~/data/oecd/

Info

source dataset .html .RData
oecd PRICES_CPI 2024-04-15 2024-04-15

Data on inflation

source dataset .html .RData
bis CPI 2024-04-15 2022-01-20
ecb CES 2024-04-15 2024-01-12
eurostat nama_10_co3_p3 2024-04-15 2024-04-15
eurostat prc_hicp_cow 2024-04-15 2024-04-15
eurostat prc_hicp_ctrb 2024-04-15 2024-04-09
eurostat prc_hicp_inw 2024-04-15 2024-04-09
eurostat prc_hicp_manr 2024-04-15 2024-04-15
eurostat prc_hicp_midx 2024-04-15 2024-04-09
eurostat prc_hicp_mmor 2024-04-15 2024-04-15
eurostat prc_ppp_ind 2024-04-15 2024-04-09
eurostat sts_inpp_m 2024-04-15 2024-04-15
eurostat sts_inppd_m 2024-04-15 2024-04-15
eurostat sts_inppnd_m 2024-04-15 2024-04-09
fred cpi 2024-04-15 2024-04-15
fred inflation 2024-04-15 2024-04-15
imf CPI 2024-01-06 2020-03-13
oecd MEI_PRICES_PPI 2024-04-16 2024-04-15
oecd PPP2017 2024-04-16 2023-07-25
oecd PRICES_CPI 2024-04-15 2024-04-15
wdi FP.CPI.TOTL.ZG 2023-01-15 2024-04-14
wdi NY.GDP.DEFL.KD.ZG 2024-04-14 2024-04-14

Parts

dataset LAST_DOWNLOAD
PRICES_CPI 2024-04-15
PRICES_CPI_5 2024-04-15
PRICES_CPI_4 2024-02-03
PRICES_CPI_3 2024-02-03
PRICES_CPI_2 2024-02-03
PRICES_CPI_1 2023-12-10

Last

Monthly

obsTime Nobs
2023-12 6027

Quarterly

obsTime Nobs
2023-Q4 3550

Annual

obsTime Nobs
2023 5721

Nobs

all

Annual, IXOB

SUBJECT

List

MEASURE

MEASURE Measure Nobs
IXOB Index 776265
GP Percentage change from previous period 775520
GY Percentage change on the same period of the previous year 761186
IXNB National Index 316846
CTGY Contribution to annual inflation 137374
AL Per thousand of the National CPI Total 38265
IXOBSA Index, s.a 6871

LOCATION

obsTime

Contributions to inflation

English

US

line_US <- PRICES_CPI %>%
  filter(MEASURE == "CTGY",
         LOCATION %in% c("USA"),
         SUBJECT %in% c("CPALTT01", "CPGREN01", "CP010000", "CP020000")) %>%
  month_to_date %>%
  filter(date >= as.Date("2020-01-01")) %>%
  select(date, obsValue, SUBJECT) %>%
  spread(SUBJECT, obsValue) %>%
  transmute(date, `Total inflation` = CPALTT01,
            FOOD = CP010000 + CP020000,
            NRG = CPGREN01,
            `Core inflation` = CPALTT01-FOOD-NRG) %>%
  select(date, `Total inflation`, `Core inflation`) %>%
  gather(Coicop, values, -date) %>%
  mutate(Coicop = factor(Coicop, levels = c("Total inflation", "Core inflation")),
         Geo = "US")

bars_US <- PRICES_CPI %>%
  filter(MEASURE == "CTGY",
         LOCATION %in% c("USA")) %>%
  #filter(obsTime == "2023-09") %>%
  filter(SUBJECT %in% c("CPGRLE01", "CPGREN01", "CP010000", "CP020000",
                        "CPALTT01", "CP040100", "CP040200")) %>%
  month_to_date %>%
  filter(date >= as.Date("2020-01-01")) %>%
  select(date, obsValue, SUBJECT) %>%
  spread(SUBJECT, obsValue) %>%
  transmute(date,
            FOOD = CP010000 + CP020000,
            NRG = CPGREN01,
            RENTS = CP040100+CP040200,
            TOT_X_NRG_FOOD_RENTS = CPALTT01-FOOD-NRG-RENTS) %>%
  gather(coicop, values, -date) %>%
  # CP070200, CP040500, CP010000
  # CPGRSE01, CPGRGO01
  mutate(Coicop = factor(coicop, levels = c("FOOD", "NRG", "RENTS", "TOT_X_NRG_FOOD_RENTS"),
                         labels = c("Food", "Energy", "Rents",
                                    "Total less Energy, Food and Rents")),
         Geo = "US")

