source | dataset | .html | .RData |
---|---|---|---|
insee | T_CONSO_EFF_FONCTION | 2024-11-05 | 2024-07-18 |
Consommation effective des ménages par fonction
Data - INSEE
Info
Données sur le pouvoir d’achat
source | dataset | .html | .RData |
---|---|---|---|
insee | CNA-2014-RDB | 2024-11-09 | 2024-11-09 |
insee | CNT-2014-CSI | 2024-11-09 | 2024-11-09 |
insee | conso-eff-fonction | 2024-11-09 | 2022-06-14 |
insee | econ-gen-revenu-dispo-pouv-achat-2 | 2024-11-09 | 2024-07-05 |
insee | reve-conso-evo-dep-pa | 2024-11-09 | 2024-09-05 |
insee | reve-niv-vie-individu-activite | 2024-11-09 | NA |
insee | reve-niv-vie-pouv-achat-trim | 2024-11-09 | 2024-09-05 |
insee | T_7401 | 2024-10-18 | 2024-10-18 |
insee | t_men_val | 2024-11-05 | 2024-09-02 |
insee | t_pouvachat_val | 2024-11-05 | 2024-09-04 |
insee | t_recapAgent_val | 2024-11-05 | 2024-09-02 |
insee | t_salaire_val | 2024-11-05 | 2024-09-02 |
oecd | HH_DASH | 2024-09-15 | 2023-09-09 |
LAST_COMPILE
LAST_COMPILE |
---|
2024-11-09 |
Dernière
Code
%>%
T_CONSO_EFF_FONCTION group_by(year) %>%
summarise(Nobs = n()) %>%
arrange(desc(year)) %>%
head(2) %>%
print_table_conditional()
year | Nobs |
---|---|
2023 | 1074 |
2022 | 1074 |
Données reliées
Sources
Info
Les tableaux détaillés présentent la consommation effective des ménages depuis 1959 jusqu’à l’année du compte provisoire, déclinée aux niveaux diffusables les plus fins des nomenclatures de produits (Nomenclature agrégée), de fonction (COICOP) et de durabilité.
Pour chaque nomenclature (produit, fonction durabilité), les résultats détaillés ont le format suivant :
- Séries en niveau :
- Consommation aux prix courants (onglet MEURcour), que l’on appelle aussi “en valeur” ou “en euros courants”
- Consommation en volume aux prix de l’année précédente chaînés (onglet M€2014), que l’on appelle aussi ““en volume”” ou en ““euros 2014”“. Les consommations en volume au prix de l’année précédente chaînée ne sont pas sommables. En conséquence, la somme des consommations en volume aux prix de l’année précédente chaîné des séries élémentaires constituant un niveau diffère de la consommation pour le niveau total de l’agrégat.
- Indices de prix base 100 en 2014 (onglet IPRIX2014)
- Séries en évolution n/n-1 :
- Indices de valeur base 100 l’année précédente (onglet Ival)
- Indices de volume base 100 l’année précédente (onglet Ivol)
- Indices de prix base 100 l’année précédente (onglet Iprix)
- Structure des séries :
- Coefficients budgétaires aux prix courants en % (onglet COEFFCOUR)
variable
Code
%>%
T_CONSO_EFF_FONCTION group_by(variable) %>%
summarise(Nobs = n()) %>%
print_table_conditional()
variable | Nobs |
---|---|
COEFFCOUR | 11605 |
IPRIX2020 | 11605 |
IVAL | 11426 |
IVOL | 11426 |
MEUR2020 | 11605 |
MEURcour | 11605 |
fonction, Fonction
Tous
Code
%>%
T_CONSO_EFF_FONCTION group_by(fonction, Fonction) %>%
summarise(Nobs = n()) %>%
print_table_conditional()
2-digit
Code
%>%
T_CONSO_EFF_FONCTION filter(nchar(fonction) == 2) %>%
group_by(fonction, Fonction) %>%
summarise(Nobs = n()) %>%
print_table_conditional()
fonction | Fonction | Nobs |
---|---|---|
_Z | Total de la consommation effective des ménages | 388 |
3-digit
Code
%>%
T_CONSO_EFF_FONCTION filter(nchar(fonction) == 4) %>%
group_by(fonction, Fonction) %>%
summarise(Nobs = n()) %>%
print_table_conditional()
fonction | Fonction | Nobs |
---|---|---|
CP01 | Produits alimentaires et boissons non alcoolisées | 388 |
CP02 | Boissons alcoolisées, tabac et stupéfiants | 388 |
CP03 | Articles d’habillement et chaussures | 388 |
CP04 | Logement, eau, gaz, électricité et autres combustibles | 388 |
CP05 | Meubles, articles de ménage et entretien courant du foyer | 388 |
CP06 | Santé | 388 |
CP07 | Transports | 388 |
CP08 | Information et communication | 388 |
CP09 | Loisirs, sport et culture | 388 |
CP10 | Services de l’enseignement | 388 |
CP11 | Restaurants et services d’hébergement | 388 |
CP12 | Assurance et services financiers | 388 |
CP13 | Soins corporels, protection sociale et biens et services divers | 388 |
CP14 | Dépenses de consommation individuelle à la charge des institutions sans but lucratif au service des ménages (ISBLSM) | 388 |
CP15 | Dépenses de consommation individuelle à la charge des administrations publiques | 388 |
CP16 | Solde territorial | 388 |
4-digit
Code
%>%
T_CONSO_EFF_FONCTION filter(nchar(fonction) == 6) %>%
group_by(fonction, Fonction) %>%
summarise(Nobs = n()) %>%
print_table_conditional()
5-digit
Code
%>%
T_CONSO_EFF_FONCTION filter(nchar(fonction) == 8) %>%
group_by(fonction, Fonction) %>%
summarise(Nobs = n()) %>%
print_table_conditional()
fonction | Fonction | Nobs |
---|---|---|
CPDEPHSI | Dépense de consommation des ménages hors SIFIM | 388 |
Autres
Code
%>%
T_CONSO_EFF_FONCTION filter(!(nchar(fonction) %in% c(2, 4, 6))) %>%
group_by(fonction, Fonction) %>%
summarise(Nobs = n()) %>%
print_table_conditional()
year
Code
%>%
T_CONSO_EFF_FONCTION group_by(year) %>%
summarise(Nobs = n()) %>%
arrange(desc(year)) %>%
print_table_conditional()
2020
Désordonné
Code
%>%
T_CONSO_EFF_FONCTION filter(variable == "MEURcour") %>%
%>%
year_to_date2 left_join(gdp, by = "date") %>%
filter(date == as.Date("2020-01-01")) %>%
select(-date) %>%
mutate(`% du PIB` = (100*value/(gdp)) %>% round(., digits = 2),
value = round(value) %>% paste0(" Mds€")) %>%
select(-gdp) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
Ordonné
Code
%>%
T_CONSO_EFF_FONCTION filter(variable == "MEURcour") %>%
%>%
year_to_date2 left_join(gdp, by = "date") %>%
filter(date == as.Date("2020-01-01")) %>%
select(-date) %>%
arrange(-value) %>%
mutate(`% du PIB` = (100*value/(gdp)) %>% round(., digits = 2),
value = round(value) %>% paste0(" Mds€")) %>%
select(-gdp) %>%
print_table_conditional()
Loyers réels, loyers imputés
Mds €
Code
%>%
T_CONSO_EFF_FONCTION filter(variable == "MEURcour") %>%
%>%
year_to_date2 filter(fonction %in% c("CP041", "CP042", "CP045")) %>%
left_join(gdp, by = "date") %>%
ggplot(.) + theme_minimal() + ylab("Consommation (Milliards€)") + xlab("") +
geom_line(aes(x = date, y = value/1000, color = Fonction)) +
theme(legend.title = element_blank(),
legend.position = c(0.3, 0.91)) +
scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 500, 20),
labels = dollar_format(acc = 1, pre = "", su = " Mds€"))
% de la consommation
Code
%>%
T_CONSO_EFF_FONCTION filter(variable == "MEURcour") %>%
%>%
year_to_date2 filter(fonction %in% c("CP041", "CP042", "CP045")) %>%
left_join(gdp, by = "date") %>%
ggplot(.) + theme_minimal() + ylab("Consommation (% du PIB)") + xlab("") +
geom_line(aes(x = date, y = value/(gdp), color = Fonction)) +
theme(legend.title = element_blank(),
legend.position = c(0.3, 0.91)) +
scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 0.5),
labels = scales::percent_format(accuracy = 0.1))
Entretien et réparation des logements
Code
%>%
T_CONSO_EFF_FONCTION filter(variable == "MEURcour") %>%
%>%
year_to_date2 filter(fonction %in% c("CP043", "CP044")) %>%
left_join(gdp, by = "date") %>%
ggplot(.) + theme_minimal() + ylab("Consommation (% du PIB)") + xlab("") +
geom_line(aes(x = date, y = value/(gdp), color = Fonction)) +
theme(legend.title = element_blank(),
legend.position = c(0.6, 0.2)) +
scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 0.1),
labels = scales::percent_format(accuracy = 0.1))
Indices de Prix
Tous
Code
%>%
T_CONSO_EFF_FONCTION filter(variable == "IPRIX2020",
%in% c("1990", "2020")) %>%
year select(-variable) %>%
spread(year, value) %>%
mutate(`% / an` = round(100*((`2020`/`1990`)^(1/30)-1), 2)) %>%
arrange(`% / an`) %>%
print_table_conditional()
Déflateurs
Code
%>%
T_CONSO_EFF_FONCTION filter(variable == "IPRIX2020") %>%
%>%
year_to_date2 filter(Fonction %in% c("Dépense de consommation des ménages",
"Dépense de consommation des ménages hors SIFIM",
"Consommation effective des ménages")) %>%
filter(date >= as.Date("1990-01-01")) %>%
group_by(fonction) %>%
arrange(date) %>%
mutate(value = 100*value/value[1]) %>%
+ theme_minimal() + xlab("") + ylab("") +
ggplot geom_line(aes(x = date, y = value, color = Fonction)) +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 300, 10)) +
theme(legend.position = c(0.25, 0.9),
legend.title = element_blank())
Loyers effectifs, imputés
All
Code
%>%
T_CONSO_EFF_FONCTION filter(variable == "IPRIX2020") %>%
%>%
year_to_date2 filter(fonction %in% c("CP041", "CP042")) %>%
filter(date >= as.Date("1990-01-01")) %>%
group_by(fonction) %>%
arrange(date) %>%
mutate(value = 100*value/value[1]) %>%
+ theme_minimal() + xlab("") + ylab("") +
ggplot geom_line(aes(x = date, y = value, color = Fonction)) +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 300, 10)) +
theme(legend.position = c(0.25, 0.9),
legend.title = element_blank())
1996-
Code
%>%
T_CONSO_EFF_FONCTION filter(variable == "IPRIX2020") %>%
%>%
year_to_date2 filter(fonction %in% c("CP041", "CP042")) %>%
filter(date >= as.Date("1996-01-01")) %>%
group_by(fonction) %>%
arrange(date) %>%
mutate(value = 100*value/value[1]) %>%
+ theme_minimal() + xlab("") + ylab("") +
ggplot geom_line(aes(x = date, y = value, color = Fonction)) +
scale_x_date(breaks = seq(1996, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 300, 10)) +
theme(legend.position = c(0.25, 0.9),
legend.title = element_blank())
Forts effets qualité
1972-
Code
%>%
T_CONSO_EFF_FONCTION filter(variable == "IPRIX2020") %>%
%>%
year_to_date2 filter(fonction %in% c("CP082", "CP0913", "CP0912", "CP0911", "CP1261")) %>%
filter(date >= as.Date("1972-01-01")) %>%
group_by(fonction) %>%
arrange(date) %>%
mutate(value = 100*value/value[1]) %>%
+ theme_minimal() + xlab("") + ylab("") +
ggplot geom_line(aes(x = date, y = value, color = Fonction)) +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = c(0.1, 1, 2, 3, 5, 10, 20, 30, 50, 100, 200, 400, 800, 1600)) +
theme(legend.position = c(0.35, 0.2),
legend.title = element_blank())
1990-
Code
%>%
T_CONSO_EFF_FONCTION filter(variable == "IPRIX2020") %>%
%>%
year_to_date2 filter(fonction %in% c("CP082", "CP0913", "CP0912", "CP0911", "CP1261")) %>%
filter(date >= as.Date("1990-01-01")) %>%
group_by(fonction) %>%
arrange(date) %>%
mutate(value = 100*value/value[1]) %>%
+ theme_minimal() + xlab("") + ylab("") +
ggplot geom_line(aes(x = date, y = value, color = Fonction)) +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = c(0.1, 1, 2, 3, 5, 10, 20, 30, 50, 100)) +
theme(legend.position = c(0.35, 0.2),
legend.title = element_blank())
1996-
Code
%>%
T_CONSO_EFF_FONCTION filter(variable == "IPRIX2020") %>%
%>%
year_to_date2 filter(fonction %in% c("CP082", "CP0913", "CP0912", "CP0911", "CP1261")) %>%
filter(date >= as.Date("1996-01-01")) %>%
group_by(fonction) %>%
arrange(date) %>%
mutate(value = 100*value/value[1]) %>%
+ theme_minimal() + xlab("") + ylab("") +
ggplot geom_line(aes(x = date, y = value, color = Fonction)) +
scale_x_date(breaks = seq(1960, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = c(0.1, 1, 2, 3, 5, 10, 20, 30, 50, 100)) +
theme(legend.position = c(0.35, 0.2),
legend.title = element_blank())
Poids
% de la dépense de consommation finale effective
Code
%>%
T_CONSO_EFF_FONCTION filter(variable == "COEFFCOUR",
%in% c("1960", "1990", "2020")) %>%
year select(-variable) %>%
spread(year, value) %>%
arrange(-`2020`) %>%
print_table_conditional()
CP091 (Matériel audiovisuel, photographique et informatique), CP082 (Matériel de téléphonie et de télécopie)
Code
%>%
T_CONSO_EFF_FONCTION filter(variable == "COEFFCOUR",
%in% c("CP091", "CP082", "CP126")) %>%
fonction %>%
year_to_date2 mutate(value = value / 100) %>%
ggplot() + ylab("Pondération (% de la conso effective totale)") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = paste0(fonction, " - ", Fonction))) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.28, 0.93),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 300, .5),
labels = percent_format(accuracy = .1))
14, 01..12+15
Code
%>%
T_CONSO_EFF_FONCTION filter(variable == "COEFFCOUR",
%in% c("CP14", "CP01..CP12+CP15")) %>%
fonction %>%
year_to_date2 mutate(value = value / 100) %>%
ggplot() + ylab("Pondération (% de la conso effective totale)") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = paste0(fonction, " - ", Fonction))) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.4, 0.6),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 5),
labels = percent_format(accuracy = 1))
CP141, CP142, CP143, CP144, CP145
Code
%>%
T_CONSO_EFF_FONCTION filter(variable == "COEFFCOUR",
%in% c("CP141", "CP142", "CP143", "CP144", "CP145")) %>%
fonction %>%
year_to_date2 mutate(value = value / 100) %>%
ggplot() + ylab("Pondération (% de la conso effective totale)") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = paste0(fonction, " - ", Fonction))) +
#
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.2, 0.88),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
labels = percent_format(accuracy = 1))
CP041, CP042, 04.5
% de la conso effective
Code
%>%
T_CONSO_EFF_FONCTION filter(variable == "COEFFCOUR",
%in% c("CP041", "CP042", "CP045")) %>%
fonction %>%
year_to_date2 mutate(value = value / 100) %>%
ggplot() + ylab("Pondération (% de la conso effective totale)") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = paste0(fonction, " - ", Fonction))) +
#
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.28, 0.93),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 300, .5),
labels = percent_format(accuracy = .1))
% de la conso finale
Code
%>%
T_CONSO_EFF_FONCTION filter(variable == "COEFFCOUR",
%in% c("CP041", "CP042", "CP045", "CPDEP")) %>%
fonction %>%
year_to_date2 group_by(date) %>%
mutate(value = value/value[fonction =="CPDEP"]) %>%
%>%
ungroup filter(fonction != "CPDEP") %>%
ggplot() + ylab("Pondération (% de la consommation finale)") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = paste0(fonction, " - ", Fonction))) +
#
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.28, 0.93),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 300, .5),
labels = percent_format(accuracy = .1))
Santé
Code
%>%
T_CONSO_EFF_FONCTION filter(variable == "COEFFCOUR",
%in% c("CP142", "06", "CP1253", "CPDEP")) %>%
fonction %>%
year_to_date2 mutate(value = value / 100) %>%
ggplot() + ylab("Pondération (% de la conso effective totale)") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = paste0(fonction, " - ", Fonction))) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.93),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 300, .5),
