House Prices
Data - Fred
Info
Data on housing
source | dataset | .html | .RData |
---|---|---|---|
bdf | RPP | 2025-01-05 | 2024-11-19 |
bis | LONG_PP | 2024-12-29 | 2024-05-10 |
bis | SELECTED_PP | 2024-12-29 | 2024-10-31 |
ecb | RPP | 2024-12-29 | 2024-12-29 |
eurostat | ei_hppi_q | 2025-01-07 | 2025-01-07 |
eurostat | hbs_str_t223 | 2025-01-05 | 2025-01-07 |
eurostat | prc_hicp_midx | 2024-11-01 | 2025-01-07 |
eurostat | prc_hpi_q | 2025-01-07 | 2024-10-09 |
fred | housing | 2025-01-10 | 2025-01-22 |
insee | IPLA-IPLNA-2015 | 2025-01-07 | 2025-01-05 |
oecd | housing | 2024-09-15 | 2020-01-18 |
oecd | SNA_TABLE5 | 2024-09-11 | 2023-10-19 |
LAST_COMPILE
LAST_COMPILE |
---|
2025-01-22 |
Last
date | Nobs |
---|---|
2024-12-01 | 7 |
2024-11-01 | 9 |
variable
variable | Variable | Nobs |
---|---|---|
CPIAUCSL | Consumer Price Index for All Urban Consumers: All Items in U.S. City Average | 936 |
CPILFESL | Consumer Price Index for All Urban Consumers: All Items Less Food and Energy in U.S. City Average | 816 |
CSUSHPINSA | S&P CoreLogic Case-Shiller U.S. National Home Price Index | 598 |
MICH | University of Michigan: Inflation Expectation | 563 |
CUSR0000SEHA | Consumer Price Index for All Urban Consumers: Rent of Primary Residence in U.S. City Average | 528 |
CUSR0000SAS2RS | Consumer Price Index for All Urban Consumers: Rent of Shelter in U.S. City Average | 420 |
ASTMA | All Sectors; Total Mortgages; Asset, Level | 316 |
A255RD3Q086SBEA | Imports of goods (implicit price deflator) | 311 |
CP00MI15EA20M086NEST | Harmonized Index of Consumer Prices: All-items HICP for Euro area (20 countries) | 301 |
CP041MI15EA20M086NEST | Harmonized Index of Consumer Prices: Actual rentals for housing for Euro area (20 countries) | 301 |
TOTNRGFOODEA20MI15XM | Harmonized Index of Consumer Prices: Overall Index Excluding Energy, Food, Alcohol, and Tobacco for Euro area (20 countries) | 289 |
DPCCRV1Q225SBEA | Personal Consumption Expenditures (PCE) Excluding Food and Energy (Chain-Type Price Index) | 262 |
MSPUS | Median Sales Price of Houses Sold for the United States | 247 |
USSTHPI | All-Transactions House Price Index for the United States | 199 |
FPCPITOTLZGUSA | Inflation, consumer prices for the United States | 64 |
FIXHAI | Housing Affordability Index (Fixed) | 13 |
Housing Affordability Index
Code
%>%
housing filter(variable %in% c("FIXHAI")) %>%
ggplot(.) + geom_line(aes(x = date, y = value)) +
theme_minimal() + xlab("") + ylab("Housing Affordability Index") +
scale_x_date(breaks = "1 month",
labels = date_format("%Y %b")) +
scale_y_log10(breaks = seq(10, 400, 2)) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
geom_hline(yintercept = 100, linetype = "dashed", color = "black")
Rents
inflation
12 months
English
Code
%>%
housing filter(variable %in% c("CP041MI15EA20M086NEST", "CUSR0000SEHA",
"CP00MI15EA20M086NEST", "CPIAUCSL")) %>%
#add_row(date = as.Date("2023-10-01"), variable = "CP00MI15EA20M086NEST", value = 124.55) %>%
select(date, variable, value) %>%
group_by(variable) %>%
arrange(date) %>%
mutate(value = value/lag(value, 12)-1) %>%
filter(date >= as.Date("2012-01-01")) %>%
%>%
ungroup mutate(type = case_when(variable %in% c("CP041MI15EA20M086NEST", "CUSR0000SEHA") ~ "Rents",
%in% c("CP00MI15EA20M086NEST", "CPIAUCSL") ~ "All")) %>%
variable mutate(country = case_when(variable %in% c("CP041MI15EA20M086NEST", "CP00MI15EA20M086NEST") ~ "Euro area (HICP)",
%in% c("CUSR0000SEHA", "CPIAUCSL") ~ "US (CPI)")) %>%
variable ggplot(.) + geom_line(aes(x = date, y = value, linetype = type, color = country)) +
theme_minimal() + xlab("") + ylab("Inflation (%)") +
scale_x_date(breaks = seq(1870, 2030, 1) %>% paste0("-01-01") %>% as.Date,
