source | dataset | .html | .RData |
---|---|---|---|
insee | IPC-1970-1980 | 2024-11-22 | 2024-12-22 |
Indice des prix à la consommation - Base 1970, 1980
Data - INSEE
Info
Données sur l’inflation en France
source | dataset | .html | .RData |
---|---|---|---|
insee | bdf2017 | 2024-12-22 | 2023-11-21 |
insee | ILC-ILAT-ICC | 2024-12-22 | 2024-12-22 |
insee | INDICES_LOYERS | 2024-12-22 | 2024-12-22 |
insee | IPC-1970-1980 | 2024-11-22 | 2024-12-22 |
insee | IPC-1990 | 2024-11-22 | 2024-12-22 |
insee | IPC-2015 | 2024-12-22 | 2024-12-22 |
insee | IPC-PM-2015 | 2024-12-22 | 2024-12-22 |
insee | IPCH-2015 | 2024-12-22 | 2024-12-22 |
insee | IPGD-2015 | 2024-12-22 | 2024-12-22 |
insee | IPLA-IPLNA-2015 | 2024-11-22 | 2024-12-22 |
insee | IPPI-2015 | 2024-12-22 | 2024-12-22 |
insee | IRL | 2024-11-22 | 2024-12-22 |
insee | SERIES_LOYERS | 2024-11-22 | 2024-12-22 |
insee | T_CONSO_EFF_FONCTION | 2024-11-22 | 2024-07-18 |
LAST_UPDATE
Code
`IPC-1970-1980` %>%
group_by(LAST_UPDATE) %>%
summarise(Nobs = n()) %>%
arrange(desc(LAST_UPDATE)) %>%
print_table_conditional()
LAST_UPDATE | Nobs |
---|---|
2018-02-12 | 143261 |
Last TIME_PERIOD
Code
`IPC-1970-1980` %>%
group_by(TIME_PERIOD) %>%
summarise(Nobs = n()) %>%
arrange(desc(TIME_PERIOD)) %>%
head(1) %>%
print_table_conditional()
TIME_PERIOD | Nobs |
---|---|
1992-12 | 228 |
Info
- Indice des prix des 295 postes.
Code
i_g("bib/insee/series-longues-macroeconomiques-1949-1979/historique.png")
PRODUITS_IPC_1970_1980
All
Code
`IPC-1970-1980` %>%
left_join(PRODUITS_IPC_1970_1980, by = "PRODUITS_IPC_1970_1980") %>%
group_by(PRODUITS_IPC_1970_1980, Produits_ipc_1970_1980) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional
POND
Code
`IPC-1970-1980` %>%
filter(NATURE == "POND") %>%
left_join(PRODUITS_IPC_1970_1980, by = "PRODUITS_IPC_1970_1980") %>%
group_by(PRODUITS_IPC_1970_1980, Produits_ipc_1970_1980) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional
CORRECTION
Code
`IPC-1970-1980` %>%
left_join(CORRECTION, by = "CORRECTION") %>%
group_by(CORRECTION, Correction) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional
CORRECTION | Correction | Nobs |
---|---|---|
BRUT | Non corrigé | 141449 |
CVS | Corrigé des variations saisonnières | 1812 |
FREQ
Code
`IPC-1970-1980` %>%
left_join(FREQ, by = "FREQ") %>%
group_by(FREQ, Freq) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional
FREQ | Freq | Nobs |
---|---|---|
M | Monthly | 128968 |
A | Annual | 14293 |
NATURE
Code
`IPC-1970-1980` %>%
left_join(NATURE, by = "NATURE") %>%
group_by(NATURE, Nature) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional
NATURE | Nature | Nobs |
---|---|---|
INDICE | Indice | 137011 |
POND | Pondérations d'indice | 3743 |
VARIATIONS_M | Variations mensuelles | 2484 |
VARIATIONS_A | Variations annuelles | 23 |
BASIND
Code
`IPC-1970-1980` %>%
left_join(BASIND, by = "BASIND") %>%
group_by(BASIND, Basind) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional
BASIND | Basind | Nobs |
---|---|---|
1980 | 1980 | 99788 |
1970 | 1970 | 39730 |
SO | Sans objet | 3743 |
REGROUPEMENTS_IPC_1970_1980
Code
`IPC-1970-1980` %>%
left_join(REGROUPEMENTS_IPC_1970_1980, by = "REGROUPEMENTS_IPC_1970_1980") %>%
group_by(REGROUPEMENTS_IPC_1970_1980, Regroupements_ipc_1970_1980) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional
PRODUITS_IPC_1970_1980
Code
`IPC-1970-1980` %>%
left_join(PRODUITS_IPC_1970_1980, by = "PRODUITS_IPC_1970_1980") %>%
group_by(PRODUITS_IPC_1970_1980, Produits_ipc_1970_1980) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional
TITLE
TITLE_FR
Code
`IPC-1970-1980` %>%
group_by(TITLE_FR, IDBANK) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional
TITLE_EN
Code
`IPC-1970-1980` %>%
group_by(TITLE_EN, IDBANK) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional
REF_AREA
Code
`IPC-1970-1980` %>%
group_by(REF_AREA) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional
REF_AREA | Nobs |
---|---|
FM | 129198 |
D75 | 14063 |
TIME_PERIOD
Code
`IPC-1970-1980` %>%
group_by(TIME_PERIOD) %>%
summarise(Nobs = n()) %>%
arrange(desc(TIME_PERIOD)) %>%
print_table_conditional
Pondération
1979, 1989, 1992
Code
`IPC-1970-1980` %>%
filter(TIME_PERIOD %in% c("1949", "1969", "1992", "1979", "1989"),
== "BRUT",
CORRECTION == "POND",
NATURE == "FM") %>%
REF_AREA select_if(function(col) length(unique(col)) > 1) %>%
select(-IDBANK, -TITLE_FR, -TITLE_EN, -DECIMALS) %>%
left_join(REGROUPEMENTS_IPC_1970_1980, by = "REGROUPEMENTS_IPC_1970_1980") %>%
left_join(PRODUITS_IPC_1970_1980, by = "PRODUITS_IPC_1970_1980") %>%
spread(TIME_PERIOD, OBS_VALUE) %>%
print_table_conditional()
Services de Santé
Code
`IPC-1970-1980` %>%
filter(NATURE == "POND",
== "760") %>%
PRODUITS_IPC_1970_1980 %>%
year_to_date mutate(OBS_VALUE = OBS_VALUE/10000) %>%
ggplot() + ylab("Poids des services de santé") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = OBS_VALUE)) +
scale_color_manual(values = viridis(3)[1:2]) +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 10, 0.1),
labels = percent_format(accuracy = .1))
Produits pharmaceutiques
Code
`IPC-1970-1980` %>%
filter(NATURE == "POND",
== "587") %>%
PRODUITS_IPC_1970_1980 %>%
year_to_date mutate(OBS_VALUE = OBS_VALUE/10000) %>%
ggplot() + ylab("Poids des produits pharmaceutiques") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = OBS_VALUE)) +
scale_color_manual(values = viridis(3)[1:2]) +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 10, 0.1),
labels = percent_format(accuracy = .1))
Table
1949, 1969
Code
`IPC-1970-1980` %>%
filter(TIME_PERIOD %in% c("1949", "1969"),
== "BRUT",
CORRECTION == "INDICE",
NATURE == "FM") %>%
REF_AREA mutate(TITLE_FR = gsub("Indice des prix des 295 postes - Base 100 en 1970 - ", "", TITLE_FR),
TITLE_FR = gsub("Indice des prix des 295 postes - Base 100 en 1980 - ", "", TITLE_FR)) %>%
select(TITLE_FR, BASIND, PROD = PRODUITS_IPC_1970_1980, REGR = REGROUPEMENTS_IPC_1970_1980, TIME_PERIOD, OBS_VALUE) %>%
spread(TIME_PERIOD, OBS_VALUE) %>%
print_table_conditional
Loyers
Mensuel - Base 1980
Code
`IPC-1970-1980` %>%
filter(INDICATEUR == "IPC",
== "PARIS11" | PRODUITS_IPC_1970_1980 == "711",
REGROUPEMENTS_IPC_1970_1980 == "1980",
BASIND == "M") %>%
FREQ %>%
month_to_date group_by(REGROUPEMENTS_IPC_1970_1980, PRODUITS_IPC_1970_1980) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == as.Date("1990-01-01")]) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR, linetype = TITLE_FR)) +
scale_color_manual(values = viridis(4)[1:3]) +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.75, 0.3),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 200, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
Mensuel - Base 1970
Code
`IPC-1970-1980` %>%
filter(INDICATEUR == "IPC",
== "PARIS11" | PRODUITS_IPC_1970_1980 == "711",