labels = percent_format(accuracy = .1))
% de la dépense de consommation finale
All
Code
%>%
T_CONSO_EFF_FONCTION filter(variable == "COEFFCOUR",
%in% c("1960", "1990", "2020")) %>%
year select(-variable) %>%
group_by(year) %>%
arrange(fonction) %>%
mutate(value = round(100*value/value[fonction =="CPDEP"],2)) %>%
spread(year, value) %>%
print_table_conditional()
2-digit
Code
%>%
T_CONSO_EFF_FONCTION filter(variable == "COEFFCOUR",
%in% c("1960", "1990", "2020"),
year nchar(fonction) == 4 | fonction =="CPDEP") %>%
select(-variable) %>%
group_by(year) %>%
arrange(fonction) %>%
mutate(value = round(100*value/value[fonction =="CPDEP"],2)) %>%
spread(year, value) %>%
print_table_conditional()
fonction | Fonction | 1960 | 1990 | 2020 |
---|---|---|---|---|
CP01 | Produits alimentaires et boissons non alcoolisées | 23.15 | 13.75 | 13.63 |
CP02 | Boissons alcoolisées, tabac et stupéfiants | 7.91 | 3.50 | 4.28 |
CP03 | Articles d’habillement et chaussures | 12.19 | 7.14 | 3.20 |
CP04 | Logement, eau, gaz, électricité et autres combustibles | 12.76 | 21.81 | 30.19 |
CP05 | Meubles, articles de ménage et entretien courant du foyer | 8.48 | 5.63 | 4.51 |
CP06 | Santé | 2.37 | 3.30 | 3.94 |
CP07 | Transports | 10.39 | 14.38 | 10.91 |
CP08 | Information et communication | 1.43 | 3.40 | 4.16 |
CP09 | Loisirs, sport et culture | 6.48 | 7.39 | 6.29 |
CP10 | Services de l’enseignement | 0.55 | 0.63 | 0.78 |
CP11 | Restaurants et services d’hébergement | 5.83 | 6.04 | 5.66 |
CP12 | Assurance et services financiers | 2.83 | 7.47 | 6.44 |
CP13 | Soins corporels, protection sociale et biens et services divers | 4.80 | 6.22 | 6.08 |
CP14 | Dépenses de consommation individuelle à la charge des institutions sans but lucratif au service des ménages (ISBLSM) | 3.39 | 2.85 | 4.38 |
CP15 | Dépenses de consommation individuelle à la charge des administrations publiques | 14.31 | 23.85 | 31.74 |
CP16 | Solde territorial | 0.84 | -0.66 | -0.08 |
CPDEP | Dépense de consommation des ménages | 100.00 | 100.00 | 100.00 |
3-digit
Code
%>%
T_CONSO_EFF_FONCTION filter(variable == "COEFFCOUR",
%in% c("1960", "1990", "2020"),
year nchar(fonction) == 5 | fonction =="CPDEP") %>%
select(-variable) %>%
group_by(year) %>%
arrange(fonction) %>%
mutate(value = round(100*value/value[fonction =="CPDEP"],2)) %>%
spread(year, value) %>%
print_table_conditional()
4-digit
Code
%>%
T_CONSO_EFF_FONCTION filter(variable == "COEFFCOUR",
%in% c("1960", "1990", "2020"),
year nchar(fonction) == 6 | fonction =="CPDEP") %>%
select(-variable) %>%
group_by(year) %>%
arrange(fonction) %>%
mutate(value = round(100*value/value[fonction =="CPDEP"],2)) %>%
spread(year, value) %>%
print_table_conditional()
Comparer IPC, IPCH, Déflateur de la consommation
Table Déflateur
Code
<- T_CONSO_EFF_FONCTION %>%
deflateur filter(variable == "IPRIX2020",
%in% c("1990", "2020"),
year nchar(fonction) %in% c(4, 5, 6)) %>%
mutate(fonction = gsub("\\.", "", fonction)) %>%
select(fonction, Fonction, year, value) %>%
spread(year, value) %>%
mutate(`Déflateur (%)` = round(100*((`2020`/`1990`)^(1/30)-1),2)) %>%
select(-`1990`, -`2020`)
%>%
deflateur print_table_conditional
Table Déflateur Poids
Code
<- T_CONSO_EFF_FONCTION %>%
deflateur_poids filter(variable == "COEFFCOUR",
%in% c("2020"),
year nchar(fonction) %in% c(4, 5, 6)) %>%
mutate(fonction = gsub("\\.", "", fonction)) %>%
select(fonction, Fonction, year, value) %>%
spread(year, value) %>%
rename(`Déflateur Poids` = `2020`)
%>%
deflateur_poids print_table_conditional
Table IPC
Code