labels = scales::date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-60, 60, 1),
labels = scales::percent_format(accuracy = 1)) +
scale_color_manual(values = c("#003399", "#B22234")) +
theme(legend.position = c(0.2, 0.8),
legend.title = element_blank())
French
All
Code
Sys.setlocale("LC_TIME", "fr_CA.UTF-8")
# [1] "fr_CA.UTF-8"
Code
%>%
housing filter(variable %in% c("CP041MI15EA20M086NEST", "CUSR0000SEHA",
"CP00MI15EA20M086NEST", "CPIAUCSL")) %>%
#add_row(date = as.Date("2023-10-01"), variable = "CP00MI15EA20M086NEST", value = 124.55) %>%
select(date, variable, value) %>%
group_by(variable) %>%
arrange(date) %>%
mutate(value = value/lag(value, 12)-1) %>%
filter(date >= as.Date("2012-01-01")) %>%
%>%
ungroup mutate(type = case_when(variable %in% c("CP041MI15EA20M086NEST", "CUSR0000SEHA") ~ "Loyers",
%in% c("CP00MI15EA20M086NEST", "CPIAUCSL") ~ "Tous")) %>%
variable mutate(country = case_when(variable %in% c("CP041MI15EA20M086NEST", "CP00MI15EA20M086NEST") ~ "Zone euro (IPCH)",
%in% c("CUSR0000SEHA", "CPIAUCSL") ~ "États-Unis (CPI)")) %>%
variable mutate(country = factor(country, levels = c("Zone euro (IPCH)", "États-Unis (CPI)")),
type = factor(type, levels = c("Tous", "Loyers"))) %>%
ggplot(.) + geom_line(aes(x = date, y = value, linetype = type, color = country)) +
theme_minimal() + xlab("") + ylab("Inflation (%)") +
scale_x_date(breaks = seq(1870, 2030, 1) %>% paste0("-01-01") %>% as.Date,
labels = scales::date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-60, 60, 1),
labels = scales::percent_format(accuracy = 1)) +
scale_color_manual(values = c("#003399", "#B22234")) +
scale_linetype_manual(values = c("dashed", "solid")) +
theme(legend.position = c(0.2, 0.8),
legend.title = element_blank())
Code
Sys.setlocale("LC_TIME", "en_CA.UTF-8")
# [1] "en_CA.UTF-8"
6 months
Code
%>%
housing filter(variable %in% c("CP041MI15EA20M086NEST", "CUSR0000SEHA",
"CP00MI15EA20M086NEST", "CPIAUCSL",
"TOTNRGFOODEA20MI15XM", "CPILFESL")) %>%
#add_row(date = as.Date("2023-10-01"), variable = "CP00MI15EA20M086NEST", value = 124.55) %>%
select(date, variable, value) %>%
group_by(variable) %>%
arrange(date) %>%
mutate(value = value/lag(value, 6)-1) %>%
filter(date >= as.Date("2012-01-01")) %>%
%>%
ungroup mutate(type = case_when(variable %in% c("CP041MI15EA20M086NEST", "CUSR0000SEHA") ~ "Rents",
%in% c("CP00MI15EA20M086NEST", "CPIAUCSL") ~ "All",
variable %in% c("TOTNRGFOODEA20MI15XM", "CPILFESL") ~ "Core")) %>%
variable mutate(country = case_when(variable %in% c("CP041MI15EA20M086NEST", "CP00MI15EA20M086NEST", "TOTNRGFOODEA20MI15XM") ~ "Euro area (HICP)",
%in% c("CUSR0000SEHA", "CPIAUCSL", "CPILFESL") ~ "US (CPI)")) %>%
variable ggplot(.) + geom_line(aes(x = date, y = value, linetype = type, color = country)) +
theme_minimal() + xlab("") + ylab("Inflation, 6 months (%)") +
scale_x_date(breaks = seq(1870, 2030, 1) %>% paste0("-01-01") %>% as.Date,
labels = scales::date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-60, 60, 1),
labels = scales::percent_format(accuracy = 1)) +
scale_color_manual(values = c("#003399", "#B22234")) +
theme(legend.position = c(0.2, 0.8),
legend.title = element_blank())
3 months
Code
%>%
housing filter(variable %in% c("CP041MI15EA20M086NEST", "CUSR0000SEHA",
"CP00MI15EA20M086NEST", "CPIAUCSL",
"TOTNRGFOODEA20MI15XM", "CPILFESL")) %>%
#add_row(date = as.Date("2023-10-01"), variable = "CP00MI15EA20M086NEST", value = 124.55) %>%
select(date, variable, value) %>%
group_by(variable) %>%
arrange(date) %>%
mutate(value = value/lag(value, 3)-1) %>%
filter(date >= as.Date("2012-01-01")) %>%
%>%
ungroup mutate(type = case_when(variable %in% c("CP041MI15EA20M086NEST", "CUSR0000SEHA") ~ "Rents",
%in% c("CP00MI15EA20M086NEST", "CPIAUCSL") ~ "All",
variable %in% c("TOTNRGFOODEA20MI15XM", "CPILFESL") ~ "Core")) %>%
variable mutate(country = case_when(variable %in% c("CP041MI15EA20M086NEST", "CP00MI15EA20M086NEST", "TOTNRGFOODEA20MI15XM") ~ "Euro area (HICP)",
%in% c("CUSR0000SEHA", "CPIAUCSL", "CPILFESL") ~ "US (CPI)")) %>%
variable ggplot(.) + geom_line(aes(x = date, y = value, linetype = type, color = country)) +
theme_minimal() + xlab("") + ylab("Inflation, 3 months (%)") +
scale_x_date(breaks = seq(1870, 2030, 1) %>% paste0("-01-01") %>% as.Date,
labels = scales::date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-60, 60, 1),
labels = scales::percent_format(accuracy = 1)) +
scale_color_manual(values = c("#003399", "#B22234")) +
theme(legend.position = c(0.2, 0.8),
legend.title = element_blank())
Price index
Just housing
Code
%>%
housing filter(variable %in% c("CP041MI15EA20M086NEST", "CUSR0000SEHA"),
>= as.Date("2020-01-01")) %>%
date select(date, variable, value) %>%
group_by(variable) %>%
arrange(date) %>%
mutate(value = 100*value/value[1]) %>%
%>%
ungroup mutate(Variable = case_when(variable == "CP041MI15EA20M086NEST" ~ "Euro area HICP Rents",
== "CUSR0000SEHA" ~ "US CPI Rents")) %>%
variable ggplot(.) + geom_line(aes(x = date, y = value, color = Variable)) +
theme_minimal() + xlab("") + ylab("Price Index") +
scale_x_date(breaks = seq(1870, 2030, 1) %>% paste0("-01-01") %>% as.Date,
labels = scales::date_format("%Y")) +
scale_y_log10(breaks = seq(100, 200, 2)) +
scale_color_manual(values = c("#2D68C4", "#F2A900", "#000000")) +
theme(legend.position = c(0.2, 0.8),
legend.title = element_blank())
Real House Prices
Growth
Code
%>%
housing filter(variable %in% c("CPIAUCSL", "CSUSHPINSA"),
month(date) == 1,
>= as.Date("1987-01-01")) %>%
date select(date, variable, value) %>%
spread(variable, value) %>%
mutate(CPIAUCSL = 100*(log(CPIAUCSL) - lag(log(CPIAUCSL))),
CSUSHPINSA = 100*(log(CSUSHPINSA) - lag(log(CSUSHPINSA)))) %>%
gather(variable, value, -date) %>%
left_join(variable, by = "variable") %>%
ggplot(.) + geom_line(aes(x = date, y = value / 100, color = Variable)) +
theme_minimal() + xlab("") + ylab("Inflation Rates (%)") +
scale_x_date(breaks = seq(1870, 2030, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-60, 60, 2),
labels = scales::percent_format(accuracy = 1)) +
scale_color_manual(values = c("#2D68C4", "#F2A900", "#000000")) +
theme(legend.position = c(0.4, 0.2),
legend.title = element_blank())
Index
Code
%>%
housing filter(variable %in% c("CPIAUCSL", "CSUSHPINSA"),
>= as.Date("2000-01-01")) %>%
date select(date, variable, value) %>%
spread(variable, value) %>%
mutate(`Nominal S&P/Case-Shiller Index` = CSUSHPINSA,
CSUSHPINSA_real = CSUSHPINSA/CPIAUCSL,
`Real S&P/Case-Shiller Index` = 100*CSUSHPINSA_real / CSUSHPINSA_real[1]) %>%
select(date, `Nominal S&P/Case-Shiller Index`, `Real S&P/Case-Shiller Index`) %>%
gather(variable, value, -date) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("2006-10-01")]) %>%
ggplot(.) + geom_line(aes(x = date, y = value, color = variable)) +
theme_minimal() + xlab("") + ylab("S&P/Case-Shiller Index (Nov. 2006 Peak = 100)") +
scale_x_date(breaks = seq(1870, 2024, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(10, 400, 10)) +
scale_color_manual(values = c("#2D68C4", "#F2A900", "#000000")) +
theme(legend.position = c(0.2, 0.9),
legend.title = element_blank()) +
geom_hline(yintercept = 100, linetype = "dashed", color = "black")
Median House Prices
All
Code
%>%
housing filter(variable %in% c("MSPUS", "CPIAUCSL"),
>= as.Date("1965-01-01"),
date month(date) %in% c(1, 4, 7, 10)) %>%
select(date, variable, value) %>%
spread(variable, value) %>%
mutate(`Nominal Median Sales Price of Houses` = MSPUS,
MSPUS_real = MSPUS/CPIAUCSL,
