Indice pour la révision d’un loyer d’habitation
Data - INSEE
Info
Données sur l’inflation en France
source | dataset | .html | .RData |
---|---|---|---|
insee | bdf2017 | 2024-11-09 | 2023-11-21 |
insee | ILC-ILAT-ICC | 2024-11-09 | 2024-11-09 |
insee | INDICES_LOYERS | 2024-11-09 | 2024-11-09 |
insee | IPC-1970-1980 | 2024-11-09 | 2024-11-09 |
insee | IPC-1990 | 2024-11-09 | 2024-11-09 |
insee | IPC-2015 | 2024-11-09 | 2024-11-09 |
insee | IPC-PM-2015 | 2024-11-09 | 2024-11-09 |
insee | IPCH-2015 | 2024-11-09 | 2024-11-09 |
insee | IPGD-2015 | 2024-08-22 | 2024-10-26 |
insee | IPLA-IPLNA-2015 | 2024-11-09 | 2024-11-09 |
insee | IPPI-2015 | 2024-11-09 | 2024-11-09 |
insee | IRL | 2024-11-05 | 2024-11-09 |
insee | SERIES_LOYERS | 2024-11-05 | 2024-11-09 |
insee | T_CONSO_EFF_FONCTION | 2024-11-05 | 2024-07-18 |
Données sur l’immobilier
source | dataset | .html | .RData |
---|---|---|---|
acpr | as151 | 2024-06-19 | 2024-04-05 |
bdf | BSI1 | 2024-07-26 | 2024-06-14 |
bdf | CPP | 2024-07-26 | 2024-07-01 |
bdf | FM | 2024-07-26 | 2024-10-16 |
bdf | immobilier | 2024-07-26 | 2024-06-18 |
bdf | MIR | 2024-07-26 | 2024-07-01 |
bdf | MIR1 | 2024-10-16 | 2024-10-16 |
bdf | RPP | 2024-07-26 | 2024-07-01 |
cgedd | nombre-vente-maison-appartement-ancien | 2024-09-26 | 2024-09-26 |
insee | CONSTRUCTION-LOGEMENTS | 2024-11-09 | 2024-11-09 |
insee | ENQ-CONJ-ART-BAT | 2024-11-09 | 2024-11-09 |
insee | ENQ-CONJ-IND-BAT | 2024-11-09 | 2024-11-09 |
insee | ENQ-CONJ-PROMO-IMMO | 2024-11-09 | 2024-11-09 |
insee | ENQ-CONJ-TP | 2024-11-09 | 2024-11-09 |
insee | ILC-ILAT-ICC | 2024-11-09 | 2024-11-09 |
insee | INDICES_LOYERS | 2024-11-09 | 2024-11-09 |
insee | IPLA-IPLNA-2015 | 2024-11-09 | 2024-11-09 |
insee | IRL | 2024-11-05 | 2024-11-09 |
insee | PARC-LOGEMENTS | 2024-11-05 | 2023-12-03 |
insee | SERIES_LOYERS | 2024-11-05 | 2024-11-09 |
insee | t_dpe_val | 2024-11-05 | 2024-09-02 |
notaires | arrdt | 2024-06-30 | 2024-09-09 |
notaires | dep | 2024-06-30 | 2024-09-08 |
LAST_UPDATE
Code
%>%
IRL group_by(LAST_UPDATE) %>%
summarise(Nobs = n()) %>%
arrange(desc(LAST_UPDATE)) %>%
print_table_conditional()
LAST_UPDATE | Nobs |
---|---|
2024-10-15 | 252 |
2008-02-04 | 62 |
Last
Code
%>%
IRL group_by(TIME_PERIOD) %>%
summarise(Nobs = n()) %>%
arrange(desc(TIME_PERIOD)) %>%
head(1) %>%
print_table_conditional()
TIME_PERIOD | Nobs |
---|---|
2024-Q3 | 6 |
Liens
INSEE - La méthodologie de l’IRL. pdf
INSEE - méthodologie IRL base 1998. pdf
Indice de référence des loyers (IRL). html
Dernier indice IRL connu. html
Tableau sur le site de l’INSEE. html
Code
i_g("bib/insee/IR95_IRL_1T22/pour-en-savoir-plus.png")
TITLE_FR
Code
`IRL` %>%
group_by(IDBANK, TITLE_FR) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
IDBANK | TITLE_FR | Nobs |
---|---|---|
001515333 | Indice de référence des loyers (IRL) | 88 |
001515334 | Indice de référence des loyers (IRL) - Variation annuelle | 88 |
000882470 | Indice de référence des loyers 2005 (IRL 2005) - Série arrêtée | 31 |
000882473 | Indice de référence des loyers 2005 (IRL 2005) - Variation annuelle - Série arrêtée | 31 |
010760507 | Indice de référence des loyers dans la collectivité de Corse | 19 |
010760508 | Indice de référence des loyers dans la collectivité de Corse - Variation annuelle | 19 |
010760509 | Indice de référence des loyers dans les collectivités régies par l’article 73 de la Constitution (régions et départements d’outre-mer) | 19 |
010760510 | Indice de référence des loyers dans les collectivités régies par l’article 73 de la Constitution (régions et départements d’outre-mer) - Variation annuelle | 19 |
BASIND
Code
`IRL` %>%
left_join(BASIND, by = "BASIND") %>%
group_by(BASIND, Basind) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
BASIND | Basind | Nobs |
---|---|---|
SO | Sans objet | 157 |
1998-T4 | 4ème trimestre de 1998 | 126 |
2004-T2 | 2ème trimestre de 2004 | 31 |
NATURE
Code
`IRL` %>%
left_join(NATURE, by = "NATURE") %>%
group_by(NATURE, Nature) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
NATURE | Nature | Nobs |
---|---|---|
INDICE | Indice | 157 |
VARIATIONS_A | Variations annuelles | 157 |
TIME_PERIOD
Code
`IRL` %>%
group_by(TIME_PERIOD) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
arrange(desc(TIME_PERIOD)) %>%
print_table_conditional()
Indice
Linear
Code
%>%
IRL filter(NATURE == "INDICE") %>%
%>%
quarter_to_date ggplot(.) + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
theme(legend.title = element_blank(),
legend.position = c(0.4, 0.92)) +
scale_x_date(breaks = seq(1950, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 200, 5))
Linear - 4 quarters rolling
Code
%>%
IRL filter(NATURE == "INDICE") %>%
%>%
quarter_to_date group_by(TITLE_FR) %>%
arrange(date) %>%
mutate(OBS_VALUE = OBS_VALUE/lag(OBS_VALUE, 4)-1) %>%
ggplot(.) + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
theme(legend.title = element_blank(),
legend.position = c(0.65, 0.95)) +
scale_x_date(breaks = seq(1950, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 300, 0.5),
labels = percent_format(accuracy = .1, prefix = ""))
Log
Code
%>%
IRL filter(NATURE == "INDICE") %>%
%>%
quarter_to_date ggplot(.) + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
theme(legend.title = element_blank(),
legend.position = c(0.38, 0.92)) +
scale_x_date(breaks = seq(1950, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 200, 5))
Variation annuelle
Tous
Code
%>%
IRL filter(NATURE == "VARIATIONS_A") %>%
%>%
quarter_to_date ggplot(.) + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/100, color = TITLE_FR)) +
theme(legend.title = element_blank(),
legend.position = c(0.5, 0.92)) +
scale_x_date(breaks = seq(1950, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-200, 200, .5),
labels = percent_format(acc = .1),
limits = 0.01*c(-0.2, 4))
2008-
Code
<- IRL %>%
table1 filter(NATURE == "VARIATIONS_A") %>%
%>%
quarter_to_date filter(date >= as.Date("2008-01-01")) %>%
select(date, OBS_VALUE, IDBANK, TITLE_FR)
%>%
table1 ggplot(.) + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/100, color = TITLE_FR)) +
theme(legend.title = element_blank(),
legend.position = c(0.5, 0.92)) +
scale_x_date(breaks = seq(1950, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-200, 200, .5),
labels = percent_format(acc = .1),
limits = 0.01*c(-0.2, 4))
Table
Code
%>%
table1 print_table_conditional()
Répliquer IRL à partir de l’Ensemble hors loyer hors tabac
Répliquer l’IRL à partir de l’ensemble hors loyer hors tabac.