<- `IPC-2015` %>%
IPC filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC == "M",
FREQ == "FE",
REF_AREA == "INDICE",
NATURE %in% c("1990-01", "2020-01")) %>%
TIME_PERIOD left_join(COICOP2016, by = "COICOP2016") %>%
select(fonction = COICOP2016, Fonction = Coicop2016, TIME_PERIOD, OBS_VALUE) %>%
filter(!(fonction %in% c("SO", "00"))) %>%
spread(TIME_PERIOD, OBS_VALUE) %>%
mutate(`IPC (%)` = round(100*((`2020-01`/`1990-01`)^(1/30)-1),2)) %>%
select(-`1990-01`, -`2020-01`)
%>%
IPC print_table_conditional()
Table IPC Poids
Code
<- `IPC-2015` %>%
IPC_poids filter(INDICATEUR == "IPC",
== "FE",
REF_AREA == "ENSEMBLE",
MENAGES_IPC == "POND",
NATURE %in% c("2020")) %>%
TIME_PERIOD left_join(COICOP2016, by = "COICOP2016") %>%
select(fonction = COICOP2016, Fonction = Coicop2016, TIME_PERIOD, OBS_VALUE) %>%
filter(!(fonction %in% c("SO", "00"))) %>%
mutate(OBS_VALUE = OBS_VALUE/100) %>%
spread(TIME_PERIOD, OBS_VALUE) %>%
rename(`IPC Poids` = `2020`)
%>%
IPC_poids print_table_conditional()
Comparer Table Déflateur VS IPC
Tous
Code
%>%
deflateur inner_join(IPC, by = "fonction") %>%
mutate(Difference = `Déflateur (%)`-`IPC (%)`) %>%
arrange(Difference) %>%
print_table_conditional()
fonction | Fonction.x | Déflateur (%) | Fonction.y | IPC (%) | Difference |
---|---|---|---|---|---|
NA | NA | NA | NA | NA | NA |
:--------: | :----------: | :-------------: | :----------: | :-------: | :----------: |
2-digit
Code
%>%
deflateur inner_join(IPC, by = "fonction") %>%
filter(nchar(fonction) == 2) %>%
mutate(Difference = `Déflateur (%)`-`IPC (%)`) %>%
arrange(Difference) %>%
print_table_conditional()
fonction | Fonction.x | Déflateur (%) | Fonction.y | IPC (%) | Difference |
---|---|---|---|---|---|
NA | NA | NA | NA | NA | NA |
:--------: | :----------: | :-------------: | :----------: | :-------: | :----------: |
3-digit
Code
%>%
deflateur inner_join(IPC, by = "fonction") %>%
filter(nchar(fonction) == 3) %>%
mutate(Difference = `Déflateur (%)`-`IPC (%)`) %>%
arrange(Difference) %>%
print_table_conditional()
fonction | Fonction.x | Déflateur (%) | Fonction.y | IPC (%) | Difference |
---|---|---|---|---|---|
NA | NA | NA | NA | NA | NA |
:--------: | :----------: | :-------------: | :----------: | :-------: | :----------: |
4-digit
Code
%>%
deflateur inner_join(IPC, by = "fonction") %>%
filter(nchar(fonction) == 4) %>%
mutate(Difference = `Déflateur (%)`-`IPC (%)`) %>%
arrange(Difference) %>%
print_table_conditional()
fonction | Fonction.x | Déflateur (%) | Fonction.y | IPC (%) | Difference |
---|---|---|---|---|---|
NA | NA | NA | NA | NA | NA |
:--------: | :----------: | :-------------: | :----------: | :-------: | :----------: |
Comparer Poids Déflateur VS IPC
Code
%>%
deflateur_poids inner_join(IPC_poids, by = "fonction") %>%
mutate(Difference = `Déflateur Poids`-`IPC Poids`) %>%
arrange(Difference) %>%
print_table_conditional()
fonction | Fonction.x | Déflateur Poids | Fonction.y | IPC Poids | Difference |
---|---|---|---|---|---|
NA | NA | NA | NA | NA | NA |
:--------: | :----------: | :---------------: | :----------: | :---------: | :----------: |
2-digit
00 - Tous
1996-
Code
%>%
T_CONSO_EFF_FONCTION filter(Fonction %in% c("Dépense de consommation des ménages"),
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1996-01-01")) %>%
select(variable = Fonction, date, value) %>%
mutate(variable = paste0("Déflateur de la ", variable)) %>%
bind_rows(`IPC-2015` %>%
filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC %in% c("00"),
COICOP2016 == "A",
FREQ == "SO",
PRIX_CONSO == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