`Real Median Sales Price of Houses` = 100*MSPUS_real / MSPUS_real[1]) %>%
select(date, `Nominal Median Sales Price of Houses`, `Real Median Sales Price of Houses`) %>%
gather(variable, value, -date) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("2007-01-01")]) %>%
ggplot(.) + geom_line(aes(x = date, y = value, color = variable)) +
theme_minimal() + xlab("") + ylab("Median Sales Price of Houses (2007 = 100)") +
scale_x_date(breaks = seq(1870, 2024, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(10, 400, 10)) +
scale_color_manual(values = c("#2D68C4", "#F2A900", "#000000")) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank()) +
geom_hline(yintercept = 100, linetype = "dashed", color = "black")
1980-
Code
%>%
housing filter(variable %in% c("MSPUS", "CPIAUCSL"),
>= as.Date("1980-01-01"),
date month(date) %in% c(1, 4, 7, 10)) %>%
select(date, variable, value) %>%
spread(variable, value) %>%
mutate(`Nominal Median Sales Price of Houses` = MSPUS,
MSPUS_real = MSPUS/CPIAUCSL,
`Real Median Sales Price of Houses` = 100*MSPUS_real / MSPUS_real[1]) %>%
select(date, `Nominal Median Sales Price of Houses`, `Real Median Sales Price of Houses`) %>%
gather(variable, value, -date) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("2007-01-01")]) %>%
ggplot(.) + geom_line(aes(x = date, y = value, color = variable)) +
theme_minimal() + xlab("") + ylab("Median Sales Price of Houses (2007 = 100)") +
scale_x_date(breaks = seq(1870, 2024, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(10, 400, 10)) +
scale_color_manual(values = c("#2D68C4", "#F2A900", "#000000")) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank()) +
geom_hline(yintercept = 100, linetype = "dashed", color = "black")
1990-
Code
%>%
housing filter(variable %in% c("MSPUS", "CPIAUCSL"),
>= as.Date("1990-01-01"),
date month(date) %in% c(1, 4, 7, 10)) %>%
select(date, variable, value) %>%
spread(variable, value) %>%
mutate(`Nominal Median Sales Price of Houses` = MSPUS,
MSPUS_real = MSPUS/CPIAUCSL,
`Real Median Sales Price of Houses` = 100*MSPUS_real / MSPUS_real[1]) %>%
select(date, `Nominal Median Sales Price of Houses`, `Real Median Sales Price of Houses`) %>%
gather(variable, value, -date) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("2007-01-01")]) %>%
ggplot(.) + geom_line(aes(x = date, y = value, color = variable)) +
theme_minimal() + xlab("") + ylab("Median Sales Price of Houses (2007 = 100)") +
scale_x_date(breaks = seq(1870, 2024, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(10, 400, 10)) +
scale_color_manual(values = c("#2D68C4", "#F2A900", "#000000")) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank()) +
geom_hline(yintercept = 100, linetype = "dashed", color = "black")
2000-
Code
%>%
housing filter(variable %in% c("MSPUS", "CPIAUCSL"),
>= as.Date("2000-01-01"),
date month(date) %in% c(1, 4, 7, 10)) %>%
select(date, variable, value) %>%
spread(variable, value) %>%
mutate(`Nominal Median Sales Price of Houses` = MSPUS,
MSPUS_real = MSPUS/CPIAUCSL,
`Real Median Sales Price of Houses` = 100*MSPUS_real / MSPUS_real[1]) %>%
select(date, `Nominal Median Sales Price of Houses`, `Real Median Sales Price of Houses`) %>%
gather(variable, value, -date) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("2007-01-01")]) %>%
ggplot(.) + geom_line(aes(x = date, y = value, color = variable)) +
theme_minimal() + xlab("") + ylab("Median Sales Price of Houses (2007 = 100)") +
scale_x_date(breaks = seq(1870, 2024, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(10, 400, 10)) +
scale_color_manual(values = c("#2D68C4", "#F2A900", "#000000")) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank()) +
geom_hline(yintercept = 100, linetype = "dashed", color = "black")