bars_US %>%
  ggplot(., aes(x = date, y = values/100)) +
  geom_col(aes(fill = Coicop), alpha = 1) +
  geom_line(data = line_US, aes(linetype = Coicop), size = 1.2) +
  theme_minimal() + xlab("") + ylab("Contributions to inflation") +
  scale_fill_manual(values = c("forestgreen","orange", "grey", "blue")) +
  scale_x_date(breaks ="3 months",
               labels = date_format("%b %Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 30, 1),
                     labels = percent_format(accuracy = 1)) +
  theme(legend.position = "top",
        legend.title = element_blank(),
        axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
  guides(fill=guide_legend(nrow=2))

E.U.

load_data("eurostat/prc_hicp_ctrb.RData")
line_EU <- prc_hicp_ctrb %>%
  filter(coicop %in% c("NRG", "FOOD", "CP01", "CP02", "CP03", "CP04", "CP05", "CP06",
                       "CP07", "CP08", "CP09", "CP10", "CP11", "CP12", "CP041")) %>%
  mutate(date = gsub("M", "-", time) %>% paste0(., "-01") %>% as.Date) %>%
  filter(date >= as.Date("2020-01-01")) %>%
  select(date, values, coicop) %>%
  spread(coicop, values) %>%
  transmute(date,
            `Total inflation` = CP01+CP02+CP03+CP04+CP05+CP06+CP07+CP08+CP09+CP10+CP11+CP12,
            FOOD,
            NRG,
            `Core inflation` = `Total inflation`-FOOD-NRG) %>%
  select(date, `Total inflation`, `Core inflation`) %>%
  gather(Coicop, values, -date) %>%
  mutate(Coicop = factor(Coicop, levels = c("Total inflation", "Core inflation")),
         Geo = "Euro area")

bars_EU <- prc_hicp_ctrb %>%
  filter(coicop %in% c("NRG", "FOOD", "CP01", "CP02", "CP03", "CP04", "CP05", "CP06",
                       "CP07", "CP08", "CP09", "CP10", "CP11", "CP12", "CP041")) %>%
  mutate(date = gsub("M", "-", time) %>% paste0(., "-01") %>% as.Date) %>%
  filter(date >= as.Date("2020-01-01")) %>%
  select(date, values, coicop) %>%
  spread(coicop, values) %>%
  transmute(date,
            FOOD,
            NRG,
            RENTS = CP041,
            `Total inflation` = CP01+CP02+CP03+CP04+CP05+CP06+CP07+CP08+CP09+CP10+CP11+CP12,
            TOT_X_NRG_FOOD_RENTS = `Total inflation`-FOOD-NRG-RENTS) %>%
  select(-`Total inflation`) %>%
  gather(coicop, values, -date) %>%
  # CP070200, CP040500, CP010000
  # CPGRSE01, CPGRGO01
  mutate(Coicop = factor(coicop, levels = c("FOOD", "NRG", "RENTS", "TOT_X_NRG_FOOD_RENTS"),
                         labels = c("Food", "Energy", "Rents",
                                    "Total less Energy, Food and Rents")),
         Geo = "Euro area")

bars_EU %>%
  ggplot(., aes(x = date, y = values/100)) +
  geom_col(aes(fill = Coicop), alpha = 1) +
  geom_line(data = line_EU, aes(linetype = Coicop), size = 1.2) +
  theme_minimal() + xlab("") + ylab("Contributions to inflation") +
  scale_fill_manual(values = c("forestgreen","orange", "grey", "blue")) +
  scale_x_date(breaks ="3 months",
               labels = date_format("%b %Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 30, 1),
                     labels = percent_format(accuracy = 1)) +
  theme(legend.position = "top",
        legend.title = element_blank(),
        axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
  guides(fill=guide_legend(nrow=2))

