source | dataset | .html | .RData |
---|---|---|---|
eurostat | prc_hicp_manr | 2024-12-21 | 2024-12-22 |
eurostat | prc_hicp_midx | 2024-11-01 | 2024-12-22 |
HICP (2015 = 100) - monthly data (annual rate of change)
Data - Eurostat
Info
Data on inflation
source | dataset | .html | .RData |
---|---|---|---|
bis | CPI | 2024-07-01 | 2022-01-20 |
ecb | CES | 2024-12-22 | 2024-12-22 |
eurostat | nama_10_co3_p3 | 2024-12-14 | 2024-12-14 |
eurostat | prc_hicp_cow | 2024-11-22 | 2024-10-08 |
eurostat | prc_hicp_ctrb | 2024-11-22 | 2024-10-08 |
eurostat | prc_hicp_inw | 2024-11-05 | 2024-11-23 |
eurostat | prc_hicp_manr | 2024-12-21 | 2024-12-22 |
eurostat | prc_hicp_midx | 2024-11-01 | 2024-12-22 |
eurostat | prc_hicp_mmor | 2024-11-22 | 2024-11-23 |
eurostat | prc_ppp_ind | 2024-11-22 | 2024-10-08 |
eurostat | sts_inpp_m | 2024-06-24 | 2024-12-21 |
eurostat | sts_inppd_m | 2024-12-21 | 2024-12-21 |
eurostat | sts_inppnd_m | 2024-06-24 | 2024-12-16 |
fred | cpi | 2024-12-22 | 2024-12-22 |
fred | inflation | 2024-12-22 | 2024-12-22 |
imf | CPI | 2024-06-20 | 2020-03-13 |
oecd | MEI_PRICES_PPI | 2024-09-15 | 2024-04-15 |
oecd | PPP2017 | 2024-04-16 | 2023-07-25 |
oecd | PRICES_CPI | 2024-04-16 | 2024-04-15 |
wdi | FP.CPI.TOTL.ZG | 2023-01-15 | 2024-09-18 |
wdi | NY.GDP.DEFL.KD.ZG | 2024-09-18 | 2024-09-18 |
Données sur l’inflation en France
source | dataset | .html | .RData |
---|---|---|---|
insee | bdf2017 | 2024-11-22 | 2023-11-21 |
insee | ILC-ILAT-ICC | 2024-11-22 | 2024-12-22 |
insee | INDICES_LOYERS | 2024-11-22 | 2024-12-22 |
insee | IPC-1970-1980 | 2024-11-22 | 2024-12-22 |
insee | IPC-1990 | 2024-11-22 | 2024-12-22 |
insee | IPC-2015 | 2024-12-16 | 2024-12-22 |
insee | IPC-PM-2015 | 2024-12-21 | 2024-12-22 |
insee | IPCH-2015 | 2024-12-21 | 2024-12-22 |
insee | IPGD-2015 | 2024-12-16 | 2024-12-16 |
insee | IPLA-IPLNA-2015 | 2024-11-22 | 2024-12-22 |
insee | IPPI-2015 | 2024-12-21 | 2024-12-16 |
insee | IRL | 2024-11-22 | 2024-11-22 |
insee | SERIES_LOYERS | 2024-11-22 | 2024-11-22 |
insee | T_CONSO_EFF_FONCTION | 2024-11-22 | 2024-07-18 |
LAST_COMPILE
LAST_COMPILE |
---|
2024-12-22 |
Last
Code
%>%
prc_hicp_manr group_by(time) %>%
summarise(Nobs = n()) %>%
arrange(desc(time)) %>%
head(1) %>%
print_table_conditional()
time | Nobs |
---|---|
2024M11 | 16236 |
HICP Releases
Code
tibble(release = "2021-11", key = "11563387", date = "30112021") %>%
add_row(release = "2021-12", key = "14442438", date = "07012022") %>%
add_row(release = "2022-02", key = "14358044", date = "02032022") %>%
add_row(release = "2022-03", key = "14442438", date = "01042022") %>%
add_row(release = "2022-09", key = "15131964", date = "30092022") %>%
add_row(release = "2022-10", key = "15131964", date = "31102022") %>%
mutate(en = paste0('<a target=_blank href=https://ec.europa.eu/eurostat/documents/2995521/', key, '/2-', date, '-AP-EN.pdf > en </a>')) %>%
mutate(fr = paste0('<a target=_blank href=https://ec.europa.eu/eurostat/documents/2995521/', key, '/2-', date, '-AP-FR.pdf > fr </a>')) %>%
mutate(de = paste0('<a target=_blank href=https://ec.europa.eu/eurostat/documents/2995521/', key, '/2-', date, '-AP-DE.pdf > de </a>')) %>%
select(-key, -date) %>%
arrange(desc(release)) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
- Full series of indices (approx. 2 weeks later).
Code
tibble(release = "2021-11", key = "2995521", date = "17122021") %>%
add_row(release = "2022-08", key = "16092022", date = "30112021") %>%
add_row(release = "2022-09", key = "15131946", date = "19102022") %>%
# https://ec.europa.eu/eurostat/documents/2995521/15265521/2-17112022-AP-EN.pdf
add_row(release = "2022-10", key = "15265521", date = "17112022") %>%
mutate(en = paste0('<a target=_blank href=https://ec.europa.eu/eurostat/documents/2995521/', key, '/2-', date, '-AP-EN.pdf > en </a>')) %>%
mutate(fr = paste0('<a target=_blank href=https://ec.europa.eu/eurostat/documents/2995521/', key, '/2-', date, '-AP-FR.pdf > fr </a>')) %>%
mutate(de = paste0('<a target=_blank href=https://ec.europa.eu/eurostat/documents/2995521/', key, '/2-', date, '-AP-DE.pdf > de </a>')) %>%
select(-key, -date) %>%
arrange(desc(release)) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
Code
i_g("bib/eurostat/2-30112021-AP-EN/euro-area-annual-inflation-components.png")
Code
i_g("bib/eurostat/2-30112021-AP-EN/HICP-202111.png")
coicop
All
Code
%>%
prc_hicp_manr left_join(coicop, by = "coicop") %>%
group_by(coicop, Coicop) %>%
summarise(Nobs = n(),
`2022M09, EA19` = values[geo == "EA19" & time == "2022M09"]) %>%
print_table_conditional()
2-digit
Code
%>%
prc_hicp_manr filter(nchar(coicop) == 4) %>%
left_join(coicop, by = "coicop") %>%
group_by(coicop, Coicop) %>%
summarise(Nobs = n(),
last_inflation = values[geo == "EA19" & time == last_time_full_release]) %>%
setNames(c("coicop", "Coicop", "Nobs", paste0(last_time_full_release, ", EA19"))) %>%
print_table_conditional()
coicop | Coicop | Nobs | 2024M11, EA19 |
---|---|---|---|
CP00 | All-items HICP | 13684 | 2.2 |
CP01 | Food and non-alcoholic beverages | 13684 | 2.0 |
CP02 | Alcoholic beverages, tobacco and narcotics | 13684 | 5.6 |
CP03 | Clothing and footwear | 13684 | 1.4 |
CP04 | Housing, water, electricity, gas and other fuels | 13684 | 2.7 |
CP05 | Furnishings, household equipment and routine household maintenance | 13684 | -0.1 |
CP06 | Health | 13684 | 3.3 |
CP07 | Transport | 13684 | -0.1 |
CP08 | Communications | 13684 | -3.0 |
CP09 | Recreation and culture | 13684 | 2.2 |
CP10 | Education | 13637 | 4.1 |
CP11 | Restaurants and hotels | 13684 | 4.4 |
CP12 | Miscellaneous goods and services | 13684 | 4.4 |
FOOD | Food including alcohol and tobacco | 13137 | 2.7 |
FUEL | Liquid fuels and fuels and lubricants for personal transport equipment | 13114 | -7.5 |
SERV | Services (overall index excluding goods) | 12231 | 3.9 |
3-digit
Code
%>%
prc_hicp_manr filter(nchar(coicop) == 5) %>%
left_join(coicop, by = "coicop") %>%
group_by(coicop, Coicop) %>%
summarise(Nobs = n(),
last_inflation = values[geo == "EA19" & time == last_time_full_release]) %>%
setNames(c("coicop", "Coicop", "Nobs", paste0(last_time_full_release, ", EA19"))) %>%
print_table_conditional()
4-digit
Code
%>%
prc_hicp_manr filter(nchar(coicop) == 6) %>%
left_join(coicop, by = "coicop") %>%
group_by(coicop, Coicop) %>%
summarise(Nobs = n(),
last_inflation = values[geo == "EA19" & time == last_time_full_release]) %>%
setNames(c("coicop", "Coicop", "Nobs", paste0(last_time_full_release, ", EA19"))) %>%
print_table_conditional()
5-digit
Code
%>%
prc_hicp_manr filter(nchar(coicop) == 7) %>%
left_join(coicop, by = "coicop") %>%
group_by(coicop, Coicop) %>%
summarise(Nobs = n(),
last_inflation = values[geo == "EA19" & time == last_time_full_release]) %>%
setNames(c("coicop", "Coicop", "Nobs", paste0(last_time_full_release, ", EA19"))) %>%
print_table_conditional()
Other
Code
%>%
prc_hicp_manr filter(nchar(coicop) > 7) %>%
left_join(coicop, by = "coicop") %>%
group_by(coicop, Coicop) %>%
summarise(Nobs = n(),
last_inflation = values[geo == "EA19" & time == last_time_full_release]) %>%
setNames(c("coicop", "Coicop", "Nobs", paste0(last_time_full_release, ", EA19"))) %>%
print_table_conditional()
geo
Code
%>%
prc_hicp_manr left_join(geo, by = "geo") %>%
group_by(geo, Geo) %>%
summarise(Nobs = n()) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Geo))),
Flag = paste0('<img src="../../icon/flag/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
time
Code
%>%
prc_hicp_manr group_by(time) %>%
summarise(Nobs = n()) %>%
arrange(desc(time)) %>%
print_table_conditional()
Last
Code
%>%
prc_hicp_manr filter(time == last_time) %>%
select_if(function(col) length(unique(col)) > 1) %>%
left_join(geo, by = "geo") %>%
left_join(coicop, by = "coicop") %>%
select(geo, Geo, coicop, Coicop, values) %>%
print_table_conditional()
Europe, United States (Proxy-HICP)
How much data ?
Code
%>%
prc_hicp_manr filter(geo %in% c("US", "EA20"),
== "2023M09") %>%
time group_by(time, coicop) %>%
filter(n() == 2) %>%
%>%
ungroup left_join(coicop, by = "coicop") %>%
mutate(Geo = ifelse(geo == "EA20", "Euro area HICP", "US Proxy-HICP")) %>%
select(-unit, -geo, - time) %>%
spread(Geo, values)
# # A tibble: 13 × 5
# freq coicop Coicop `Euro area HICP` `US Proxy-HICP`
# <chr> <chr> <chr> <dbl> <dbl>
# 1 M CP00 All-items HICP 4.3 2.6
# 2 M CP01 Food and non-alcoholic beverag… 9.1 2.3
# 3 M CP02 Alcoholic beverages, tobacco a… 7.4 4.2
# 4 M CP03 Clothing and footwear 3 2.6
# 5 M CP04 Housing, water, electricity, g… -2.3 3.9
# 6 M CP05 Furnishings, household equipme… 4.8 1.3
# 7 M CP06 Health 2.9 2.8
# 8 M CP07 Transport 3.6 -0.1
# 9 M CP08 Communications -0.3 -0.9
# 10 M CP09 Recreation and culture 5.6 4.8
# 11 M CP10 Education 3.2 3.1
# 12 M CP11 Restaurants and hotels 6.7 5.2
# 13 M CP12 Miscellaneous goods and servic… 5.2 3.8
2020-
All
Code
<- tribble(
coicop_short ~ coicop, ~ Coicop,
"CP01", "Food",
"CP02", "Alcohol, Tobacco",
"CP03", "Clothing",
"CP04", "Housing, heating",
"CP05", "Furnishings",
"CP06", "Health",
"CP07", "Transport",
"CP08", "Communications",
"CP09", "Recreation",
"CP10", "Education",
"CP11", "Restaurants, Hotels",
"CP12", "Misc G&S")
%>%
prc_hicp_manr filter(coicop != "CP00",
%in% c("EA20", "US")) %>%
geo group_by(time, coicop) %>%
filter(n() == 2) %>%
%>%
ungroup %>%
month_to_date filter(date >= as.Date("2021-03-01")) %>%
mutate(Geo = ifelse(geo == "EA20", "Euro area HICP", "US Proxy-HICP")) %>%
mutate(values = values/100) %>%
left_join(coicop_short, by = "coicop") %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = Geo)) +
theme_minimal() + xlab("") + ylab("Inflation (%)") +
scale_x_date(breaks = seq.Date(as.Date("2019-09-01"), as.Date("2024-09-01"), "6 months"),
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 5),
labels = percent_format(a = 1)) +
scale_color_manual(values = c("#003399", "#B22234")) +
theme(legend.position = "top",
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
geom_vline(xintercept = as.Date("2023-09-01"), linetype = "dotted") +
geom_vline(xintercept = as.Date("2022-09-01"), linetype = "dotted") +
facet_wrap(~paste(coicop, Coicop, sep = " - ")) +
geom_text_repel(data = . %>% filter(date %in% c(as.Date("2023-09-01"),
as.Date("2022-09-01"))),
aes(x = date, y = values, label = percent(values, acc = 0.1), color = Geo),
fontface ="plain", size = 3)
All
Code
<- tribble(
coicop_short ~ coicop, ~ Coicop,
"CP01", "Food",
"CP02", "Alcohol, Tobacco",
"CP03", "Clothing",
"CP04", "Housing, heating",
"CP05", "Furnishings",
"CP06", "Health",
"CP07", "Transport",
"CP08", "Communications",
"CP09", "Recreation",
"CP10", "Education",
"CP11", "Restaurants, Hotels",
"CP12", "Misc G&S")
%>%
prc_hicp_manr filter(coicop != "CP00",
%in% c("EA20", "US")) %>%
geo group_by(time, coicop) %>%
filter(n() == 2) %>%
%>%
ungroup %>%
month_to_date filter(date >= as.Date("2021-03-01")) %>%
mutate(Geo = ifelse(geo == "EA20", "Euro area HICP", "US Proxy-HICP")) %>%
mutate(values = values/100) %>%
left_join(coicop_short, by = "coicop") %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = Geo)) +
theme_minimal() + xlab("") + ylab("Inflation (%)") +
scale_x_date(breaks = seq.Date(as.Date("2019-09-01"), as.Date("2024-09-01"), "6 months"),
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 5),
labels = percent_format(a = 1)) +
scale_color_manual(values = c("#003399", "#B22234")) +
theme(legend.position = "top",
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
geom_vline(xintercept = as.Date("2023-10-01"), linetype = "dotted") +
geom_vline(xintercept = as.Date("2022-10-01"), linetype = "dotted") +
facet_wrap(~paste(coicop, Coicop, sep = " - ")) +
geom_text_repel(data = . %>% filter(date %in% c(as.Date("2023-10-01"),
as.Date("2022-10-01"))),
aes(x = date, y = values, label = percent(values, acc = 0.1), color = Geo),
fontface ="plain", size = 3)
CP00 - All-items HICP
Code
%>%
prc_hicp_manr filter(coicop == "CP00",
%in% c("EA", "US")) %>%
geo %>%
month_to_date filter(date >= as.Date("2020-01-01")) %>%
mutate(Geo = ifelse(geo == "EA", "Euro area HICP", "US Proxy-HICP")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = Geo)) +
theme_minimal() + xlab("") + ylab("Inflation (%)") +
scale_x_date(breaks = seq.Date(as.Date("2019-12-01"), Sys.Date(), "3 months"),
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
scale_color_manual(values = c("#003399", "#B22234")) +
theme(legend.position = c(0.25, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
geom_text_repel(data = . %>% filter(date %in% c(max(date), as.Date("2022-06-01"),
as.Date("2022-10-01"))),
aes(x = date, y = values, label = percent(values, acc = 0.1)),
fontface ="plain", color = "black", size = 3) +
geom_vline(xintercept = as.Date("2022-06-01"), linetype = "dotted") +
geom_vline(xintercept = as.Date("2022-10-01"), linetype = "dotted")
CP01 - Food and non-alcoholic beverages
Code
%>%
prc_hicp_manr filter(coicop == "CP01",
%in% c("EA", "US")) %>%
geo %>%
month_to_date filter(date >= as.Date("2020-01-01")) %>%
mutate(Geo = ifelse(geo == "EA", "Euro area HICP", "US Proxy-HICP")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = Geo)) +
theme_minimal() + xlab("") + ylab("Food Inflation (%)") +
scale_x_date(breaks = seq.Date(as.Date("2019-12-01"), Sys.Date(), "3 months"),
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
scale_color_manual(values = c("#003399", "#B22234")) +
theme(legend.position = c(0.25, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
geom_text_repel(data = . %>% filter(date %in% c(max(date), as.Date("2022-06-01"),
as.Date("2022-10-01"))),
aes(x = date, y = values, label = percent(values, acc = 0.1)),
fontface ="plain", color = "black", size = 3) +
geom_vline(xintercept = as.Date("2022-06-01"), linetype = "dotted") +
geom_vline(xintercept = as.Date("2022-10-01"), linetype = "dotted")
CP02 - Alcoholic beverages, tobacco and narcotics
Code
%>%
prc_hicp_manr filter(coicop == "CP02",
%in% c("EA20", "US")) %>%
geo %>%
month_to_date filter(date >= as.Date("2020-01-01")) %>%
mutate(Geo = ifelse(geo == "EA20", "Euro area HICP", "US Proxy-HICP")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = Geo)) +
theme_minimal() + xlab("") + ylab("Food Inflation (%)") +
scale_x_date(breaks = seq.Date(as.Date("2019-12-01"), as.Date("2024-01-01"), "3 months"),
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
scale_color_manual(values = c("#003399", "#B22234")) +
theme(legend.position = c(0.25, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
geom_text_repel(data = . %>% filter(date %in% c(max(date), as.Date("2022-06-01"),
as.Date("2022-10-01"))),
aes(x = date, y = values, label = percent(values, acc = 0.1)),
fontface ="plain", color = "black", size = 3) +
geom_vline(xintercept = as.Date("2022-06-01"), linetype = "dotted") +
geom_vline(xintercept = as.Date("2022-10-01"), linetype = "dotted")
CP03 - Clothing and footwear
Code
%>%
prc_hicp_manr filter(coicop == "CP03",
%in% c("EA20", "US")) %>%
geo %>%
month_to_date filter(date >= as.Date("2020-01-01")) %>%
mutate(Geo = ifelse(geo == "EA20", "Euro area HICP", "US Proxy-HICP")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = Geo)) +
theme_minimal() + xlab("") + ylab("Clothing and footwear Inflation (%)") +
scale_x_date(breaks = seq.Date(as.Date("2019-12-01"), as.Date("2024-01-01"), "3 months"),
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
scale_color_manual(values = c("#003399", "#B22234")) +
theme(legend.position = c(0.25, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
geom_text_repel(data = . %>% filter(date %in% c(max(date), as.Date("2022-06-01"),
as.Date("2022-10-01"))),
aes(x = date, y = values, label = percent(values, acc = 0.1)),
fontface ="plain", color = "black", size = 3) +
geom_vline(xintercept = as.Date("2022-06-01"), linetype = "dotted") +
geom_vline(xintercept = as.Date("2022-10-01"), linetype = "dotted")
CP04 - Housing, water, electricity, gas and other fuels
Code
%>%
prc_hicp_manr filter(coicop == "CP04",
%in% c("EA20", "US")) %>%
geo %>%
month_to_date filter(date >= as.Date("2020-01-01")) %>%
mutate(Geo = ifelse(geo == "EA20", "Euro area HICP", "US Proxy-HICP")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = Geo)) +
theme_minimal() + xlab("") + ylab("Housing, water, electricity, gas and other fuels (%)") +
scale_x_date(breaks = seq.Date(as.Date("2019-12-01"), as.Date("2024-01-01"), "3 months"),
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 50, 1),
labels = percent_format(a = 1)) +
scale_color_manual(values = c("#003399", "#B22234")) +
theme(legend.position = c(0.25, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
geom_text_repel(data = . %>% filter(date %in% c(max(date), as.Date("2022-06-01"),
as.Date("2022-10-01"))),
aes(x = date, y = values, label = percent(values, acc = 0.1)),
fontface ="plain", color = "black", size = 3) +
geom_vline(xintercept = as.Date("2022-06-01"), linetype = "dotted") +
geom_vline(xintercept = as.Date("2022-10-01"), linetype = "dotted")
CP05 - Furnishings, household equipment and routine household maintenance
Code
%>%
prc_hicp_manr filter(coicop == "CP05",
%in% c("EA20", "US")) %>%
geo %>%
month_to_date filter(date >= as.Date("2020-01-01")) %>%
mutate(Geo = ifelse(geo == "EA20", "Euro area HICP", "US Proxy-HICP")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = Geo)) +
theme_minimal() + xlab("") + ylab("Furnishings, household equipment Inflation (%)") +
scale_x_date(breaks = seq.Date(as.Date("2019-12-01"), as.Date("2024-01-01"), "3 months"),
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 50, 1),
labels = percent_format(a = 1)) +
scale_color_manual(values = c("#003399", "#B22234")) +
theme(legend.position = c(0.25, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
geom_text_repel(data = . %>% filter(date %in% c(max(date), as.Date("2022-06-01"),
as.Date("2022-10-01"))),
aes(x = date, y = values, label = percent(values, acc = 0.1)),
fontface ="plain", color = "black", size = 3) +
geom_vline(xintercept = as.Date("2022-06-01"), linetype = "dotted") +
geom_vline(xintercept = as.Date("2022-10-01"), linetype = "dotted")
CP06 - Health
Code
%>%
prc_hicp_manr filter(coicop == "CP06",
%in% c("EA20", "US")) %>%
geo %>%
month_to_date filter(date >= as.Date("2020-01-01")) %>%
mutate(Geo = ifelse(geo == "EA20", "Euro area HICP", "US Proxy-HICP")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = Geo)) +
theme_minimal() + xlab("") + ylab("Health Inflation (%)") +
scale_x_date(breaks = seq.Date(as.Date("2019-12-01"), as.Date("2024-01-01"), "3 months"),
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 50, 1),
labels = percent_format(a = 1)) +
scale_color_manual(values = c("#003399", "#B22234")) +
theme(legend.position = c(0.25, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
geom_text_repel(data = . %>% filter(date %in% c(max(date), as.Date("2022-06-01"),
as.Date("2022-10-01"))),
aes(x = date, y = values, label = percent(values, acc = 0.1)),
fontface ="plain", color = "black", size = 3) +
geom_vline(xintercept = as.Date("2022-06-01"), linetype = "dotted") +
geom_vline(xintercept = as.Date("2022-10-01"), linetype = "dotted")
CP07 - Transport
Code
%>%
prc_hicp_manr filter(coicop == "CP07",
%in% c("EA20", "US")) %>%
geo %>%
month_to_date filter(date >= as.Date("2020-01-01")) %>%
mutate(Geo = ifelse(geo == "EA20", "Euro area HICP", "US Proxy-HICP")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = Geo)) +
theme_minimal() + xlab("") + ylab("Transport Inflation (%)") +
scale_x_date(breaks = seq.Date(as.Date("2019-12-01"), as.Date("2024-01-01"), "3 months"),
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 50, 1),
labels = percent_format(a = 1)) +
scale_color_manual(values = c("#003399", "#B22234")) +
theme(legend.position = c(0.25, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
geom_text_repel(data = . %>% filter(date %in% c(max(date), as.Date("2022-06-01"),
as.Date("2022-10-01"))),
aes(x = date, y = values, label = percent(values, acc = 0.1)),
fontface ="plain", color = "black", size = 3) +
geom_vline(xintercept = as.Date("2022-06-01"), linetype = "dotted") +
geom_vline(xintercept = as.Date("2022-10-01"), linetype = "dotted")
CP08 - Communications
Code
%>%
prc_hicp_manr filter(coicop == "CP08",
%in% c("EA20", "US")) %>%
geo %>%
month_to_date filter(date >= as.Date("2020-01-01")) %>%
mutate(Geo = ifelse(geo == "EA20", "Euro area HICP", "US Proxy-HICP")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = Geo)) +
theme_minimal() + xlab("") + ylab("Inflation, Communications (%)") +
scale_x_date(breaks = seq.Date(as.Date("2019-12-01"), as.Date("2024-01-01"), "3 months"),
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 50, 1),
labels = percent_format(a = 1)) +
scale_color_manual(values = c("#003399", "#B22234")) +
theme(legend.position = c(0.25, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
geom_text_repel(data = . %>% filter(date %in% c(max(date), as.Date("2022-06-01"),
as.Date("2022-10-01"))),
aes(x = date, y = values, label = percent(values, acc = 0.1)),
fontface ="plain", color = "black", size = 3)
CP09 - Recreation and culture
Code
%>%
prc_hicp_manr filter(coicop == "CP09",
%in% c("EA20", "US")) %>%
geo %>%
month_to_date filter(date >= as.Date("2020-01-01")) %>%
mutate(Geo = ifelse(geo == "EA20", "Euro area HICP", "US Proxy-HICP")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = Geo)) +
theme_minimal() + xlab("") + ylab("Inflation, Recreation and culture (%)") +
scale_x_date(breaks = seq.Date(as.Date("2019-12-01"), as.Date("2024-01-01"), "3 months"),
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 50, 1),
labels = percent_format(a = 1)) +
scale_color_manual(values = c("#003399", "#B22234")) +
theme(legend.position = c(0.25, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
geom_text_repel(data = . %>% filter(date %in% c(max(date), as.Date("2022-06-01"),
as.Date("2022-10-01"))),
aes(x = date, y = values, label = percent(values, acc = 0.1)),
fontface ="plain", color = "black", size = 3) +
geom_vline(xintercept = as.Date("2022-06-01"), linetype = "dotted") +
geom_vline(xintercept = as.Date("2022-10-01"), linetype = "dotted")
CP10 - Education
Code
%>%
prc_hicp_manr filter(coicop == "CP10",
%in% c("EA20", "US")) %>%
geo %>%
month_to_date filter(date >= as.Date("2020-01-01")) %>%
mutate(Geo = ifelse(geo == "EA20", "Euro area HICP", "US Proxy-HICP")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = Geo)) +
theme_minimal() + xlab("") + ylab("Inflation, Education (%)") +
scale_x_date(breaks = seq.Date(as.Date("2019-12-01"), as.Date("2024-01-01"), "3 months"),
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 50, 1),
labels = percent_format(a = 1)) +
scale_color_manual(values = c("#003399", "#B22234")) +
theme(legend.position = c(0.25, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
geom_text_repel(data = . %>% filter(date %in% c(max(date), as.Date("2022-06-01"),
as.Date("2022-10-01"))),
aes(x = date, y = values, label = percent(values, acc = 0.1)),
fontface ="plain", color = "black", size = 3) +
geom_vline(xintercept = as.Date("2022-06-01"), linetype = "dotted") +
geom_vline(xintercept = as.Date("2022-10-01"), linetype = "dotted")
CP11 - Restaurants and hotels
Code
%>%
prc_hicp_manr filter(coicop == "CP11",
%in% c("EA20", "US")) %>%
geo %>%
month_to_date filter(date >= as.Date("2020-01-01")) %>%
mutate(Geo = ifelse(geo == "EA20", "Euro area HICP", "US Proxy-HICP")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = Geo)) +
theme_minimal() + xlab("") + ylab("Inflation, Restaurants and hotels (%)") +
scale_x_date(breaks = seq.Date(as.Date("2019-12-01"), as.Date("2024-01-01"), "3 months"),
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 50, 1),
labels = percent_format(a = 1)) +
scale_color_manual(values = c("#003399", "#B22234")) +
theme(legend.position = c(0.25, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
geom_text_repel(data = . %>% filter(date %in% c(max(date), as.Date("2022-06-01"),
as.Date("2022-10-01"))),
aes(x = date, y = values, label = percent(values, acc = 0.1)),
fontface ="plain", color = "black", size = 3) +
geom_vline(xintercept = as.Date("2022-06-01"), linetype = "dotted") +
geom_vline(xintercept = as.Date("2022-10-01"), linetype = "dotted")
CP12 - Miscellaneous goods and services
Code
%>%
prc_hicp_manr filter(coicop == "CP12",
%in% c("EA20", "US")) %>%
geo %>%
month_to_date filter(date >= as.Date("2020-01-01")) %>%
mutate(Geo = ifelse(geo == "EA20", "Euro area HICP", "US Proxy-HICP")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = Geo)) +
theme_minimal() + xlab("") + ylab("Inflation, Miscellaneous goods and services (%)") +
scale_x_date(breaks = seq.Date(as.Date("2019-12-01"), as.Date("2024-01-01"), "3 months"),
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 50, 1),
labels = percent_format(a = 1)) +
scale_color_manual(values = c("#003399", "#B22234")) +
theme(legend.position = c(0.25, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
geom_text_repel(data = . %>% filter(date %in% c(max(date), as.Date("2022-06-01"),
as.Date("2022-10-01"))),
aes(x = date, y = values, label = percent(values, acc = 0.1)),
fontface ="plain", color = "black", size = 3) +
geom_vline(xintercept = as.Date("2022-06-01"), linetype = "dotted") +
geom_vline(xintercept = as.Date("2022-10-01"), linetype = "dotted")
CP00
2 years
Code
%>%
prc_hicp_manr filter(coicop == "CP00",
%in% c("EA19", "US")) %>%
geo %>%
month_to_date filter(date >= max(date) - years(2)) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(color = ifelse(geo == "US", color2, color)) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq.Date(as.Date("2019-12-01"), as.Date("2024-01-01"), "1 month"),
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_2flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
Mean of Inflation
All - Unweighted
Code
<- c("Austria", "Belgium", "Cyprus", "Estonia", "Finland",
eurozone_countries "France", "Germany", "Greece", "Ireland", "Italy",
"Latvia", "Lithuania", "Luxembourg", "Malta", "Netherlands",
"Portugal", "Slovakia", "Slovenia", "Spain", "Euro area - 19 countries (from 2015)")
<- c("Bulgaria", "Czech Republic", "Estonia", "Hungary", "Lithuania",
CEEC_countries "Latvia", "Poland", "Romania", "Slovenia", "Slovakia")
<- prc_hicp_manr %>%
prc_hicp_manr_2022M09 filter(time == "2022M09",
== "CP00") %>%
coicop left_join(geo, by = "geo") %>%
select(Geo, inflation_2022M09 = values)
<- prc_hicp_manr %>%
prc_hicp_manr_2022M10 filter(time == "2022M10",
== "CP00") %>%
coicop left_join(geo, by = "geo") %>%
select(Geo, inflation_2022M10 = values)
<- prc_hicp_manr %>%
prc_hicp_manr_2022M09_Energy filter(time == "2022M09",
== "NRG") %>%
coicop left_join(geo, by = "geo") %>%
select(Geo, inflation_2022M09_NRG = values)
<- prc_hicp_manr %>%
prc_hicp_manr_2022M10_Energy filter(time == "2022M10",
== "NRG") %>%
coicop left_join(geo, by = "geo") %>%
select(Geo, inflation_2022M10_NRG = values)
<- tibble(coicop = "CP00", Coicop = "Headline inflation") %>%
coicop add_row(coicop = "TOT_X_NRG_FOOD", Coicop = "Core inflation")
%>%
prc_hicp_manr filter(coicop %in% c("TOT_X_NRG_FOOD", "CP00"),
%in% c("AT", "BE", "CY", "DE", "EE", "EL", "ES", "FI", "FR", "IE",
geo "IT", "LT", "LU", "LV", "MT", "NL", "PT", "SI", "SK")) %>%
%>%
month_to_date group_by(coicop, date) %>%
summarise(Nobs = n(),
values = mean(values)) %>%
mutate(values = values/100) %>%
left_join(coicop, by = "coicop") %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = Coicop, linetype = Coicop)) +
theme_minimal() + xlab("") + ylab("Standard Deviation, Unweighted, EA-19 (%)") +
scale_x_date(breaks = seq(1960, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = c("#1E1C1C", "#A81630")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
theme(legend.position = c(0.55, 0.90),
legend.title = element_blank())
All - Weighted
Core, Headline
Code
%>%
prc_hicp_manr filter(coicop %in% c("TOT_X_NRG_FOOD", "CP00"),
%in% c("AT", "BE", "CY", "DE", "EE", "EL", "ES", "FI", "FR", "IE",
geo "IT", "LT", "LU", "LV", "MT", "NL", "PT", "SI", "SK")) %>%
mutate(year = substr(time, 1, 4)) %>%
left_join(prc_hicp_cow %>%
filter(statinfo == "COWEA19", geo != "EA19") %>%
transmute(geo, year = time, country_weights = values/1000),
by = c("geo", "year")) %>%
%>%
month_to_date group_by(coicop, date) %>%
summarise(values = sum(values*country_weights/100)) %>%
left_join(coicop, by = "coicop") %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = Coicop, linetype = Coicop)) +
theme_minimal() + xlab("") + ylab("Standard Deviation of Inflation, Weighted, EA-19 (%)") +
scale_x_date(breaks = seq(1960, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = c("#1E1C1C", "#A81630")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
theme(legend.position = c(0.55, 0.90),
legend.title = element_blank())
CP01, CP02, CP03, CP04
Code
load_data("eurostat/coicop.RData")
%>%
prc_hicp_manr filter(coicop %in% c("CP01", "CP02", "CP03", "CP04"),
%in% c("AT", "BE", "CY", "DE", "EE", "EL", "ES", "FI", "FR", "IE",
geo "IT", "LT", "LU", "LV", "MT", "NL", "PT", "SI", "SK")) %>%
mutate(year = substr(time, 1, 4)) %>%
left_join(prc_hicp_cow %>%
filter(statinfo == "COWEA19", geo != "EA19") %>%
transmute(geo, year = time, country_weights = values/1000),
by = c("geo", "year")) %>%
%>%
month_to_date group_by(coicop, date) %>%
summarise(values = sum(values*country_weights/100)) %>%
left_join(coicop, by = "coicop") %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = Coicop)) +
theme_minimal() + xlab("") + ylab("Standard Deviation of Inflation, Weighted, EA-19 (%)") +
scale_x_date(breaks = seq(1960, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
theme(legend.position = c(0.55, 0.90),
legend.title = element_blank())
All - Weighted, Unweighted
Code
%>%
prc_hicp_manr filter(coicop %in% c("TOT_X_NRG_FOOD", "CP00"),
%in% c("AT", "BE", "CY", "DE", "EE", "EL", "ES", "FI", "FR", "IE",
geo "IT", "LT", "LU", "LV", "MT", "NL", "PT", "SI", "SK")) %>%
mutate(year = substr(time, 1, 4)) %>%
left_join(prc_hicp_cow %>%
filter(statinfo == "COWEA19", geo != "EA19") %>%
transmute(geo, year = time, country_weights = values),
by = c("geo", "year")) %>%
%>%
month_to_date group_by(coicop, date) %>%
summarise(`Unweighted` = mean(values/100),
`Weighted` = Hmisc::wtd.mean(values/100, country_weights)) %>%
gather(weighted_yes_no, values, -date, -coicop) %>%
arrange(desc(date)) %>%
left_join(coicop, by = "coicop") %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = Coicop, linetype = weighted_yes_no)) +
theme_minimal() + xlab("") + ylab("Mean Inflation, EA-19 (%)") +
scale_x_date(breaks = seq(1960, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = c("#1E1C1C", "#A81630")) +
scale_linetype_manual(values = c("dashed", "solid")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
theme(legend.position = c(0.75, 0.80),
legend.title = element_blank())
Compare: Standard Deviation, IQR max minus min
All - Unweighted
HICP Inflation
Code
%>%
prc_hicp_manr filter(coicop %in% c("CP00"),
%in% c("AT", "BE", "CY", "DE", "EE", "EL", "ES", "FI", "FR", "IE",
geo "IT", "LT", "LU", "LV", "MT", "NL", "PT", "SI", "SK")) %>%
%>%
month_to_date group_by(date) %>%
filter(n() == 19) %>%
summarise(`Standard Deviation` = sd(values/100),
`Interquartile Range (IQR)` = quantile(values/100, 0.75)-quantile(values/100, 0.25)) %>%
gather(Variable, values, -date) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = Variable, linetype = Variable)) +
theme_minimal() + xlab("") + ylab("HICP Inflation, Std, IQR, Unweighted, EA-19 (%)") +
scale_x_date(breaks = seq(1960, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = c("#1E1C1C", "#A81630", "#003399")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
theme(legend.position = c(0.7, 0.90),
legend.title = element_blank())
Core Inflation
Code
%>%
prc_hicp_manr filter(coicop %in% c("TOT_X_NRG_FOOD"),
%in% c("AT", "BE", "CY", "DE", "EE", "EL", "ES", "FI", "FR", "IE",
geo "IT", "LT", "LU", "LV", "MT", "NL", "PT", "SI", "SK")) %>%
%>%
month_to_date group_by(date) %>%
filter(n() == 19) %>%
summarise(`Standard Deviation` = sd(values/100),
`Interquartile Range (IQR)` = quantile(values/100, 0.75)-quantile(values/100, 0.25),
`Maximum - Minimum` = max(values/100) - min(values/100)) %>%
gather(Variable, values, -date) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = Variable)) +
theme_minimal() + xlab("") + ylab("Core Inflation, Std, IQR, Max-Min, Unweighted, EA-19 (%)") +
scale_x_date(breaks = seq(1960, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = c("#1E1C1C", "#A81630", "#003399")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
theme(legend.position = c(0.7, 0.90),
legend.title = element_blank())
All - Weighted
HICP Inflation
Code
%>%
prc_hicp_manr filter(coicop %in% c("CP00"),
%in% c("AT", "BE", "CY", "DE", "EE", "EL", "ES", "FI", "FR", "IE",
geo "IT", "LT", "LU", "LV", "MT", "NL", "PT", "SI", "SK")) %>%
mutate(year = substr(time, 1, 4)) %>%
left_join(prc_hicp_cow %>%
filter(statinfo == "COWEA19", geo != "EA19") %>%
transmute(geo, year = time, country_weights = values),
by = c("geo", "year")) %>%
%>%
month_to_date filter(!is.na(values), !is.na(country_weights)) %>%
group_by(date) %>%
arrange(date) %>%
filter(n() == 19) %>%
summarise(`Standard Deviation` = sqrt(Hmisc::wtd.var(values/100, country_weights)),
`Interquartile Range (IQR)` = Hmisc::wtd.quantile(values/100, country_weights, probs = 0.75) -
::wtd.quantile(values/100, country_weights, probs = 0.25)) %>%
Hmiscgather(Variable, values, -date) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = Variable, linetype = Variable)) +
theme_minimal() + xlab("") + ylab("HICP Inflation, Std, IQR, Weighted, EA-19 (%)") +
scale_x_date(breaks = seq(1960, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = c("#1E1C1C", "#A81630", "#003399")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
theme(legend.position = c(0.7, 0.90),
legend.title = element_blank())
Core Inflation
Code
%>%
prc_hicp_manr filter(coicop %in% c("TOT_X_NRG_FOOD"),
%in% c("AT", "BE", "CY", "DE", "EE", "EL", "ES", "FI", "FR", "IE",
geo "IT", "LT", "LU", "LV", "MT", "NL", "PT", "SI", "SK")) %>%
mutate(year = substr(time, 1, 4)) %>%
left_join(prc_hicp_cow %>%
filter(statinfo == "COWEA19", geo != "EA19") %>%
transmute(geo, year = time, country_weights = values),
by = c("geo", "year")) %>%
%>%
month_to_date filter(!is.na(values), !is.na(country_weights)) %>%
group_by(date) %>%
filter(n() == 19) %>%
summarise(`Standard Deviation` = sqrt(Hmisc::wtd.var(values/100, country_weights)),
`Interquartile Range (IQR)` = Hmisc::wtd.quantile(values/100, country_weights, probs = 0.75) -
::wtd.quantile(values/100, country_weights, probs = 0.25)) %>%
Hmiscgather(Variable, values, -date) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = Variable, linetype = Variable)) +
theme_minimal() + xlab("") + ylab("Core Inflation, Std, IQR, Weighted, EA-19 (%)") +
scale_x_date(breaks = seq(1960, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = c("#1E1C1C", "#A81630", "#003399")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
theme(legend.position = c(0.7, 0.90),
legend.title = element_blank())
Weighted, Unweighted
HICP Inflation
Core Inflation
Standard Deviation of Inflation
All - Unweighted
Code
%>%
prc_hicp_manr filter(coicop %in% c("TOT_X_NRG_FOOD", "CP00"),
%in% c("AT", "BE", "CY", "DE", "EE", "EL", "ES", "FI", "FR", "IE",
geo "IT", "LT", "LU", "LV", "MT", "NL", "PT", "SI", "SK")) %>%
%>%
month_to_date group_by(coicop, date) %>%
summarise(values = sd(values/100)) %>%
left_join(coicop, by = "coicop") %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = Coicop, linetype = Coicop)) +
theme_minimal() + xlab("") + ylab("Standard Deviation of Inflation, Unweighted, EA-19 (%)") +
scale_x_date(breaks = seq(1960, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = c("#1E1C1C", "#A81630")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
theme(legend.position = c(0.55, 0.90),
legend.title = element_blank())
All - Weighted
Headline, Core
All
Code
%>%
prc_hicp_manr filter(coicop %in% c("TOT_X_NRG_FOOD", "CP00"),
%in% c("AT", "BE", "CY", "DE", "EE", "EL", "ES", "FI", "FR", "IE",
geo "IT", "LT", "LU", "LV", "MT", "NL", "PT", "SI", "SK", "HR")) %>%
mutate(year = substr(time, 1, 4)) %>%
left_join(geo, by = "geo") %>%
#filter(!(Geo %in% intersect(eurozone_countries, CEEC_countries))) %>%
left_join(prc_hicp_cow %>%
filter(statinfo == "COWEA19", geo != "EA19") %>%
transmute(geo, year = time, country_weights = values, uniform_weights = 1),
by = c("geo", "year")) %>%
%>%
month_to_date group_by(coicop, date) %>%
summarise(values = sqrt(Hmisc::wtd.var(values/100, country_weights))) %>%
left_join(coicop, by = "coicop") %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = Coicop, linetype = Coicop)) +
theme_minimal() + xlab("") + ylab("Standard Deviation of Inflation, Weighted, EA-20 (%)") +
scale_x_date(breaks = seq(1960, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = c("#1E1C1C", "#A81630")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, .5),
labels = percent_format(a = .1)) +
theme(legend.position = c(0.55, 0.90),
legend.title = element_blank())
2017-
Code
%>%
prc_hicp_manr filter(coicop %in% c("TOT_X_NRG_FOOD", "CP00"),
%in% c("AT", "BE", "CY", "DE", "EE", "EL", "ES", "FI", "FR", "IE",
geo "IT", "LT", "LU", "LV", "MT", "NL", "PT", "SI", "SK", "HR")) %>%
mutate(year = substr(time, 1, 4)) %>%
left_join(prc_hicp_cow %>%
filter(statinfo == "COWEA19", geo != "EA19") %>%
transmute(geo, year = time, country_weights = values, uniform_weights = 1),
by = c("geo", "year")) %>%
%>%
month_to_date group_by(coicop, date) %>%
summarise(values = sqrt(Hmisc::wtd.var(values/100, country_weights))) %>%
left_join(coicop, by = "coicop") %>%
filter(date >= as.Date("2017-01-01")) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = Coicop, linetype = Coicop)) +
theme_minimal() + xlab("") + ylab("Standard Deviation of Inflation, Weighted, EA-20 (%)") +
scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = c("#1E1C1C", "#A81630")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, .5),
labels = percent_format(a = .1)) +
theme(legend.position = c(0.55, 0.90),
legend.title = element_blank())
Table
Code
<- "2022M10"
instant_time load_data("eurostat/coicop.RData")
%>%
prc_hicp_manr filter(geo %in% c("AT", "BE", "CY", "DE", "EE", "EL", "ES", "FI", "FR", "IE",
"IT", "LT", "LU", "LV", "MT", "NL", "PT", "SI", "SK"),
== instant_time) %>%
time mutate(year = substr(time, 1, 4)) %>%
left_join(prc_hicp_cow %>%
filter(statinfo == "COWEA19", geo != "EA19") %>%
transmute(geo, year = time, country_weights = values, uniform_weights = 1),
by = c("geo", "year")) %>%
group_by(coicop) %>%
summarise(values = sqrt(Hmisc::wtd.var(values, country_weights))) %>%
left_join(coicop, by = "coicop") %>%
arrange(-values) %>%
transmute(coicop, Coicop, `Weighted Std.` = paste0(round(values, 1), " %")) %>%
head(9) %>%
print_table_conditional()
coicop | Coicop | Weighted Std. |
---|---|---|
CP0451 | Electricity | 73.7 % |
AP_NRG | Administered prices, energy | 51.8 % |
ELC_GAS | Electricity, gas, solid fuels and heat energy | 51.7 % |
CP045 | Electricity, gas and other fuels | 48.9 % |
CP04521 | Natural gas and town gas | 46.3 % |
CP0452 | Gas | 44 % |
CP04549 | Other solid fuels | 38.3 % |
CP0454 | Solid fuels | 35.3 % |
CP07332 | International flights | 34.8 % |
CP0451, CP07332, CP0452, CP0454
All
Code
%>%
prc_hicp_manr filter(coicop %in% c("CP0451", "CP07332", "CP0452", "CP0454"),
%in% c("AT", "BE", "CY", "DE", "EE", "EL", "ES", "FI", "FR", "IE",
geo "IT", "LT", "LU", "LV", "MT", "NL", "PT", "SI", "SK")) %>%
mutate(year = substr(time, 1, 4)) %>%
left_join(geo, by = "geo") %>%
left_join(prc_hicp_cow %>%
filter(statinfo == "COWEA19", geo != "EA19") %>%
transmute(geo, year = time, country_weights = values, uniform_weights = 1),
by = c("geo", "year")) %>%
%>%
month_to_date group_by(coicop, date) %>%
summarise(values = sqrt(Hmisc::wtd.var(values/100, country_weights))) %>%
left_join(coicop, by = "coicop") %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = Coicop)) +
theme_minimal() + xlab("") + ylab("Standard Deviation of Inflation, Weighted, EA-19 (%)") +
scale_x_date(breaks = seq(1960, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
#scale_color_manual(values = c("#1E1C1C", "#A81630")) +
scale_y_continuous(breaks = 0.01*seq(-20, 100, 5),
labels = percent_format(a = 1)) +
theme(legend.position = c(0.55, 0.90),
legend.title = element_blank())
2017-
Code
%>%
prc_hicp_manr filter(coicop %in% c("CP0451", "CP07332", "CP0452", "CP0454"),
%in% c("AT", "BE", "CY", "DE", "EE", "EL", "ES", "FI", "FR", "IE",
geo "IT", "LT", "LU", "LV", "MT", "NL", "PT", "SI", "SK")) %>%
mutate(year = substr(time, 1, 4)) %>%
left_join(geo, by = "geo") %>%
left_join(prc_hicp_cow %>%
filter(statinfo == "COWEA19", geo != "EA19") %>%
transmute(geo, year = time, country_weights = values, uniform_weights = 1),
by = c("geo", "year")) %>%
%>%
month_to_date filter(date >= as.Date("2017-01-01")) %>%
group_by(coicop, date) %>%
summarise(values = sqrt(Hmisc::wtd.var(values/100, country_weights))) %>%
left_join(coicop, by = "coicop") %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = Coicop)) +
theme_minimal() + xlab("") + ylab("Standard Deviation of Inflation, Weighted, EA-19 (%)") +
scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
#scale_color_manual(values = c("#1E1C1C", "#A81630")) +
scale_y_continuous(breaks = 0.01*seq(-20, 100, 5),
labels = percent_format(a = 1)) +
theme(legend.position = c(0.55, 0.90),
legend.title = element_blank())
CP01, CP02, CP03, CP05
Code
%>%
prc_hicp_manr filter(coicop %in% c("CP01", "CP02", "CP03", "CP05"),
%in% c("AT", "BE", "CY", "DE", "EE", "EL", "ES", "FI", "FR", "IE",
geo "IT", "LT", "LU", "LV", "MT", "NL", "PT", "SI", "SK")) %>%
mutate(year = substr(time, 1, 4)) %>%
left_join(geo, by = "geo") %>%
filter(!(Geo %in% intersect(eurozone_countries, CEEC_countries))) %>%
left_join(prc_hicp_cow %>%
filter(statinfo == "COWEA19", geo != "EA19") %>%
transmute(geo, year = time, country_weights = values, uniform_weights = 1),
by = c("geo", "year")) %>%
%>%
month_to_date group_by(coicop, date) %>%
summarise(values = sqrt(Hmisc::wtd.var(values/100, country_weights))) %>%
left_join(coicop, by = "coicop") %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = Coicop)) +
theme_minimal() + xlab("") + ylab("Standard Deviation of Inflation, Weighted, EA-19 (%)") +
scale_x_date(breaks = seq(1960, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
#scale_color_manual(values = c("#1E1C1C", "#A81630")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, .5),
labels = percent_format(a = .1)) +
theme(legend.position = c(0.55, 0.90),
legend.title = element_blank())
CP06, CP07, CP08, CP09
Code
%>%
prc_hicp_manr filter(coicop %in% c("CP06", "CP07", "CP08", "CP09"),
%in% c("AT", "BE", "CY", "DE", "EE", "EL", "ES", "FI", "FR", "IE",
geo "IT", "LT", "LU", "LV", "MT", "NL", "PT", "SI", "SK")) %>%
mutate(year = substr(time, 1, 4)) %>%
left_join(geo, by = "geo") %>%
filter(!(Geo %in% intersect(eurozone_countries, CEEC_countries))) %>%
left_join(prc_hicp_cow %>%
filter(statinfo == "COWEA19", geo != "EA19") %>%
transmute(geo, year = time, country_weights = values, uniform_weights = 1),
by = c("geo", "year")) %>%
%>%
month_to_date group_by(coicop, date) %>%
summarise(values = sqrt(Hmisc::wtd.var(values/100, country_weights))) %>%
left_join(coicop, by = "coicop") %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = Coicop)) +
theme_minimal() + xlab("") + ylab("Standard Deviation of Inflation, Weighted, EA-19 (%)") +
scale_x_date(breaks = seq(1960, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
#scale_color_manual(values = c("#1E1C1C", "#A81630")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, .5),
labels = percent_format(a = .1)) +
theme(legend.position = c(0.55, 0.90),
legend.title = element_blank())
CP10, CP11, CP12
Code
%>%
prc_hicp_manr filter(coicop %in% c("CP10", "CP11", "CP12"),
%in% c("AT", "BE", "CY", "DE", "EE", "EL", "ES", "FI", "FR", "IE",
geo "IT", "LT", "LU", "LV", "MT", "NL", "PT", "SI", "SK")) %>%
mutate(year = substr(time, 1, 4)) %>%
left_join(geo, by = "geo") %>%
filter(!(Geo %in% intersect(eurozone_countries, CEEC_countries))) %>%
left_join(prc_hicp_cow %>%
filter(statinfo == "COWEA19", geo != "EA19") %>%
transmute(geo, year = time, country_weights = values, uniform_weights = 1),
by = c("geo", "year")) %>%
%>%
month_to_date group_by(coicop, date) %>%
summarise(values = sqrt(Hmisc::wtd.var(values/100, country_weights))) %>%
left_join(coicop, by = "coicop") %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = Coicop)) +
theme_minimal() + xlab("") + ylab("Standard Deviation of Inflation, Weighted, EA-19 (%)") +
scale_x_date(breaks = seq(1960, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
#scale_color_manual(values = c("#1E1C1C", "#A81630")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, .5),
labels = percent_format(a = .1)) +
theme(legend.position = c(0.55, 0.90),
legend.title = element_blank())
All - Weighted, Unweighted
Code
<- tibble(coicop = "CP00", Coicop = "Headline inflation") %>%
coicop add_row(coicop = "TOT_X_NRG_FOOD", Coicop = "Core inflation")
%>%
prc_hicp_manr filter(coicop %in% c("TOT_X_NRG_FOOD", "CP00"),
%in% c("AT", "BE", "CY", "DE", "EE", "EL", "ES", "FI", "FR", "IE",
geo "IT", "LT", "LU", "LV", "MT", "NL", "PT", "SI", "SK")) %>%
mutate(year = substr(time, 1, 4)) %>%
left_join(prc_hicp_cow %>%
filter(statinfo == "COWEA19", geo != "EA19") %>%
transmute(geo, year = time, country_weights = values, uniform_weights = 1),
by = c("geo", "year")) %>%
%>%
month_to_date group_by(coicop, date) %>%
summarise(`Unweighted` = sqrt(Hmisc::wtd.var(values/100, uniform_weights)),
`Weighted` = sqrt(Hmisc::wtd.var(values/100, country_weights))) %>%
gather(weighted_yes_no, values, -date, -coicop) %>%
left_join(coicop, by = "coicop") %>%
arrange(desc(date)) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = Coicop, linetype = weighted_yes_no)) +
theme_minimal() + xlab("") + ylab("Standard Deviation of Inflation, EA-19 (%)") +
scale_x_date(breaks = seq(1960, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = c("#1E1C1C", "#A81630")) +
scale_linetype_manual(values = c("dashed", "solid")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
theme(legend.position = c(0.75, 0.80),
legend.title = element_blank())
Interquartile range (IQR) of Inflation
All - Unweighted
Code
%>%
prc_hicp_manr filter(coicop %in% c("TOT_X_NRG_FOOD", "CP00"),
%in% c("AT", "BE", "CY", "DE", "EE", "EL", "ES", "FI", "FR", "IE",
geo "IT", "LT", "LU", "LV", "MT", "NL", "PT", "SI", "SK")) %>%
%>%
month_to_date group_by(coicop, date) %>%
filter(n() == 19) %>%
summarise(values = quantile(values/100, probs = 0.75) - quantile(values/100, probs = 0.25)) %>%
left_join(coicop, by = "coicop") %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = Coicop)) +
theme_minimal() + xlab("") + ylab("Interquartile range of Inflation, Unweighted, EA-19 (%)") +
scale_x_date(breaks = seq(1960, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = c("#1E1C1C", "#A81630")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
theme(legend.position = c(0.55, 0.90),
legend.title = element_blank())
All - Weighted
Code
%>%
prc_hicp_manr filter(coicop %in% c("TOT_X_NRG_FOOD", "CP00"),
%in% c("AT", "BE", "CY", "DE", "EE", "EL", "ES", "FI", "FR", "IE",
geo "IT", "LT", "LU", "LV", "MT", "NL", "PT", "SI", "SK")) %>%
mutate(year = substr(time, 1, 4)) %>%
left_join(prc_hicp_cow %>%
filter(statinfo == "COWEA19", geo != "EA19") %>%
transmute(geo, year = time, country_weights = values),
by = c("geo", "year")) %>%
%>%
month_to_date group_by(coicop, date) %>%
filter(n() == 19) %>%
summarise(values = Hmisc::wtd.quantile(values/100, country_weights, probs = 0.75) -
::wtd.quantile(values/100, country_weights, probs = 0.25)) %>%
Hmiscleft_join(coicop, by = "coicop") %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = Coicop)) +
theme_minimal() + xlab("") + ylab("Interquartile range of Inflation, Weighted, EA-19 (%)") +
scale_x_date(breaks = seq(1960, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = c("#1E1C1C", "#A81630")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
theme(legend.position = c(0.55, 0.90),
legend.title = element_blank())
All - Weighted, Unweighted
Code
%>%
prc_hicp_manr filter(coicop %in% c("TOT_X_NRG_FOOD", "CP00"),
%in% c("AT", "BE", "CY", "DE", "EE", "EL", "ES", "FI", "FR", "IE",
geo "IT", "LT", "LU", "LV", "MT", "NL", "PT", "SI", "SK")) %>%
mutate(year = substr(time, 1, 4)) %>%
left_join(prc_hicp_cow %>%
filter(statinfo == "COWEA19", geo != "EA19") %>%
transmute(geo, year = time, country_weights = values, uniform_weights = 1),
by = c("geo", "year")) %>%
%>%
month_to_date group_by(coicop, date) %>%
filter(n() == 19) %>%
summarise(`Unweighted` = quantile(values/100, probs = 0.75) -
quantile(values/100, probs = 0.25),
`Weighted` = Hmisc::wtd.quantile(values/100, country_weights, probs = 0.75) -
::wtd.quantile(values/100, country_weights, probs = 0.25)) %>%
Hmiscgather(weighted_yes_no, values, -date, -coicop) %>%
left_join(coicop, by = "coicop") %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = Coicop, linetype = weighted_yes_no)) +
theme_minimal() + xlab("") + ylab("Interquartile range (IQR) of Inflation, EA-19 (%)") +
scale_x_date(breaks = seq(1960, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = c("#1E1C1C", "#A81630")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
theme(legend.position = c(0.45, 0.80),
legend.title = element_blank())
Contributions to inflation
Eurozone
Code
<- prc_hicp_inw %>%
prc_hicp_inw_2022 filter(time == "2022",
== "EA") %>%
geo mutate(values = values/1000) %>%
select(-time) %>%
rename(weights = values) %>%
select_if(~ n_distinct(.) > 1)
<- prc_hicp_manr %>%
prc_hicp_manr_last filter(time == "2022M03",
== "EA") %>%
geo select_if(~ n_distinct(.) > 1)
%>%
prc_hicp_inw_2022 inner_join(prc_hicp_manr_last, by = c("coicop")) %>%
left_join(coicop, by = "coicop") %>%
mutate(contributions = weights*values) %>%
arrange(-contributions) %>%
select(coicop, Coicop, everything()) %>%
print_table_conditional()
France, Italy, Germany
Code
<- prc_hicp_inw %>%
prc_hicp_inw_2022 filter(time == "2022",
%in% c("DE", "FR", "IT")) %>%
geo mutate(values = values/1000) %>%
select(-time) %>%
rename(weights = values) %>%
select_if(~ n_distinct(.) > 1)
<- prc_hicp_manr %>%
prc_hicp_manr_last filter(time == "2022M03",
%in% c("DE", "FR", "IT")) %>%
geo select_if(~ n_distinct(.) > 1)
%>%
prc_hicp_inw_2022 inner_join(prc_hicp_manr_last, by = c("coicop", "geo")) %>%
left_join(coicop, by = "coicop") %>%
left_join(geo, by = "geo") %>%
mutate(contributions = weights*values) %>%
select(coicop, Coicop, Geo, contributions) %>%
spread(Geo, contributions) %>%
print_table_conditional()
CP0612
Table
Code
%>%
prc_hicp_manr filter(coicop == "CP0612",
%in% c("2021M01", "2021M01", "2021M11")) %>%
time left_join(geo, by = "geo") %>%
select_if(~ n_distinct(.) > 1) %>%
spread(time, values) %>%
arrange(`2021M11`) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Geo))),
Flag = paste0('<img src="../../icon/flag/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
France, Germany, Spain, Italy
Code
%>%
prc_hicp_manr filter(coicop == "CP0612",
%in% c("FR", "DE", "ES", "IT")) %>%
geo %>%
month_to_date filter(date >= as.Date("2020-01-01")) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("CP0612 - Other medical products") +
scale_x_date(breaks = "3 months",
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-40, 20, 2),
labels = percent_format(a = 1)) +
scale_color_identity() + add_4flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
Energy
List - Online
- List. html
Code
i_g("bib/eurostat/NRG_aggregate.png")
List - COICOP
Code
<- c("CP0451", "CP04521", "CP04522", "CP0453", "CP04541", "CP04549", "CP0455",
coicop_NRG "CP07221", "CP07222", "CP07223")
%>%
prc_hicp_manr filter(coicop %in% coicop_NRG) %>%
left_join(coicop, by = "coicop") %>%
group_by(coicop, Coicop) %>%
summarise(Nobs = n(),
`2022M03, France` = values[geo == "FR" & time == "2022M03"]) %>%
print_table_conditional()
coicop | Coicop | Nobs | 2022M03, France |
---|---|---|---|
CP0451 | NA | 13137 | 6.0 |
CP04521 | NA | 4548 | 41.3 |
CP04522 | NA | 4116 | 8.3 |
CP0453 | NA | 10055 | 84.0 |
CP04549 | NA | 4360 | 5.8 |
CP0455 | NA | 9548 | 52.9 |
CP07221 | NA | 5101 | 43.5 |
CP07222 | NA | 5040 | 30.5 |
CP07223 | NA | 3194 | 12.0 |
All
Code
load_data("eurostat/coicop_fr.RData")
%>%
prc_hicp_manr filter(coicop %in% c("CP00", "TOT_X_NRG", "TOT_X_NRG_FOOD_NP"),
%in% c("EA")) %>%
geo %>%
month_to_date left_join(coicop, by = "coicop") %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = Coicop)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
#scale_color_manual(values = viridis(4)[1:3]) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
theme(legend.position = c(0.4, 0.90),
legend.title = element_blank())
Code
load_data("eurostat/coicop.RData")
2010-
Code
load_data("eurostat/coicop_fr.RData")
%>%
prc_hicp_manr filter(coicop %in% c("CP00", "TOT_X_NRG", "TOT_X_NRG_FOOD_NP"),
%in% c("EA")) %>%
geo %>%
month_to_date filter(date >= as.Date("2010-01-01")) %>%
left_join(coicop, by = "coicop") %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = Coicop)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
#scale_color_manual(values = viridis(4)[1:3]) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
theme(legend.position = c(0.4, 0.90),
legend.title = element_blank())
Code
load_data("eurostat/coicop.RData")
2016-
Code
load_data("eurostat/coicop_fr.RData")
%>%
prc_hicp_manr filter(coicop %in% c("CP00", "TOT_X_NRG", "TOT_X_NRG_FOOD_NP"),
%in% c("EA")) %>%
geo %>%
month_to_date filter(date >= as.Date("2016-01-01")) %>%
left_join(coicop, by = "coicop") %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = Coicop)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
#scale_color_manual(values = viridis(4)[1:3]) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
theme(legend.position = c(0.4, 0.90),
legend.title = element_blank())
Code
load_data("eurostat/coicop.RData")
France, Germany, Italy, Netherlands, Europe
CP04521 - Town gas
2020-
Code
%>%
prc_hicp_manr filter(coicop == "CP04521",
%in% c("FR", "BE", "IT", "EA19", "NL")) %>%
geo %>%
month_to_date filter(date >= as.Date("2020-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("Inflation, CP04521 - Natural gas and town gas (%)") +
scale_x_date(breaks = seq.Date(as.Date("2019-12-01"), as.Date("2024-01-01"), "3 months"),
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 400, 20),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
geom_hline(yintercept = 0, linetype = "dashed")
CP0451 - Electricity
2020-
Code
%>%
prc_hicp_manr filter(coicop == "CP0451",
%in% c("FR", "DE", "IT", "EA19", "NL", "BE")) %>%
geo %>%
month_to_date filter(date >= as.Date("2021-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("Inflation, CP0451 - Electricité (%)") +
scale_x_date(breaks = seq.Date(as.Date("2019-12-01"), as.Date("2024-01-01"), "6 months"),
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 400, 20),
labels = percent_format(a = 1)) +
scale_color_identity() + add_6flags +
geom_hline(yintercept = 0, linetype = "dashed")
France, Germany, Italy, Spain, Europe
CP00
All
Code
%>%
prc_hicp_manr filter(coicop == "CP00",
%in% c("FR", "DE", "ES", "IT", "EA19", "US")) %>%
geo %>%
month_to_date left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2 years
Code
%>%
prc_hicp_manr filter(coicop == "CP00",
%in% c("FR", "DE", "ES", "IT", "EA19", "US")) %>%
geo %>%
month_to_date filter(date >= max(date) - years(2)) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq.Date(as.Date("2019-12-01"), as.Date("2024-01-01"), "2 months"),
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_6flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
France, Germany, Belgium, Netherlands
Total
Code
%>%
prc_hicp_manr filter(coicop == "CP00",