Données IRL fournies ici: https://www.insee.fr/fr/statistiques/serie/001515334.
Peuvent être calculées juste à partir de l’IPC hors loyers, hors tabac: https://www.insee.fr/fr/statistiques/serie/001763862.
Prévisions INSEE
Estimation
Code
i_g("bib/insee/PdC_09-05-22/table5.png")
IRL Juillet
Code
`IPC-2015` %>%
filter(PRIX_CONSO %in% c("4600"),
%in% c("00", "SO"),
COICOP2016 == "ENSEMBLE",
MENAGES_IPC == "INDICE",
NATURE == "FE",
REF_AREA == "M") %>%
FREQ select(TIME_PERIOD, OBS_VALUE) %>%
arrange(desc(TIME_PERIOD))
# # A tibble: 321 × 2
# TIME_PERIOD OBS_VALUE
# <chr> <dbl>
# 1 2024-09 119.
# 2 2024-08 121.
# 3 2024-07 120.
# 4 2024-06 120
# 5 2024-05 120.
# 6 2024-04 120.
# 7 2024-03 119.
# 8 2024-02 119.
# 9 2024-01 118
# 10 2023-12 118.
# # ℹ 311 more rows
Ensemble
Trimestriel
All
Code
`IPC-2015` %>%
filter(PRIX_CONSO %in% c("4600"),
%in% c("SO"),
COICOP2016 == "ENSEMBLE",
MENAGES_IPC == "INDICE",
NATURE == "FE",
REF_AREA == "M") %>%
FREQ %>%
month_to_date arrange(date) %>%
transmute(date,
`Inflation Indice des loyers (IRL): Variation sur 12 mois de la moyenne sur 12 mois de l'IPC hors loyers, hors tabac` = zoo::rollmean(OBS_VALUE, 12, fill = NA, align = "right"),
`Inflation IPC hors loyers, hors tabac: Variation sur 12 mois de l'IPC hors loyers, hors tabac` = OBS_VALUE) %>%
filter(month(date) %in% c(12, 3, 6, 9)) %>%
gather(variable, value, -date) %>%
group_by(variable) %>%
mutate(value_d12 = value/lag(value, 4) - 1) %>%
ggplot() + ylab("Indice des loyers (simulé)") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value_d12, color = variable)) +
scale_color_manual(values = c("blue", "red")) +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.5, 0.9),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-100, 300, 0.5),
labels = percent_format(accuracy = .1, prefix = ""))
2006-
Code
`IPC-2015` %>%
filter(PRIX_CONSO %in% c("4600"),
%in% c("00", "SO"),
COICOP2016 == "ENSEMBLE",
MENAGES_IPC == "INDICE",
NATURE == "FE",
REF_AREA == "M") %>%
FREQ %>%
month_to_date filter(date >= as.Date("2006-01-01")) %>%
arrange(date) %>%
transmute(date,
`Inflation Indice des loyers (IRL):\nVariation sur 12 mois de la moyenne sur 12 mois de l'IPC hors loyers, hors tabac` = zoo::rollmean(OBS_VALUE, 12, fill = NA, align = "right"),
`Inflation Indice des Prix à la Consommation (IPC-) hors loyers, hors tabac: \nVariation sur 12 mois de l'IPC hors loyers, hors tabac` = OBS_VALUE) %>%
filter(month(date) %in% c(12, 3, 6, 9)) %>%
gather(variable, value, -date) %>%
group_by(variable) %>%
mutate(value_d12 = value/lag(value, 4) - 1) %>%
%>%
na.omit filter(date >= as.Date("2008-01-01")) %>%
ggplot() + ylab("Indice des loyers (simulé)") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value_d12, color = variable)) +
scale_color_manual(values = c("blue", "red")) +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.45, 0.9),
legend.title = element_blank(),
legend.key.size= unit(1.0, 'cm')) +
scale_y_continuous(breaks = 0.01*seq(-100, 300, 0.5),
labels = percent_format(accuracy = .1, prefix = ""))
2008-
Code
<- `IPC-2015` %>%
table2 filter(PRIX_CONSO %in% c("4600"),
%in% c("00", "SO"),
COICOP2016 == "ENSEMBLE",
MENAGES_IPC == "INDICE",
NATURE == "FE",
REF_AREA == "M") %>%
FREQ %>%