French

US

# [1] "fr_CA.UTF-8"
line_US <- PRICES_CPI %>%
  filter(MEASURE == "CTGY",
         LOCATION %in% c("USA"),
         SUBJECT %in% c("CPALTT01", "CPGREN01", "CP010000", "CP020000")) %>%
  month_to_date %>%
  filter(date >= as.Date("2020-01-01")) %>%
  select(date, obsValue, SUBJECT) %>%
  spread(SUBJECT, obsValue) %>%
  transmute(date, `Total inflation` = CPALTT01,
            FOOD = CP010000 + CP020000,
            NRG = CPGREN01,
            `Core inflation` = CPALTT01-FOOD-NRG) %>%
  select(date, Inflation = `Total inflation`, `Inflation sous-jacente` = `Core inflation`) %>%
  gather(Coicop, values, -date) %>%
  mutate(Coicop = factor(Coicop, levels = c("Inflation", "Inflation sous-jacente")),
         Geo = "États-Unis")

bars_US <- PRICES_CPI %>%
  filter(MEASURE == "CTGY",
         LOCATION %in% c("USA")) %>%
  #filter(obsTime == "2023-09") %>%
  filter(SUBJECT %in% c("CPGRLE01", "CPGREN01", "CP010000", "CP020000",
                        "CPALTT01", "CP040100", "CP040200")) %>%
  month_to_date %>%
  filter(date >= as.Date("2020-01-01")) %>%
  select(date, obsValue, SUBJECT) %>%
  spread(SUBJECT, obsValue) %>%
  transmute(date,
            FOOD = CP010000 + CP020000,
            NRG = CPGREN01,
            RENTS = CP040100+CP040200,
            TOT_X_NRG_FOOD_RENTS = CPALTT01-FOOD-NRG-RENTS) %>%
  gather(coicop, values, -date) %>%
  # CP070200, CP040500, CP010000
  # CPGRSE01, CPGRGO01
  mutate(Coicop = factor(coicop, levels = c("FOOD", "NRG", "RENTS", "TOT_X_NRG_FOOD_RENTS"),
                         labels = c("Alimentation", "Énergie", "Loyers",
                                    "Total sans énergie, alimentation, loyers")),
         Geo = "États-Unis")

bars_US %>%
  ggplot(., aes(x = date, y = values/100)) +
  geom_col(aes(fill = Coicop), alpha = 1) +
  geom_line(data = line_US, aes(linetype = Coicop), size = 1.2) +
  theme_minimal() + xlab("") + ylab("Contributions à l'inflation") +
  scale_fill_manual(values = c("forestgreen","orange", "grey", "blue")) +
  scale_x_date(breaks ="3 months",
               labels = date_format("%b %Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 30, 1),
                     labels = percent_format(accuracy = 1)) +
  theme(legend.position = "top",
        legend.title = element_blank(),
        axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
  guides(fill=guide_legend(nrow=2))

E.U.

# [1] "fr_CA.UTF-8"
load_data("eurostat/prc_hicp_ctrb.RData")
line_EU <- prc_hicp_ctrb %>%
  filter(coicop %in% c("NRG", "FOOD", "CP01", "CP02", "CP03", "CP04", "CP05", "CP06",
                       "CP07", "CP08", "CP09", "CP10", "CP11", "CP12", "CP041")) %>%
  mutate(date = gsub("M", "-", time) %>% paste0(., "-01") %>% as.Date) %>%
  filter(date >= as.Date("2020-01-01")) %>%
  select(date, values, coicop) %>%
  spread(coicop, values) %>%
  transmute(date,
            `Total inflation` = CP01+CP02+CP03+CP04+CP05+CP06+CP07+CP08+CP09+CP10+CP11+CP12,
            FOOD,
            NRG,
            `Core inflation` = `Total inflation`-FOOD-NRG) %>%
  select(date, Inflation = `Total inflation`, `Inflation sous-jacente` = `Core inflation`) %>%
  gather(Coicop, values, -date) %>%
  mutate(Coicop = factor(Coicop, levels = c("Inflation", "Inflation sous-jacente")),
         Geo = "Zone euro")

