source | dataset | Title | .html | .rData |
---|---|---|---|---|
eurostat | prc_hpi_q | House price index (2015 = 100) - quarterly data | 2025-10-10 | 2025-09-26 |
bdf | RPP | Prix de l'immobilier | 2025-08-28 | 2025-08-24 |
bis | LONG_PP | Residential property prices - detailed series | 2025-10-10 | 2024-05-10 |
bis | SELECTED_PP | Property prices, selected series | 2025-10-10 | 2025-10-09 |
ecb | RPP | Residential Property Price Index Statistics | 2025-10-09 | 2025-08-29 |
eurostat | ei_hppi_q | House price index (2015 = 100) - quarterly data | 2025-10-10 | 2025-10-09 |
eurostat | hbs_str_t223 | Mean consumption expenditure by income quintile | 2025-10-01 | 2025-10-09 |
eurostat | prc_hicp_midx | HICP (2015 = 100) - monthly data (index) | 2025-10-10 | 2025-10-09 |
fred | housing | House Prices | 2025-10-09 | 2025-10-09 |
insee | IPLA-IPLNA-2015 | Indices des prix des logements neufs et Indices Notaires-Insee des prix des logements anciens | 2025-10-10 | 2025-10-09 |
oecd | SNA_TABLE5 | Final consumption expenditure of households | 2025-09-29 | 2023-10-19 |
oecd | housing | NA | NA | NA |
House price index (2015 = 100) - quarterly data
Data - Eurostat
Info
LAST_DOWNLOAD
LAST_COMPILE
LAST_COMPILE |
---|
2025-10-11 |
Last
time | Nobs |
---|---|
2025Q2 | 98 |
indic
Code
%>%
ei_hppi_q left_join(indic, by = "indic") %>%
group_by(indic, Indic) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
indic | Indic | Nobs |
---|---|---|
TOTAL | Total | 7681 |
unit
Code
%>%
ei_hppi_q left_join(unit, by = "unit") %>%
group_by(unit, Unit) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
unit | Unit | Nobs |
---|---|---|
I15_NSA | Index, 2015=100 (NSA) | 2596 |
RT1 | Growth rate on previous period (t/t-1) | 2595 |
RT4 | Growth rate on the same quarter in previous year | 2490 |
geo
Code
%>%
ei_hppi_q left_join(geo, by = "geo") %>%
group_by(geo, Geo) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
time
Code
%>%
ei_hppi_q group_by(time) %>%
summarise(Nobs = n()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {