House price index (2015 = 100) - quarterly data

Data - Eurostat

Info

LAST_DOWNLOAD

source dataset .html .RData
bdf RPP 2025-01-05 2024-11-19
bis LONG_PP 2024-12-29 2024-05-10
bis SELECTED_PP 2024-12-29 2024-10-31
ecb RPP 2024-12-29 2024-12-29
eurostat ei_hppi_q 2025-01-05 2025-01-07
eurostat hbs_str_t223 2025-01-05 2025-01-07
eurostat prc_hicp_midx 2024-11-01 2025-01-07
eurostat prc_hpi_q 2025-01-05 2024-10-09
fred housing 2025-01-07 2025-01-07
insee IPLA-IPLNA-2015 2025-01-07 2025-01-05
oecd housing 2024-09-15 2020-01-18
oecd SNA_TABLE5 2024-09-11 2023-10-19

LAST_COMPILE

LAST_COMPILE
2025-01-07

Last

time Nobs
2024Q2 104

indic

Code
ei_hppi_q %>%
  left_join(indic, by = "indic") %>%
  group_by(indic, Indic) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) print_table(.) else .}
indic Indic Nobs
TOTAL Total 7687

unit

Code
ei_hppi_q %>%
  left_join(unit, by = "unit") %>%
  group_by(unit, Unit) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) print_table(.) else .}
unit Unit Nobs
I15_NSA Index, 2015=100 (NSA) 2604
RT1 Growth rate on previous period (t/t-1) 2597
RT4 Growth rate on the same quarter in previous year 2486

geo

Code
ei_hppi_q %>%
  left_join(geo, by = "geo") %>%
  group_by(geo, Geo) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

time

Code
ei_hppi_q %>%
  group_by(time) %>%
  summarise(Nobs = n()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}