source | dataset | .html | .RData |
---|---|---|---|
2024-06-20 | 2024-06-08 |
Producer prices in industry, non domestic market - monthly data
Data - Eurostat
Info
Data on industry
source | dataset | .html | .RData |
---|---|---|---|
2024-06-19 | 2023-10-01 | ||
2024-06-23 | 2024-06-08 | ||
2024-06-23 | 2024-06-08 | ||
2024-06-24 | 2024-06-18 | ||
2024-06-23 | 2024-06-18 | ||
2024-06-24 | 2024-06-08 | ||
2024-06-24 | 2024-06-08 | ||
2024-06-24 | 2024-06-18 | ||
2024-06-24 | 2024-06-08 | ||
2024-06-20 | 2024-06-08 | ||
2024-06-20 | 2024-06-08 | ||
2024-06-20 | 2024-06-07 | ||
2024-04-16 | 2024-05-12 | ||
2024-04-16 | 2023-09-09 | ||
2024-04-16 | 2023-11-22 | ||
2024-05-12 | 2024-05-03 | ||
2024-06-20 | 2023-10-04 | ||
2024-06-20 | 2024-04-30 | ||
2024-01-06 | 2024-04-14 | ||
2024-06-20 | 2024-06-09 | ||
2024-01-06 | 2024-04-14 | ||
2024-01-06 | 2024-04-14 | ||
2024-01-06 | 2024-04-14 | ||
2024-01-06 | 2024-04-14 | ||
2024-01-06 | 2024-04-14 |
Info
Code
include_graphics("https://ec.europa.eu/eurostat/statistics-explained/images/3/33/EU%2C_EA-19_Industrial_producer_prices%2C_total%2C_domestic_and_non-domestic_market%2C_2010_-_2022%2C_undadjusted_data_%282015_%3D_100%29_01-06-2022.png")
LAST_COMPILE
LAST_COMPILE |
---|
2024-06-24 |
Last
Code
%>%
sts_inppnd_m group_by(time) %>%
summarise(Nobs = n()) %>%
arrange(desc(time)) %>%
head(1) %>%
print_table_conditional()
time | Nobs |
---|---|
2024M04 | 24398 |
indic_bt
Code
%>%
sts_inppnd_m left_join(indic_bt, by = "indic_bt") %>%
group_by(indic_bt, Indic_bt) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
indic_bt | Indic_bt | Nobs |
---|---|---|
PREN | Non-domestic output price index - in national currency | 5773498 |
PREX | Non-domestic output price index - non euro area | 2371819 |
PREZ | Non-domestic output price index - euro area | 2319036 |
nace_r2
Code
%>%
sts_inppnd_m left_join(nace_r2, by = "nace_r2") %>%
group_by(nace_r2, Nace_r2) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
s_adj
Code
%>%
sts_inppnd_m left_join(s_adj, by = "s_adj") %>%
group_by(s_adj, S_adj) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
s_adj | S_adj | Nobs |
---|---|---|
NSA | Unadjusted data (i.e. neither seasonally adjusted nor calendar adjusted data) | 10464353 |
unit
Code
%>%
sts_inppnd_m left_join(unit, by = "unit") %>%
group_by(unit, Unit) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
unit | Unit | Nobs |
---|---|---|
PCH_PRE | Percentage change on previous period | 2477293 |
PCH_SM | Percentage change compared to same period in previous year | 2358291 |
I15 | Index, 2015=100 | 2352077 |
I21 | Index, 2021=100 | 1988766 |
I10 | Index, 2010=100 | 1287926 |
geo
Code
%>%
sts_inppnd_m left_join(geo, by = "geo") %>%
group_by(geo, Geo) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
time
Code
%>%
sts_inppnd_m group_by(time) %>%
summarise(Nobs = n()) %>%
arrange(desc(time)) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
France, Germany, Italy
C - Manufacturing
All
Code
%>%
sts_inppnd_m filter(nace_r2 == "C",
== "PREN",
indic_bt == "I15",
unit %in% c("FR", "DE", "IT")) %>%
geo select(geo, time, values) %>%
group_by(geo) %>%
mutate(values = 100*values/values[time == "2000M01"]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
%>%
month_to_date ggplot() + ylab("Non-domestic output price index - in national currency") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = Geo)) +
scale_color_manual(values = c("#0055a4", "#000000", "#008c45")) +
scale_x_date(breaks = seq(1920, 2050, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) + add_3flags +
theme(legend.position = "none") +
scale_y_log10(breaks = seq(-60, 300, 10))
2000-
Code
%>%
sts_inppnd_m filter(nace_r2 == "C",
== "PREN",
indic_bt == "I15",
unit %in% c("FR", "DE", "IT")) %>%
geo select(geo, time, values) %>%
group_by(geo) %>%
mutate(values = 100*values/values[time == "2000M01"]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
%>%
month_to_date filter(date >= as.Date("2000-01-01")) %>%
ggplot() + ylab("Non-domestic output price index - in national currency") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = Geo)) +
scale_color_manual(values = c("#0055a4", "#000000", "#008c45")) +
scale_x_date(breaks = seq(1920, 2050, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) + add_3flags +
theme(legend.position = "none") +
scale_y_log10(breaks = seq(-60, 300, 5))
2010-
Code
%>%
sts_inppnd_m filter(nace_r2 == "C",
== "PREN",
indic_bt == "I15",
unit %in% c("FR", "DE", "IT")) %>%
geo select(geo, time, values) %>%
group_by(geo) %>%
mutate(values = 100*values/values[time == "2010M01"]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
%>%
month_to_date filter(date >= as.Date("2010-01-01")) %>%