month_to_date filter(date >= as.Date("2006-01-01")) %>%
arrange(date) %>%
transmute(date,
`Inflation Indice des loyers (IRL):\nVariation sur 12 mois de la moyenne sur 12 mois de l'IPC hors loyers, hors tabac` = zoo::rollmean(OBS_VALUE, 12, fill = NA, align = "right"),
`Inflation Indice des Prix à la Consommation (IPC-) hors loyers, hors tabac: \nVariation sur 12 mois de l'IPC hors loyers, hors tabac` = OBS_VALUE) %>%
filter(month(date) %in% c(12, 3, 6, 9)) %>%
gather(variable, value, -date) %>%
group_by(variable) %>%
mutate(value_d12 = value/lag(value, 4) - 1) %>%
%>%
na.omit filter(date >= as.Date("2008-01-01"))
%>%
table2 ggplot() + ylab("Indice des loyers (simulé)") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value_d12, color = variable)) +
scale_color_manual(values = c("blue", "red")) +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.45, 0.9),
legend.title = element_blank(),
legend.key.size= unit(1.0, 'cm')) +
scale_y_continuous(breaks = 0.01*seq(-100, 300, 0.5),
labels = percent_format(accuracy = .1, prefix = ""))
Mensuel
Code
`IPC-2015` %>%
filter(PRIX_CONSO %in% c("4600"),
%in% c("00", "SO"),
COICOP2016 == "ENSEMBLE",
MENAGES_IPC == "INDICE",
NATURE == "FE",
REF_AREA == "M") %>%
FREQ %>%
month_to_date arrange(date) %>%
transmute(date,
`Inflation Indice des loyers (IRL): Variation sur 12 mois de la moyenne sur 12 mois de l'IPC hors loyers, hors tabac` = zoo::rollmean(OBS_VALUE, 12, fill = NA, align = "right"),
`Inflation IPC hors loyers, hors tabac: Variation sur 12 mois de l'IPC hors loyers, hors tabac` = OBS_VALUE) %>%
gather(variable, value, -date) %>%
group_by(variable) %>%
mutate(value_d12 = value/lag(value, 12) - 1) %>%
ggplot() + ylab("Indice des loyers (simulé)") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value_d12, color = variable)) +
scale_color_manual(values = c("blue", "red")) +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.5, 0.9),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-100, 300, 0.5),
labels = percent_format(accuracy = .1, prefix = ""))
Glissement annuel, Trimestriel
Tous
Code
`IPC-2015` %>%
filter(PRIX_CONSO %in% c("4600", "SO"),
%in% c("00", "SO"),
COICOP2016 == "ENSEMBLE",
MENAGES_IPC == "INDICE",
NATURE == "FE",
REF_AREA == "M") %>%
FREQ select_if(~ n_distinct(.) > 1) %>%
%>%
month_to_date arrange(date) %>%
left_join(PRIX_CONSO, by = "PRIX_CONSO") %>%
left_join(COICOP2016, by = "COICOP2016") %>%
group_by(Prix_conso) %>%
filter(month(date) %in% c(12, 3, 6, 9)) %>%
mutate(OBS_VALUE = OBS_VALUE/lag(OBS_VALUE, 4)-1,
Prix_conso = ifelse(PRIX_CONSO == "SO", "Ensemble", Prix_conso)) %>%
%>%
na.omit ggplot() + ylab("Inflation sur un an (IPC, IPCH)") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = OBS_VALUE, color = Prix_conso)) +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.35, 0.9),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-100, 300, 0.5),
labels = percent_format(accuracy = .1, prefix = ""))
1998-
Code
`IPC-2015` %>%
filter(PRIX_CONSO %in% c("4600", "SO"),
%in% c("00", "SO"),
COICOP2016 == "ENSEMBLE",
MENAGES_IPC == "INDICE",
NATURE == "FE",
REF_AREA == "M") %>%
FREQ select_if(~ n_distinct(.) > 1) %>%
%>%
month_to_date arrange(date) %>%
left_join(PRIX_CONSO, by = "PRIX_CONSO") %>%
group_by(Prix_conso) %>%
filter(month(date) %in% c(12, 3, 6, 9)) %>%
mutate(OBS_VALUE = OBS_VALUE/lag(OBS_VALUE, 4)-1,
Prix_conso = ifelse(PRIX_CONSO == "SO", "Ensemble", Prix_conso)) %>%
filter(date >= as.Date("1998-01-01")) %>%
%>%
na.omit ggplot() + ylab("Glissement annuel") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = OBS_VALUE, color = Prix_conso)) +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.2, 0.9),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-100, 300, 0.5),
labels = percent_format(accuracy = .1, prefix = ""))
2018-
Code
`IPC-2015` %>%
filter(PRIX_CONSO %in% c("4600", "SO"),
%in% c("00", "SO"),
COICOP2016 == "ENSEMBLE",
MENAGES_IPC == "INDICE",
NATURE == "FE",
REF_AREA == "M") %>%
FREQ select_if(~ n_distinct(.) > 1) %>%
%>%
month_to_date arrange(date) %>%
left_join(PRIX_CONSO, by = "PRIX_CONSO") %>%
group_by(Prix_conso) %>%
filter(month(date) %in% c(12, 3, 6, 9)) %>%
mutate(OBS_VALUE = OBS_VALUE/lag(OBS_VALUE, 4)-1,
Prix_conso = ifelse(PRIX_CONSO == "SO", "Ensemble", Prix_conso)) %>%
filter(date >= as.Date("2018-01-01")) %>%
%>%
na.omit ggplot() + ylab("Glissement annuel") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = OBS_VALUE, color = Prix_conso)) +
scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.35, 0.9),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-100, 300, 0.5),
labels = percent_format(accuracy = .1, prefix = ""))
Evolution entre deux périodes de la moyenne sur 12 mois de l’indice des prix à la consommation
Il se déduit de l’indice du même trimestre de l’année précédente en lui appliquant l’évolution entre ces deux périodes de la moyenne sur douze mois consécutifs de l’indice des prix à la consommation hors tabac et hors loyers (IPC).
All
Code
`IPC-2015` %>%
filter(PRIX_CONSO %in% c("4600", "SO"),
%in% c("00", "SO"),
COICOP2016 == "ENSEMBLE",
MENAGES_IPC == "INDICE",
NATURE == "FE",
REF_AREA == "M") %>%
FREQ select_if(~ n_distinct(.) > 1) %>%
%>%
month_to_date arrange(date) %>%
left_join(PRIX_CONSO, by = "PRIX_CONSO") %>%
group_by(Prix_conso) %>%
filter(date >= as.Date("2000-01-01")) %>%
mutate(OBS_VALUE_mean = zoo::rollmean(OBS_VALUE, 12, fill = NA, align = "right"),
Prix_conso = ifelse(PRIX_CONSO == "SO", "Ensemble", Prix_conso)) %>%
filter(month(date) %in% c(12, 3, 6, 9)) %>%
mutate(OBS_VALUE_mean_d1 = OBS_VALUE_mean/lag(OBS_VALUE_mean, 4)-1,
OBS_VALUE_d1 = OBS_VALUE/lag(OBS_VALUE, 4)-1) %>%
%>%
na.omit ggplot() + ylab("Indice des loyers (simulé)") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = OBS_VALUE_d1, color = Prix_conso)) +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.8, 0.9),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-100, 300, 0.5),
labels = percent_format(accuracy = .1, prefix = ""))
2017-
Code
`IPC-2015` %>%
filter(PRIX_CONSO %in% c("4600", "SO"),
%in% c("00", "SO"),
COICOP2016 == "ENSEMBLE",
MENAGES_IPC == "INDICE",
NATURE == "FE",
REF_AREA == "M") %>%
FREQ select_if(~ n_distinct(.) > 1) %>%
%>%
month_to_date arrange(date) %>%
left_join(PRIX_CONSO, by = "PRIX_CONSO") %>%
group_by(Prix_conso) %>%
filter(date >= as.Date("2000-01-01")) %>%
mutate(OBS_VALUE_mean = zoo::rollmean(OBS_VALUE, 12, fill = NA, align = "right"),
