| source | dataset | Title | .html | .rData |
|---|---|---|---|---|
| eurostat | prc_hicp_cow | HICP - country weights | 2025-11-14 | 2025-11-16 |
HICP - country weights
Data - Eurostat
Info
Données sur l’inflation en France
| source | dataset | Title | .html | .rData |
|---|---|---|---|---|
| insee | ILC-ILAT-ICC | Indices pour la révision d’un bail commercial ou professionnel | 2025-11-16 | 2025-11-15 |
| insee | INDICES_LOYERS | Indices des loyers - Base 2019 | 2025-11-16 | 2025-11-15 |
| insee | IPC-1970-1980 | Indice des prix à la consommation - Base 1970, 1980 | 2025-11-16 | 2025-11-15 |
| insee | IPC-1990 | Indices des prix à la consommation - Base 1990 | 2025-11-16 | 2025-11-15 |
| insee | IPC-2015 | Indice des prix à la consommation - Base 2015 | 2025-11-16 | 2025-11-16 |
| insee | IPC-PM-2015 | Prix moyens de vente de détail | 2025-11-16 | 2025-11-15 |
| insee | IPCH-2015 | Indices des prix à la consommation harmonisés | 2025-11-16 | 2025-11-15 |
| insee | IPCH-IPC-2015-ensemble | Indices des prix à la consommation harmonisés | 2025-11-16 | 2025-11-16 |
| insee | IPGD-2015 | Indice des prix dans la grande distribution | 2025-11-16 | 2025-05-24 |
| insee | IPLA-IPLNA-2015 | Indices des prix des logements neufs et Indices Notaires-Insee des prix des logements anciens | 2025-11-16 | 2025-11-15 |
| insee | IPPI-2015 | Indices de prix de production et d'importation dans l'industrie | 2025-11-16 | 2025-11-16 |
| insee | IRL | Indice pour la révision d’un loyer d’habitation | 2025-11-16 | 2025-11-15 |
| insee | SERIES_LOYERS | Variation des loyers | 2025-11-16 | 2025-11-15 |
| insee | T_CONSO_EFF_FONCTION | Consommation effective des ménages par fonction | 2025-11-16 | 2024-07-18 |
| insee | bdf2017 | Budget de famille 2017 | 2025-11-16 | 2023-11-21 |
| insee | echantillon-agglomerations-IPC-2024 | Échantillon d’agglomérations enquêtées de l’IPC en 2024 | 2025-11-16 | 2025-04-02 |
| insee | liste-varietes-IPC-2024 | Liste des variétés pour la mesure de l'IPC en 2024 | 2025-11-16 | 2025-04-02 |
| insee | ponderations-elementaires-IPC-2024 | Pondérations élémentaires 2024 intervenant dans le calcul de l’IPC | 2025-11-16 | 2025-04-02 |
Data on inflation
| source | dataset | Title | .html | .rData |
|---|---|---|---|---|
| eurostat | prc_hicp_cow | HICP - country weights | 2025-11-14 | 2025-11-16 |
| bis | CPI | Consumer Price Index | 2025-10-11 | 2025-10-11 |
| ecb | CES | Consumer Expectations Survey | 2025-08-28 | 2025-05-24 |
| eurostat | nama_10_co3_p3 | Final consumption expenditure of households by consumption purpose (COICOP 3 digit) | 2025-11-16 | 2025-11-13 |
| eurostat | prc_hicp_ctrb | Contributions to euro area annual inflation (in percentage points) | 2025-11-14 | 2025-11-16 |
| eurostat | prc_hicp_inw | HICP - item weights | 2025-11-14 | 2025-11-15 |
| eurostat | prc_hicp_manr | HICP (2015 = 100) - monthly data (annual rate of change) | 2025-11-14 | 2025-11-16 |
| eurostat | prc_hicp_midx | HICP (2015 = 100) - monthly data (index) | 2025-11-14 | 2025-11-15 |
| eurostat | prc_hicp_mmor | HICP (2015 = 100) - monthly data (monthly rate of change) | 2025-11-14 | 2025-11-15 |
| eurostat | prc_ppp_ind | Purchasing power parities (PPPs), price level indices and real expenditures for ESA 2010 aggregates | 2025-11-14 | 2025-11-16 |
| eurostat | sts_inpp_m | Producer prices in industry, total - monthly data | 2025-11-14 | 2025-11-15 |
| eurostat | sts_inppd_m | Producer prices in industry, domestic market - monthly data | 2025-11-14 | 2025-11-16 |
| eurostat | sts_inppnd_m | Producer prices in industry, non domestic market - monthly data | 2024-06-24 | 2025-11-16 |
| fred | cpi | Consumer Price Index | 2025-11-15 | 2025-11-15 |
| fred | inflation | Inflation | 2025-11-15 | 2025-11-15 |
| imf | CPI | Consumer Price Index - CPI | 2025-08-28 | 2020-03-13 |
| oecd | MEI_PRICES_PPI | Producer Prices - MEI_PRICES_PPI | 2025-09-29 | 2024-04-15 |