ggplot() + ylab("Non-domestic output price index - in national currency") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = Geo)) +
scale_color_manual(values = c("#0055a4", "#000000", "#008c45")) +
scale_x_date(breaks = seq(1920, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) + add_3flags +
theme(legend.position = "none") +
scale_y_log10(breaks = seq(-60, 300, 5))
2018-
Code
%>%
sts_inppnd_m filter(nace_r2 == "C",
== "PREN",
indic_bt == "I15",
unit %in% c("FR", "DE", "IT")) %>%
geo select(geo, time, values) %>%
group_by(geo) %>%
mutate(values = 100*values/values[time == "2018M01"]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
%>%
month_to_date filter(date >= as.Date("2018-01-01")) %>%
ggplot() + ylab("Non-domestic output price index - in national currency") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = Geo)) +
scale_color_manual(values = c("#0055a4", "#000000", "#008c45")) +
scale_x_date(breaks = seq(1920, 2050, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) + add_3flags +
theme(legend.position = "none") +
scale_y_log10(breaks = seq(-60, 300, 5))
2020-
Code
%>%
sts_inppnd_m filter(nace_r2 == "C",
== "PREN",
indic_bt == "I15",
unit %in% c("FR", "DE", "IT")) %>%
geo select(geo, time, values) %>%
group_by(geo) %>%
mutate(values = 100*values/values[time == "2020M01"]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
%>%
month_to_date filter(date >= as.Date("2020-01-01")) %>%
ggplot() + ylab("Non-domestic output price index - in national currency") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = Geo)) +
scale_color_manual(values = c("#0055a4", "#000000", "#008c45")) +
scale_x_date(breaks = seq(1920, 2050, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) + add_3flags +
theme(legend.position = "none") +
scale_y_log10(breaks = seq(-60, 300, 5))
C21 - Manufacture of basic pharmaceutical products and pharmaceutical preparations
All
Code
%>%
sts_inppnd_m filter(nace_r2 == "C21",
== "PREN",
indic_bt == "I15",
unit %in% c("FR", "DE", "IT")) %>%
geo select(geo, time, values) %>%
group_by(geo) %>%
mutate(values = 100*values/values[time == "2000M01"]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
%>%
month_to_date ggplot() + ylab("Non-domestic output price index - in national currency") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = Geo)) +
scale_color_manual(values = c("#0055a4", "#000000", "#008c45")) +
scale_x_date(breaks = seq(1920, 2050, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) + add_3flags +
theme(legend.position = "none") +
scale_y_log10(breaks = seq(-60, 300, 10))
2000-
Code
%>%
sts_inppnd_m filter(nace_r2 == "C21",
== "PREN",
indic_bt == "I15",
unit %in% c("FR", "DE", "IT")) %>%
geo select(geo, time, values) %>%
group_by(geo) %>%
mutate(values = 100*values/values[time == "2000M01"]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
%>%
month_to_date filter(date >= as.Date("2000-01-01")) %>%
ggplot() + ylab("Non-domestic output price index - in national currency") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = Geo)) +
scale_color_manual(values = c("#0055a4", "#000000", "#008c45")) +
scale_x_date(breaks = seq(1920, 2050, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) + add_3flags +
theme(legend.position = "none") +
scale_y_log10(breaks = seq(-60, 300, 5))
2010-
Code
%>%
sts_inppnd_m filter(nace_r2 == "C21",
== "PREN",
indic_bt == "I15",
unit %in% c("FR", "DE", "IT")) %>%
geo select(geo, time, values) %>%
group_by(geo) %>%
mutate(values = 100*values/values[time == "2010M01"]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
%>%
month_to_date filter(date >= as.Date("2010-01-01")) %>%
ggplot() + ylab("Non-domestic output price index - in national currency") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = Geo)) +
scale_color_manual(values = c("#0055a4", "#000000", "#008c45")) +
scale_x_date(breaks = seq(1920, 2050, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) + add_3flags +
theme(legend.position = "none") +
scale_y_log10(breaks = seq(-60, 300, 5))
2020-
Code
%>%
sts_inppnd_m filter(nace_r2 == "C21",
== "PREN",
indic_bt == "I15",
unit %in% c("FR", "DE", "IT")) %>%
geo select(geo, time, values) %>%
group_by(geo) %>%
mutate(values = 100*values/values[time == "2020M01"]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
%>%
month_to_date filter(date >= as.Date("2020-01-01")) %>%
ggplot() + ylab("Non-domestic output price index - in national currency") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = Geo)) +
scale_color_manual(values = c("#0055a4", "#000000", "#008c45")) +
scale_x_date(breaks = seq(1920, 2050, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) + add_3flags +
theme(legend.position = "none") +
scale_y_log10(breaks = seq(-60, 300, 5))