%in% c("FR", "DE", "BE", "NL")) %>%
geo %>%
month_to_date filter(date >= max(date) - years(2)) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq.Date(as.Date("2019-12-01"), as.Date("2024-01-01"), "1 month"),
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_4flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
Core
Code
%>%
prc_hicp_manr filter(coicop == "TOT_X_NRG_FOOD",
%in% c("FR", "DE", "BE", "NL")) %>%
geo %>%
month_to_date filter(date >= max(date) - years(2)) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq.Date(as.Date("2019-12-01"), as.Date("2024-01-01"), "1 month"),
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_4flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
CP04521 - Natural gas and town gas
Code
%>%
prc_hicp_manr filter(coicop == "CP04521",
%in% c("FR", "DE", "BE", "NL")) %>%
geo %>%
month_to_date filter(date >= max(date) - years(2)) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("Natural gas and twon gas") +
scale_x_date(breaks = seq.Date(as.Date("2019-12-01"), as.Date("2024-01-01"), "1 month"),
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-300, 300, 10),
labels = percent_format(a = 1)) +
scale_color_identity() + add_4flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
France, Germany, Italy, Spain, Europe
CP00
All
Code
%>%
prc_hicp_manr filter(coicop == "CP00",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2016-
Code
%>%
prc_hicp_manr filter(coicop == "CP00",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date filter(date >= as.Date("2016-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2020-
Code
%>%
prc_hicp_manr filter(coicop == "CP00",
%in% c("FR", "DE", "ES", "IT", "NL", "EA19")) %>%
geo %>%
month_to_date filter(date >= as.Date("2020-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq.Date(as.Date("2019-12-01"), as.Date("2024-01-01"), "3 months"),
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_6flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
CP041
All
Code
%>%
prc_hicp_manr filter(coicop == "CP041",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2016-
Code
%>%
prc_hicp_manr filter(coicop == "CP041",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date filter(date >= as.Date("2016-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2020-
Code
%>%
prc_hicp_manr filter(coicop == "CP041",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date filter(date >= as.Date("2020-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq.Date(as.Date("2019-12-01"), as.Date("2024-01-01"), "3 months"),
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, .5),
labels = percent_format(a = .1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
2 years
Code
%>%
prc_hicp_manr filter(coicop == "CP041",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date filter(date >= max(date) - years(2)) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq.Date(as.Date("2019-12-01"), as.Date("2024-01-01"), "1 months"),
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, .5),
labels = percent_format(a = .1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
1 year
Code
%>%
prc_hicp_manr filter(coicop == "CP041",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date filter(date >= max(date) - years(1)) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq.Date(as.Date("2019-12-01"), as.Date("2024-01-01"), "1 months"),
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, .2),
labels = percent_format(a = .1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
AP_NRG
All
Code
%>%
prc_hicp_manr filter(coicop == "AP_NRG",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 5),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2016-
Code
%>%
prc_hicp_manr filter(coicop == "AP_NRG",
%in% c("FR", "ES", "IT", "EA19")) %>%
geo # group_by(geo) %>%
# summarise(Nobs = n()) %>%
%>%
month_to_date filter(date >= as.Date("2016-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 100, 5),
labels = percent_format(a = 1)) +
scale_color_identity() + add_4flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2020-
Code
%>%
prc_hicp_manr filter(coicop == "AP_NRG",
%in% c("FR", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date filter(date >= as.Date("2020-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq.Date(as.Date("2019-12-01"), as.Date("2024-01-01"), "3 months"),
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 100, 10),
labels = percent_format(a = 1)) +
scale_color_identity() + add_4flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
CP04521 - Natural gas and town gas
All
Code
%>%
prc_hicp_manr filter(coicop == "CP04521",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2016-
Code
%>%
prc_hicp_manr filter(coicop == "CP04521",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date filter(date >= as.Date("2016-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 100, 5),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2020-
Code
%>%
prc_hicp_manr filter(coicop == "CP04521",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date filter(date >= as.Date("2020-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("Inflation, CP04521 - Natural gas and town gas (%)") +
scale_x_date(breaks = seq.Date(as.Date("2019-12-01"), as.Date("2024-01-01"), "3 months"),
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 200, 10),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
geom_hline(yintercept = 0, linetype = "dashed")
CP011 - Food
All
Code
%>%
prc_hicp_manr filter(coicop == "CP011",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2016-
Code
%>%
prc_hicp_manr filter(coicop == "CP011",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date filter(date >= as.Date("2016-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 100, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2020-
Code
%>%
prc_hicp_manr filter(coicop == "CP011",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date filter(date >= as.Date("2020-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("Inflation, CP011 - Alimentation (%)") +
scale_x_date(breaks = seq.Date(as.Date("2019-12-01"), as.Date("2024-01-01"), "3 months"),
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 100, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
geom_hline(yintercept = 0, linetype = "dashed")
CP0111 - Bread and cereals
All
Code
%>%
prc_hicp_manr filter(coicop == "CP0111",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2016-
Code
%>%
prc_hicp_manr filter(coicop == "CP0111",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date filter(date >= as.Date("2016-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 100, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2020-
Code
%>%
prc_hicp_manr filter(coicop == "CP0111",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date filter(date >= as.Date("2020-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq.Date(as.Date("2019-12-01"), as.Date("2024-01-01"), "3 months"),
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 100, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
CP0112 - Meat
All
Code
%>%
prc_hicp_manr filter(coicop == "CP0112",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2016-
Code
%>%
prc_hicp_manr filter(coicop == "CP0112",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date filter(date >= as.Date("2016-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 100, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2020-
Code
%>%
prc_hicp_manr filter(coicop == "CP0112",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date filter(date >= as.Date("2020-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq.Date(as.Date("2019-12-01"), as.Date("2024-01-01"), "3 months"),
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 100, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
CP0114 - Milk, cheese and eggs
All
Code
%>%
prc_hicp_manr filter(coicop == "CP0114",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2016-
Code
%>%
prc_hicp_manr filter(coicop == "CP0114",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date filter(date >= as.Date("2016-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 100, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2020-
Code
%>%
prc_hicp_manr filter(coicop == "CP0114",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date filter(date >= as.Date("2020-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq.Date(as.Date("2019-12-01"), as.Date("2024-01-01"), "3 months"),
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 100, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
CP0117 - Vegetables
All
Code
%>%
prc_hicp_manr filter(coicop == "CP0117",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2016-
Code
%>%
prc_hicp_manr filter(coicop == "CP0117",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date filter(date >= as.Date("2016-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 100, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2020-
Code
%>%
prc_hicp_manr filter(coicop == "CP0117",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date filter(date >= as.Date("2020-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq.Date(as.Date("2019-12-01"), as.Date("2024-01-01"), "3 months"),
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 100, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
CP07332 - International flights
All
Code
%>%
prc_hicp_manr filter(coicop == "CP07332",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 5),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2016-
Code
%>%
prc_hicp_manr filter(coicop == "CP07332",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date filter(date >= as.Date("2016-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 100, 5),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2020-
Code
%>%
prc_hicp_manr filter(coicop == "CP07332",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date filter(date >= as.Date("2020-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq.Date(as.Date("2019-12-01"), as.Date("2024-01-01"), "3 months"),
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 100, 10),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
CP0722 - Fuels and lubricants for personal transport equipment
All
Code
%>%
prc_hicp_manr filter(coicop == "CP0722",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 5),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2016-
Code
%>%
prc_hicp_manr filter(coicop == "CP0722",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date filter(date >= as.Date("2016-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 100, 10),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2020-
Code
%>%
prc_hicp_manr filter(coicop == "CP0722",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date filter(date >= as.Date("2020-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq.Date(as.Date("2019-12-01"), as.Date("2024-01-01"), "3 months"),
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 100, 10),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
CP072 - Operation of personal transport equipment
All
Code
%>%
prc_hicp_manr filter(coicop == "CP072",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 5),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2016-
Code
%>%
prc_hicp_manr filter(coicop == "CP072",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date filter(date >= as.Date("2016-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 100, 10),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2020-
Code
%>%
prc_hicp_manr filter(coicop == "CP072",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date filter(date >= as.Date("2020-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq.Date(as.Date("2019-12-01"), as.Date("2024-01-01"), "3 months"),
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 100, 5),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
CP0451 - Electricity
All
Code
%>%
prc_hicp_manr filter(coicop == "CP0451",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 5),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2016-
