie, Slovaquie, République tchèque.

List

Code
Geo_PECO <- c("Bulgaria", "Croatia", "Estonia", "Hungary", "Lithuania", "Poland",
              "Romania", "Slovenia", "Slovakia", "Czechia")

EA19

2022 Table

Code
prc_hicp_cow %>%
  filter(time == "2022",
         statinfo == "COWEA19",
         geo != "EA19") %>%
  left_join(geo, by = "geo") %>%
  filter(Geo %in% Geo_PECO) %>%
  select(-time) %>%
  spread(statinfo, values) %>%
  arrange(-COWEA19) %>%
  mutate(cumsum = cumsum(COWEA19)) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Geo))),
         Flag = paste0('<img src="../../icon/flag/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}