bars_EU <- prc_hicp_ctrb %>%
  filter(coicop %in% c("NRG", "FOOD", "CP01", "CP02", "CP03", "CP04", "CP05", "CP06",
                       "CP07", "CP08", "CP09", "CP10", "CP11", "CP12", "CP041")) %>%
  mutate(date = gsub("M", "-", time) %>% paste0(., "-01") %>% as.Date) %>%
  filter(date >= as.Date("2020-01-01")) %>%
  select(date, values, coicop) %>%
  spread(coicop, values) %>%
  transmute(date,
            FOOD,
            NRG,
            RENTS = CP041,
            `Total inflation` = CP01+CP02+CP03+CP04+CP05+CP06+CP07+CP08+CP09+CP10+CP11+CP12,
            TOT_X_NRG_FOOD_RENTS = `Total inflation`-FOOD-NRG-RENTS) %>%
  select(-`Total inflation`) %>%
  gather(coicop, values, -date) %>%
  # CP070200, CP040500, CP010000
  # CPGRSE01, CPGRGO01
  mutate(Coicop = factor(coicop, levels = c("FOOD", "NRG", "RENTS", "TOT_X_NRG_FOOD_RENTS"),
                         labels = c("Alimentation", "Énergie", "Loyers",
                                    "Total sans énergie, alimentation, loyers")),
         Geo = "Zone euro")

bars_EU %>%
  ggplot(., aes(x = date, y = values/100)) +
  geom_col(aes(fill = Coicop), alpha = 1) +
  geom_line(data = line_EU, aes(linetype = Coicop), size = 1.2) +
  theme_minimal() + xlab("") + ylab("Contributions à l'inflation") +
  scale_fill_manual(values = c("forestgreen","orange", "grey", "blue")) +
  scale_x_date(breaks ="3 months",
               labels = date_format("%b %Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 30, 1),
                     labels = percent_format(accuracy = 1)) +
  theme(legend.position = "top",
        legend.title = element_blank(),
        axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
  guides(fill=guide_legend(nrow=2))

Price index - IXOB

CPI and HICP

France vs. Germany

Total Inflation - GP - CPALTT01

Nobs - CPI

Nobs - HICP

Largest obs

France, Germany

Monthly

2015-

2020-

2 years

1 year

France, Germany, UNited States, Europe

CPALTT01 - All items

Switzerland, Germany, US, France, Spain

Monthly

Communication

Table

All

1990-

LOCATION Location 1990 2020 growth
NOR Norway 260.15000 115.00000 -2.6843995
CHE Switzerland 180.84990 97.85236 -2.0265426
FRA France 158.38080 91.96333 -1.7957224
SWE Sweden 123.64790 76.65689 -1.5810301
KOR Korea 153.20270 95.22109 -1.5727032
JPN Japan 143.60830 91.08334 -1.5062559
IRL Ireland 120.92620 86.08759 -1.1263262
AUS Australia 92.06799 79.80943 -0.4751531
ISR Israel 74.57627 80.01849 0.2350604
GBR United Kingdom 104.20000 114.10000 0.3030019
PRT Portugal 80.20266 101.26370 0.7802661

Rents relative to Price Index

Nobs

Table

Weights - Housing

2017

Javascript

2019

Javascript

France, Italy, United States, Germany

Weights - Countries

Israel

Switzerland

France

Australia

United States

Components - Quarterly

Israel

Switzerland

France

United States

Inflation - CPI and Rents

Table

Japan

United Kingdom

CPI, Rents, Real Rents

Iceland

Japan

United Kingdom

Israel

Switzerland

France

Australia

Real Rents

France, Germany, Japan, United States

France, United States, Germany, Japan

CPI, All Items

France, Germany