Code
%>%
prc_hicp_manr filter(coicop == "CP0451",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date filter(date >= as.Date("2016-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 100, 5),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2020-
Code
%>%
prc_hicp_manr filter(coicop == "CP0451",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date filter(date >= as.Date("2020-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq.Date(as.Date("2019-12-01"), as.Date("2024-01-01"), "3 months"),
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 300, 10),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
CP0452 - Gas
All
Code
%>%
prc_hicp_manr filter(coicop == "CP0452",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 5),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2016-
Code
%>%
prc_hicp_manr filter(coicop == "CP0452",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date filter(date >= as.Date("2016-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 100, 5),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2020-
Code
%>%
prc_hicp_manr filter(coicop == "CP0452",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date filter(date >= as.Date("2020-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq.Date(as.Date("2019-12-01"), as.Date("2024-01-01"), "3 months"),
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 100, 10),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
CP0453 - Liquid fuels
All
Code
%>%
prc_hicp_manr filter(coicop == "CP0453",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 5),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2016-
Code
%>%
prc_hicp_manr filter(coicop == "CP0453",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date filter(date >= as.Date("2016-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 100, 5),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2020-
Code
%>%
prc_hicp_manr filter(coicop == "CP0453",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date filter(date >= as.Date("2020-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq.Date(as.Date("2019-12-01"), as.Date("2024-01-01"), "3 months"),
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 100, 10),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
CP0454 - Solid fuels
All
Code
%>%
prc_hicp_manr filter(coicop == "CP0454",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 5),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2016-
Code
%>%
prc_hicp_manr filter(coicop == "CP0454",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date filter(date >= as.Date("2016-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 100, 5),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2020-
Code
%>%
prc_hicp_manr filter(coicop == "CP0454",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date filter(date >= as.Date("2020-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq.Date(as.Date("2019-12-01"), as.Date("2024-01-01"), "3 months"),
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 100, 5),
labels = percent_format(a = 1)) +
scale_color_identity() + add_4flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
CP045 - Electricity, gas and other fuels
All
Code
%>%
prc_hicp_manr filter(coicop == "CP045",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 5),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2016-
Code
%>%
prc_hicp_manr filter(coicop == "CP045",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date filter(date >= as.Date("2016-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 100, 5),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2020-
Code
%>%
prc_hicp_manr filter(coicop == "CP045",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date filter(date >= as.Date("2020-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq.Date(as.Date("2019-12-01"), as.Date("2024-01-01"), "3 months"),
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 100, 10),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
CP0455 - Heat energy
All
Code
%>%
prc_hicp_manr filter(coicop == "CP0455",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 5),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2016-
Code
%>%
prc_hicp_manr filter(coicop == "CP0455",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date filter(date >= as.Date("2016-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 100, 5),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2020-
Code
%>%
prc_hicp_manr filter(coicop == "CP0455",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date filter(date >= as.Date("2020-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq.Date(as.Date("2019-12-01"), as.Date("2024-01-01"), "3 months"),
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 100, 10),
labels = percent_format(a = 1)) +
scale_color_identity() + add_3flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
NRG
All
Code
%>%
prc_hicp_manr filter(coicop == "NRG",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 5),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2016-
Code
%>%
prc_hicp_manr filter(coicop == "NRG",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date filter(date >= as.Date("2016-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 100, 5),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2020-
Code
%>%
prc_hicp_manr filter(coicop == "NRG",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date filter(date >= as.Date("2020-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq.Date(as.Date("2019-12-01"), as.Date("2024-01-01"), "3 months"),
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 100, 10),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
SERV_TRA
All
Code
%>%
prc_hicp_manr filter(coicop == "SERV_TRA",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 5),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2016-
Code
%>%
prc_hicp_manr filter(coicop == "SERV_TRA",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date filter(date >= as.Date("2016-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 100, 5),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2020-
Code
%>%
prc_hicp_manr filter(coicop == "SERV_TRA",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date filter(date >= as.Date("2020-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq.Date(as.Date("2019-12-01"), as.Date("2024-01-01"), "3 months"),
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 100, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
FUEL
All
Code
%>%
prc_hicp_manr filter(coicop == "FUEL",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 5),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2016-
Code
%>%
prc_hicp_manr filter(coicop == "FUEL",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date filter(date >= as.Date("2016-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 100, 5),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2020-
Code
%>%
prc_hicp_manr filter(coicop == "FUEL",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date filter(date >= as.Date("2020-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq.Date(as.Date("2019-12-01"), as.Date("2024-01-01"), "3 months"),
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 100, 10),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
France, Germany, Italy, United Kingdom
CP00
All
Code
%>%
prc_hicp_manr filter(coicop == "CP00",
%in% c("FR", "DE", "UK", "IT")) %>%
geo %>%
month_to_date left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_flags(4) +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2016-
Code
%>%
prc_hicp_manr filter(coicop == "CP00",
%in% c("FR", "DE", "UK", "IT")) %>%
geo %>%
month_to_date filter(date >= as.Date("2016-01-01")) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_4flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2020-
Code
%>%
prc_hicp_manr filter(coicop == "CP00",
%in% c("FR", "DE", "UK", "IT")) %>%
geo %>%
month_to_date filter(date >= as.Date("2020-01-01")) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = "3 months",
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_4flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
France, Germany, Italy, Spain
TOT_X_NRG_FOOD - Core Inflation
All
Code
%>%
prc_hicp_manr filter(coicop == "TOT_X_NRG_FOOD",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("Core Inflation (%)") +
scale_x_date(breaks = seq(1960, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_flags(5) +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2016-
Code
%>%
prc_hicp_manr filter(coicop == "TOT_X_NRG_FOOD",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date filter(date >= as.Date("2016-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("Core Inflation (%)") +
scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2020-
Code
%>%
prc_hicp_manr filter(coicop == "TOT_X_NRG_FOOD",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date filter(date >= as.Date("2020-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("Core Inflation (%)") +
scale_x_date(breaks = "3 months",
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
2 years
Code
%>%
prc_hicp_manr filter(coicop == "TOT_X_NRG_FOOD",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date filter(date >= Sys.Date() - years(2)) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("Core Inflation (%)") +
scale_x_date(breaks = "1 month",
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
1 year
Code
%>%
prc_hicp_manr filter(coicop == "TOT_X_NRG_FOOD",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date filter(date >= Sys.Date() - years(1)) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("Core Inflation (%)") +
scale_x_date(breaks = "1 month",
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, .2),
labels = percent_format(a = .1)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
CP00
All
Code
%>%
prc_hicp_manr filter(coicop == "CP00",
%in% c("FR", "DE", "ES", "IT")) %>%
geo %>%
month_to_date left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_flags(4) +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2016-
Code
%>%
prc_hicp_manr filter(coicop == "CP00",
%in% c("FR", "DE", "ES", "IT")) %>%
geo %>%
month_to_date filter(date >= as.Date("2016-01-01")) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_4flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2020-
Code
%>%
prc_hicp_manr filter(coicop == "CP00",
%in% c("FR", "DE", "ES", "IT", "EA19")) %>%
geo %>%
month_to_date filter(date >= as.Date("2020-01-01")) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = "3 months",
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_4flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
CP01 - Food and non-alcoholic beverages
2016-
Code
%>%
prc_hicp_manr filter(coicop == "CP01",
%in% c("FR", "DE", "ES", "IT")) %>%
geo %>%
month_to_date filter(date >= as.Date("2016-01-01")) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_4flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2 years
Code
%>%
prc_hicp_manr filter(coicop == "CP01",
%in% c("FR", "DE", "ES", "IT")) %>%
geo %>%
month_to_date filter(date >= Sys.Date() - years(2)) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = "2 months",
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 40, 2),
labels = percent_format(a = 1)) +
scale_color_identity() + add_4flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
CP02 - Alcoholic beverages, tobacco and narcotics
All
Code
%>%
prc_hicp_manr filter(coicop == "CP02",
%in% c("FR", "DE", "ES", "IT")) %>%
geo %>%
month_to_date left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_4flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2010-
Code
%>%
prc_hicp_manr filter(coicop == "CP02",
%in% c("FR", "DE", "ES", "IT")) %>%
geo %>%
month_to_date filter(date >= as.Date("2010-01-01")) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_4flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2016-
Code
%>%