Prix_conso = ifelse(PRIX_CONSO == "SO", "Ensemble", Prix_conso)) %>%
filter(month(date) %in% c(12, 3, 6, 9)) %>%
mutate(OBS_VALUE_mean_d1 = OBS_VALUE_mean/lag(OBS_VALUE_mean, 4)-1,
OBS_VALUE_d1 = OBS_VALUE/lag(OBS_VALUE, 4)-1) %>%
%>%
na.omit filter(date >= as.Date("2017-01-01")) %>%
ggplot() + ylab("Indice des loyers (simulé)") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = OBS_VALUE_d1, color = Prix_conso)) +
scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-100, 300, 0.5),
labels = percent_format(accuracy = .1, prefix = ""))
Ensemble
All
Code
`IPC-2015` %>%
filter(PRIX_CONSO %in% c("4600", "SO"),
%in% c("00", "SO"),
COICOP2016 == "ENSEMBLE",
MENAGES_IPC == "INDICE",
NATURE == "FE",
REF_AREA == "M") %>%
FREQ select_if(~ n_distinct(.) > 1) %>%
%>%
month_to_date arrange(date) %>%
left_join(PRIX_CONSO, by = "PRIX_CONSO") %>%
group_by(Prix_conso) %>%
filter(date >= as.Date("2000-01-01")) %>%
mutate(OBS_VALUE_mean = zoo::rollmean(OBS_VALUE, 12, fill = NA, align = "right"),
Prix_conso = ifelse(PRIX_CONSO == "SO", "Ensemble", Prix_conso)) %>%
filter(month(date) %in% c(12, 3, 6, 9)) %>%
transmute(date,
OBS_VALUE_mean_d1 = OBS_VALUE_mean/lag(OBS_VALUE_mean, 4)-1,
OBS_VALUE_d1 = OBS_VALUE/lag(OBS_VALUE, 4)-1,
%>%
Prix_conso) %>%
na.omit gather(variable, value, -date, -Prix_conso) %>%
mutate(variable = case_when(variable == "OBS_VALUE_mean_d1" ~ "Inflation de l'IRL (Indice de Référence des Loyers) - Moyenne 12 mois",
== "OBS_VALUE_d1" ~ "Inflation de l'IPC (Indice des Prix à la Consommation) - Instantanée")) %>%
variable ggplot() + ylab("Indice des loyers (simulé)") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = Prix_conso, linetype = variable)) +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.4, 0.8),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-100, 300, 0.5),
labels = percent_format(accuracy = .1, prefix = ""))
2017-
Code
`IPC-2015` %>%
filter(PRIX_CONSO %in% c("4600", "SO"),
%in% c("00", "SO"),
COICOP2016 == "ENSEMBLE",
MENAGES_IPC == "INDICE",
NATURE == "FE",
REF_AREA == "M") %>%
FREQ select_if(~ n_distinct(.) > 1) %>%
%>%
month_to_date arrange(date) %>%
left_join(PRIX_CONSO, by = "PRIX_CONSO") %>%
group_by(Prix_conso) %>%
filter(date >= as.Date("2000-01-01")) %>%
mutate(OBS_VALUE_mean = zoo::rollmean(OBS_VALUE, 12, fill = NA, align = "right"),
Prix_conso = ifelse(PRIX_CONSO == "SO", "Ensemble", Prix_conso)) %>%
filter(month(date) %in% c(12, 3, 6, 9)) %>%
transmute(date,
OBS_VALUE_mean_d1 = OBS_VALUE_mean/lag(OBS_VALUE_mean, 4)-1,
OBS_VALUE_d1 = OBS_VALUE/lag(OBS_VALUE, 4)-1,
%>%
Prix_conso) %>%
na.omit filter(date >= as.Date("2017-01-01")) %>%
gather(variable, value, -date, -Prix_conso) %>%
mutate(variable = case_when(variable == "OBS_VALUE_mean_d1" ~ "Inflation de l'IRL (Indice de Référence des Loyers) - Moyenne 12 mois",
== "OBS_VALUE_d1" ~ "Inflation de l'IPC (Indice des Prix à la Consommation) - Instantanée")) %>%
variable ggplot() + ylab("Indice des loyers (simulé)") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = Prix_conso, linetype = variable)) +
scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.4, 0.8),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-100, 300, 0.5),
labels = percent_format(accuracy = .1, prefix = ""))