| oecd | PPP2017 | 2017 PPP Benchmark results | 2024-04-16 | 2023-07-25 |
| oecd | PRICES_CPI | Consumer price indices (CPIs) | 2024-04-16 | 2024-04-15 |
| wdi | FP.CPI.TOTL.ZG | Inflation, consumer prices (annual %) | 2023-01-15 | 2025-11-15 |
| wdi | NY.GDP.DEFL.KD.ZG | Inflation, GDP deflator (annual %) | 2025-11-15 | 2025-11-15 |
LAST_COMPILE
| LAST_COMPILE |
|---|
| 2025-11-16 |
Last
Code
prc_hicp_cow %>%
group_by(time) %>%
summarise(Nobs = n()) %>%
arrange(desc(time)) %>%
head(1) %>%
print_table_conditional()| time | Nobs |
|---|---|
| 2025 | 91 |
statinfo
Code
prc_hicp_cow %>%
left_join(statinfo, by = "statinfo") %>%
group_by(statinfo, Statinfo) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) print_table(.) else .}| statinfo | Statinfo | Nobs |
|---|---|---|
| COWEA19 | Country weights for EA19 (euro area 2015-2022) | 600 |
| COWEA20 | Country weights for EA20 (euro area from 2023) | 546 |
| COWEA | Country weights for the euro area (EA11-1999, EA12-2001, EA13-2007, EA15-2008, EA16-2009, EA17-2011, EA18-2014, EA19-2015, EA20-2023) | 498 |
| COWEEA | Country weights for EEA (European Economic Area) | 397 |
| COWEU | Country weights for European Union (EU6-1958, EU9-1973, EU10-1981, EU12-1986, EU15-1995, EU25-2004, EU27-2007, EU28-2013, EU27-2020) | 337 |
| COWEU27_2020 | Country weights for EU27 (from 2020) | 330 |
| COWEU28 | Country weights for EU28 (2013-2020) | 304 |
geo
Code
prc_hicp_cow %>%
left_join(geo, by = "geo") %>%
group_by(geo, Geo) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Geo))),
Flag = paste0('<img src="../../icon/flag/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}time
Code
prc_hicp_cow %>%
group_by(time) %>%
summarise(Nobs = n()) %>%
arrange(desc(time)) %>%
print_table_conditional()| time | Nobs |
|---|---|
| 2025 | 91 |
| 2024 | 91 |
| 2023 | 91 |
| 2022 | 93 |
| 2021 | 93 |
| 2020 | 104 |
| 2019 | 106 |
| 2018 | 106 |
| 2017 | 106 |
| 2016 | 106 |
| 2015 | 106 |
| 2014 | 109 |
| 2013 | 112 |
| 2012 | 110 |
| 2011 | 110 |
| 2010 | 113 |
| 2009 | 113 |
| 2008 | 116 |
| 2007 | 122 |
| 2006 | 121 |
| 2005 | 121 |
| 2004 | 121 |
| 2003 | 101 |
| 2002 | 101 |
| 2001 | 101 |
| 2000 | 104 |
| 1999 | 46 |
| 1998 | 66 |
| 1997 | 66 |
| 1996 | 66 |
Compare series
France
Code
prc_hicp_cow %>%
filter(geo %in% c("FR")) %>%
year_to_date %>%
left_join(statinfo, by = "statinfo") %>%
mutate(values = values/1000) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = Statinfo)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
labels = percent_format(a = 1)) +
theme(legend.position = c(0.7, 0.5),
legend.title = element_blank())
Germany
Code
prc_hicp_cow %>%
filter(geo %in% c("DE")) %>%
year_to_date %>%
left_join(statinfo, by = "statinfo") %>%
mutate(values = values/1000) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = Statinfo)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
labels = percent_format(a = 1)) +
theme(legend.position = c(0.7, 0.5),
legend.title = element_blank())
Italy
Code
prc_hicp_cow %>%
filter(geo %in% c("IT")) %>%
year_to_date %>%
left_join(statinfo, by = "statinfo") %>%
mutate(values = values/1000) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = Statinfo)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
labels = percent_format(a = 1)) +
theme(legend.position = c(0.7, 0.5),
legend.title = element_blank())
EA20
time
Code
prc_hicp_cow %>%
filter(statinfo == "COWEA20",
geo != "EA19") %>%
select(-statinfo) %>%
group_by(time) %>%
summarise(Nobs = n()) %>%
arrange(desc(time)) %>%
print_table_conditional()| time | Nobs |
|---|---|
| 2025 | 21 |
| 2024 | 21 |
| 2023 | 21 |
| 2022 | 21 |
| 2021 | 21 |
| 2020 | 21 |
| 2019 | 21 |
| 2018 | 21 |
| 2017 | 21 |
| 2016 | 21 |
| 2015 | 21 |
| 2014 | 21 |
| 2013 | 21 |
| 2012 | 21 |
| 2011 | 21 |
| 2010 | 21 |
| 2009 | 21 |
| 2008 | 21 |
| 2007 | 21 |
| 2006 | 21 |
| 2005 | 21 |
| 2004 | 21 |
| 2003 | 21 |
| 2002 | 21 |
| 2001 | 21 |
| 2000 | 21 |