prc_hicp_manr filter(coicop == "CP02",
%in% c("FR", "DE", "ES", "IT")) %>%
geo %>%
month_to_date filter(date >= as.Date("2016-01-01")) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_4flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2 years
Code
%>%
prc_hicp_manr filter(coicop == "CP02",
%in% c("FR", "DE", "ES", "IT")) %>%
geo %>%
month_to_date filter(date >= Sys.Date() - years(2)) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = "2 months",
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 40, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_4flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
CP03 - Clothing and footwear
2016-
Code
%>%
prc_hicp_manr filter(coicop == "CP03",
%in% c("FR", "DE", "ES", "IT")) %>%
geo %>%
month_to_date filter(date >= as.Date("2016-01-01")) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_4flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2 years
Code
%>%
prc_hicp_manr filter(coicop == "CP03",
%in% c("FR", "DE", "ES", "IT")) %>%
geo %>%
month_to_date filter(date >= Sys.Date() - years(2)) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = "2 months",
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 40, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_4flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
CP04 - Housing, water, electricity, gas and other fuels
2016-
Code
%>%
prc_hicp_manr filter(coicop == "CP04",
%in% c("FR", "DE", "ES", "IT")) %>%
geo %>%
month_to_date filter(date >= as.Date("2016-01-01")) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_4flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2 years
Code
%>%
prc_hicp_manr filter(coicop == "CP04",
%in% c("FR", "DE", "ES", "IT")) %>%
geo %>%
month_to_date filter(date >= Sys.Date() - years(2)) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = "2 months",
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 100, 5),
labels = percent_format(a = 1)) +
scale_color_identity() + add_4flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
CP05 - Furnishings
2016-
Code
%>%
prc_hicp_manr filter(coicop == "CP05",
%in% c("FR", "DE", "ES", "IT")) %>%
geo %>%
month_to_date filter(date >= as.Date("2016-01-01")) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_4flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
CP06 - Health
2016-
Code
%>%
prc_hicp_manr filter(coicop == "CP06",
%in% c("FR", "DE", "ES", "IT")) %>%
geo %>%
month_to_date filter(date >= as.Date("2016-01-01")) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 0.5),
labels = percent_format(a = .1)) +
scale_color_identity() + add_4flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2020-
Code
%>%
prc_hicp_manr filter(coicop == "CP06",
%in% c("FR", "DE", "ES", "IT")) %>%
geo %>%
month_to_date filter(date >= as.Date("2020-01-01")) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = "2 months",
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 0.5),
labels = percent_format(a = .1)) +
scale_color_identity() + add_4flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
2021-
Code
%>%
prc_hicp_manr filter(coicop == "CP06",
%in% c("FR", "DE", "ES", "IT")) %>%
geo %>%
month_to_date filter(date >= as.Date("2020-01-01")) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = "2 months",
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 0.5),
labels = percent_format(a = .1)) +
scale_color_identity() + add_4flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
2 years
Code
%>%
prc_hicp_manr filter(coicop == "CP06",
%in% c("FR", "DE", "ES", "IT")) %>%
geo %>%
month_to_date filter(date >= Sys.Date() - years(2)) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = "2 months",
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 40, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_4flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
CP063
2020-
Code
%>%
prc_hicp_manr filter(coicop == "CP0612",
%in% c("FR", "DE", "ES", "IT")) %>%
geo %>%
month_to_date filter(date >= as.Date("2020-01-01")) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("CP0612 - Other medical products") +
scale_x_date(breaks = "3 months",
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-40, 20, 2),
labels = percent_format(a = 1)) +
scale_color_identity() + add_4flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
2 years
Code
%>%
prc_hicp_manr filter(coicop == "CP063",
%in% c("FR", "DE", "ES", "IT")) %>%
geo %>%
month_to_date filter(date >= Sys.Date() - years(2)) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = "2 months",
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 40, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_4flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
CP07 - Transport
2016-
Code
%>%
prc_hicp_manr filter(coicop == "CP07",
%in% c("FR", "DE", "ES", "IT")) %>%
geo %>%
month_to_date filter(date >= as.Date("2016-01-01")) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_4flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2021-
Code
%>%
prc_hicp_manr filter(coicop == "CP07",
%in% c("FR", "DE", "ES", "IT")) %>%
geo %>%
month_to_date filter(date >= as.Date("2021-01-01")) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = "2 months",
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 2),
labels = percent_format(a = 1)) +
scale_color_identity() + add_4flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
2 years
Code
%>%
prc_hicp_manr filter(coicop == "CP07",
%in% c("FR", "DE", "ES", "IT")) %>%
geo %>%
month_to_date filter(date >= Sys.Date() - years(2)) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = "2 months",
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 2),
labels = percent_format(a = 1)) +
scale_color_identity() + add_4flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
CP08 - Communications
2016-
Code
%>%
prc_hicp_manr filter(coicop == "CP08",
%in% c("FR", "DE", "ES", "IT")) %>%
geo %>%
month_to_date filter(date >= as.Date("2016-01-01")) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_4flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2 years
Code
%>%
prc_hicp_manr filter(coicop == "CP08",
%in% c("FR", "DE", "ES", "IT")) %>%
geo %>%
month_to_date filter(date >= Sys.Date() - years(2)) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = "2 months",
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 2),
labels = percent_format(a = 1)) +
scale_color_identity() + add_4flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
CP09 - Recreation and culture
2016-
Code
%>%
prc_hicp_manr filter(coicop == "CP09",
%in% c("FR", "DE", "ES", "IT")) %>%
geo %>%
month_to_date filter(date >= as.Date("2016-01-01")) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_4flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2 years
Code
%>%
prc_hicp_manr filter(coicop == "CP09",
%in% c("FR", "DE", "ES", "IT")) %>%
geo %>%
month_to_date filter(date >= Sys.Date() - years(2)) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = "2 months",
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_4flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
CP10 - Education
2016-
Code
%>%
prc_hicp_manr filter(coicop == "CP10",
%in% c("FR", "DE", "ES", "IT")) %>%
geo %>%
month_to_date filter(date >= as.Date("2016-01-01")) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_4flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2 years
Code
%>%
prc_hicp_manr filter(coicop == "CP10",
%in% c("FR", "DE", "ES", "IT")) %>%
geo %>%
month_to_date filter(date >= Sys.Date() - years(2)) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = "2 months",
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_4flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
CP11 - Restaurants and hotels
2016-
Code
%>%
prc_hicp_manr filter(coicop == "CP11",
%in% c("FR", "DE", "ES", "IT")) %>%
geo %>%
month_to_date filter(date >= as.Date("2016-01-01")) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_4flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2 years
Code
%>%
prc_hicp_manr filter(coicop == "CP11",
%in% c("FR", "DE", "ES", "IT")) %>%
geo %>%
month_to_date filter(date >= Sys.Date() - years(2)) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = "2 months",
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_4flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
CP12 - Miscellenaous
2016-
Code
%>%
prc_hicp_manr filter(coicop == "CP12",
%in% c("FR", "DE", "ES", "IT")) %>%
geo %>%
month_to_date filter(date >= as.Date("2016-01-01")) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_4flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank())
2 years
Code
%>%
prc_hicp_manr filter(coicop == "CP12",
%in% c("FR", "DE", "ES", "IT")) %>%
geo %>%
month_to_date filter(date >= Sys.Date() - years(2)) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = "2 months",
labels = date_format("%b %y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
scale_color_identity() + add_4flags +
theme(legend.position = c(0.75, 0.90),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
Countries
France
Code
%>%
prc_hicp_manr filter(coicop %in% c("CP00", "CP04", "CP11", "CP01"),
%in% c("FR")) %>%
geo %>%
month_to_date left_join(coicop, by = "coicop") %>%
ggplot(.) + geom_line(aes(x = date, y = values/100, color = Coicop)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
theme(legend.position = c(0.75, 0.9),
legend.title = element_blank())
Slovakia
All
Code
%>%
prc_hicp_manr filter(coicop %in% c("CP00", "CP04", "CP11", "CP01"),
%in% c("SK")) %>%
geo %>%
month_to_date left_join(coicop, by = "coicop") %>%
ggplot(.) + geom_line(aes(x = date, y = values/100, color = Coicop)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
theme(legend.position = c(0.75, 0.9),
legend.title = element_blank())
2018-
Code
%>%
prc_hicp_manr filter(coicop %in% c("CP00", "CP04", "CP11", "CP01"),
%in% c("SK")) %>%
geo %>%
month_to_date filter(date >= as.Date("2018-01-01")) %>%
left_join(coicop, by = "coicop") %>%
ggplot(.) + geom_line(aes(x = date, y = values/100, color = Coicop)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2050, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 100, 2),
labels = percent_format(a = 1)) +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank())
Germany
Code
%>%
prc_hicp_manr filter(coicop %in% c("CP00", "CP04", "CP11", "CP01"),
%in% c("DE")) %>%
geo %>%
month_to_date left_join(coicop, by = "coicop") %>%
ggplot(.) + geom_line(aes(x = date, y = values/100, color = Coicop)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
theme(legend.position = c(0.75, 0.9),
legend.title = element_blank())
Code
%>%
prc_hicp_manr filter(coicop %in% c("CP00", "CP04"),
%in% c("DE")) %>%
geo %>%
month_to_date left_join(coicop, by = "coicop") %>%
ggplot(.) + geom_line(aes(x = date, y = values/100, color = Coicop)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
theme(legend.position = c(0.75, 0.9),
legend.title = element_blank())
Spain
Code
%>%
prc_hicp_manr filter(coicop %in% c("CP00", "CP04", "CP11", "CP01"),
%in% c("ES")) %>%
geo %>%
month_to_date left_join(coicop, by = "coicop") %>%
ggplot(.) + geom_line(aes(x = date, y = values/100, color = Coicop)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
theme(legend.position = c(0.25, 0.8),
legend.title = element_blank())
Greece
Code
%>%
prc_hicp_manr filter(coicop %in% c("CP00", "CP04", "CP11", "CP01"),
%in% c("EL")) %>%
geo %>%
month_to_date left_join(coicop, by = "coicop") %>%
ggplot(.) + geom_line(aes(x = date, y = values/100, color = Coicop)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
theme(legend.position = c(0.25, 0.2),
legend.title = element_blank())
Euro area VS European Union
All
Code
%>%
prc_hicp_manr filter(coicop == "CP00",
%in% c("EA", "EU")) %>%
geo %>%
month_to_date left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = Geo)) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2030, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
labels = percent_format(a = 1)) +
theme(legend.position = c(0.55, 0.90),
legend.title = element_blank())