REGROUPEMENTS_IPC_1970_1980 == "1970",
BASIND == "M") %>%
FREQ %>%
month_to_date group_by(REGROUPEMENTS_IPC_1970_1980, PRODUITS_IPC_1970_1980) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == as.Date("1983-01-01")]) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR, linetype = TITLE_FR)) +
scale_color_manual(values = viridis(4)[1:3]) +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.75, 0.3),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 200, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
Mensuel - Base 1970
All
Code
`IPC-1970-1980` %>%
filter(INDICATEUR == "IPC",
%in% c("711", "SO"),
PRODUITS_IPC_1970_1980 == "1970",
BASIND == "M") %>%
FREQ %>%
month_to_date left_join(PRODUITS_IPC_1970_1980, by = "PRODUITS_IPC_1970_1980") %>%
group_by(PRODUITS_IPC_1970_1980) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == as.Date("1983-01-01")]) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = OBS_VALUE, color = Produits_ipc_1970_1980, linetype = Produits_ipc_1970_1980)) +
scale_color_manual(values = viridis(4)[1:3]) +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.75, 0.3),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 200, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
1960
Code
`IPC-1970-1980` %>%
filter(INDICATEUR == "IPC",
%in% c("711", "SO"),
PRODUITS_IPC_1970_1980 == "1970",
BASIND == "M") %>%
FREQ %>%
month_to_date filter(date >=as.Date("1960-01-01")) %>%
left_join(PRODUITS_IPC_1970_1980, by = "PRODUITS_IPC_1970_1980") %>%
group_by(PRODUITS_IPC_1970_1980) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == as.Date("1960-01-01")]) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = OBS_VALUE, color = Produits_ipc_1970_1980, linetype = Produits_ipc_1970_1980)) +
scale_color_manual(values = viridis(4)[1:3]) +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.75, 0.3),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 1000, 50),
labels = dollar_format(accuracy = 1, prefix = ""))
Mensuel - Base 1970
Code
`IPC-1970-1980` %>%
filter(INDICATEUR == "IPC",
%in% c("711", "SO"),
PRODUITS_IPC_1970_1980 == "SO",
REGROUPEMENTS_IPC_1970_1980 == "1980",
BASIND == "M") %>%
FREQ %>%
month_to_date left_join(PRODUITS_IPC_1970_1980, by = "PRODUITS_IPC_1970_1980") %>%
group_by(PRODUITS_IPC_1970_1980) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == as.Date("1983-01-01")]) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = OBS_VALUE, color = Produits_ipc_1970_1980, linetype = Produits_ipc_1970_1980)) +
scale_color_manual(values = viridis(4)[1:3]) +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.75, 0.3),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 200, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
Annual - Base 1970
Code
`IPC-1970-1980` %>%
filter(INDICATEUR == "IPC",
== "PARIS11" | PRODUITS_IPC_1970_1980 == "711",
REGROUPEMENTS_IPC_1970_1980 == "1970",
BASIND == "A") %>%
FREQ %>%
year_to_date group_by(REGROUPEMENTS_IPC_1970_1980, PRODUITS_IPC_1970_1980) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == as.Date("1983-01-01")]) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR, linetype = TITLE_FR)) +
scale_color_manual(values = viridis(4)[1:3]) +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.75, 0.3),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 200, 10),
labels = dollar_format(accuracy = 1, prefix = ""))