2022 Table
Code
prc_hicp_cow %>%
filter(time == "2022",
statinfo == "COWEA20",
geo != "EA19") %>%
left_join(geo, by = "geo") %>%
select(-time) %>%
spread(statinfo, values) %>%
arrange(-COWEA20) %>%
mutate(cumsum = cumsum(COWEA20)) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Geo))),
Flag = paste0('<img src="../../icon/flag/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}2019 Table
Code
prc_hicp_cow %>%
filter(time == "2019",
statinfo == "COWEA20",
geo != "EA19") %>%
left_join(geo, by = "geo") %>%
select(-time) %>%
spread(statinfo, values) %>%
arrange(-COWEA20) %>%
mutate(cumsum = cumsum(COWEA20)) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Geo))),
Flag = paste0('<img src="../../icon/flag/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}Germany, France, Italy, Spain
Code
prc_hicp_cow %>%
filter(statinfo == "COWEA20",
geo %in% c("DE", "FR", "IT", "ES")) %>%
year_to_date %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/1000) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 2),
labels = percent_format(a = 1)) +
scale_color_identity() + add_4flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
Netherlands, Belgium, Austria, Portugal
Code
prc_hicp_cow %>%
filter(statinfo == "COWEA20",
geo %in% c("NL", "BE", "AT", "PT")) %>%
year_to_date %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/1000) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, .5),
labels = percent_format(a = .1)) +
scale_color_identity() + add_4flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
Greece, Finland, Ireland, Slovakia
Code
prc_hicp_cow %>%
filter(statinfo == "COWEA20",
geo %in% c("EL", "FI", "IE", "SK")) %>%
year_to_date %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/1000) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, .5),
labels = percent_format(a = .1)) +
scale_color_identity() + add_4flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
Lithuania, Slovenia, Luxembourg, Latvia
Code
prc_hicp_cow %>%
filter(statinfo == "COWEA20",
geo %in% c("LT", "SI", "LU", "LV")) %>%
year_to_date %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/1000) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, .1),
labels = percent_format(a = .1)) +
scale_color_identity() + add_4flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
Estonia, Cyprus, Malta
Code
prc_hicp_cow %>%
filter(statinfo == "COWEA20",
geo %in% c("EE", "CY", "MT")) %>%
year_to_date %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/1000) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, .05),
labels = percent_format(a = .01)) +
scale_color_identity() + add_3flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
All
2022
Code
prc_hicp_cow %>%
filter(time == "2022") %>%
left_join(geo, by = "geo") %>%
select(-time) %>%
spread(statinfo, values) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Geo))),
Flag = paste0('<img src="../../icon/flag/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}2019
Code
prc_hicp_cow %>%
filter(time == "2019") %>%
left_join(geo, by = "geo") %>%
select(-time) %>%
spread(statinfo, values) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Geo))),
Flag = paste0('<img src="../../icon/flag/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}PECO
Bulgarie, Croatie, Estonie, Hongrie, Lettonie, Lituanie, Pologne, Roumanie, Slovénie, Slovaquie, République tchèque.
List
Code
Geo_PECO <- c("Bulgaria", "Croatia", "Estonia", "Hungary", "Lithuania", "Poland",
"Romania", "Slovenia", "Slovakia", "Czechia")EA19
2022 Table
Code
prc_hicp_cow %>%
filter(time == "2022",
statinfo == "COWEA20",
geo != "EA19") %>%
left_join(geo, by = "geo") %>%
filter(Geo %in% Geo_PECO) %>%
select(-time) %>%
spread(statinfo, values) %>%
arrange(-COWEA20) %>%
mutate(cumsum = cumsum(COWEA20)) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Geo))),
Flag = paste0('<img src="../../icon/flag/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}