year_to_date mutate(variable = "Indice des Prix à la Consommation (IPC)") %>%
select(variable, date, value = OBS_VALUE)) %>%
bind_rows(`IPCH-2015` %>%
filter(INDICATEUR == "IPCH",
%in% c("00"),
COICOP2016 == "A",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
year_to_date mutate(variable = "Indice des Prix à la Consommation Harmonisé (IPCH)") %>%
select(variable, date, value = OBS_VALUE)) %>%
group_by(variable) %>%
filter(date >= as.Date("1996-01-01")) %>%
mutate(value = 100*value/value[date == as.Date("1996-01-01")]) %>%
mutate(variable = gsub("Indice des prix à la consommation - Base 2015 - Ensemble des ménages - France - ", "", variable)) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
#
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.35, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 500, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
1996-
Code
%>%
T_CONSO_EFF_FONCTION filter(Fonction %in% c("Consommation effective des ménages",
"Dépense de consommation des ménages",
"Dépense de consommation des ménages hors SIFIM"),
== "IPRIX2020") %>%
variable mutate(Fonction = ifelse(fonction =="Consommation effective des ménages",
"Dépense de consommation effective des ménages",
%>%
Fonction)) %>%
year_to_date2 filter(date >= as.Date("1996-01-01")) %>%
select(variable = Fonction, date, value) %>%
mutate(variable = paste0("Déflateur de la ", variable)) %>%
bind_rows(`IPC-2015` %>%
filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC %in% c("00"),
COICOP2016 == "A",
FREQ == "SO",
PRIX_CONSO == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
year_to_date mutate(variable = "Indice des Prix à la Consommation (IPC)") %>%
select(variable, date, value = OBS_VALUE)) %>%
bind_rows(`IPCH-2015` %>%
filter(INDICATEUR == "IPCH",
%in% c("00"),
COICOP2016 == "A",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
year_to_date mutate(variable = "Indice des Prix à la Consommation Harmonisé (IPCH)") %>%
select(variable, date, value = OBS_VALUE)) %>%
group_by(variable) %>%
filter(date >= as.Date("1996-01-01")) %>%
mutate(value = 100*value/value[date == as.Date("1996-01-01")]) %>%
mutate(variable = gsub("Indice des prix à la consommation - Base 2015 - Ensemble des ménages - France - ", "", variable)) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
#
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.35, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 500, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
2000-
Code
%>%
T_CONSO_EFF_FONCTION filter(Fonction %in% c("Consommation effective des ménages",
"Dépense de consommation des ménages",
"Dépense de consommation des ménages hors SIFIM"),
== "IPRIX2020") %>%
variable mutate(Fonction = ifelse(fonction =="Consommation effective des ménages",
"Dépense de consommation effective des ménages",
%>%
Fonction)) %>%
year_to_date2 filter(date >= as.Date("2000-01-01")) %>%
select(variable = Fonction, date, value) %>%
mutate(variable = paste0("Déflateur de la ", variable)) %>%
bind_rows(`IPC-2015` %>%
filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC %in% c("00"),
COICOP2016 == "M",
FREQ == "SO",
PRIX_CONSO == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
month_to_date filter(month(date) == 1) %>%
mutate(variable = "Indice des Prix à la Consommation (IPC)") %>%
select(variable, date, value = OBS_VALUE)) %>%
bind_rows(`IPCH-2015` %>%
filter(INDICATEUR == "IPCH",
%in% c("00"),
COICOP2016 == "M",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
month_to_date filter(month(date) == 1) %>%
mutate(variable = "Indice des Prix à la Consommation Harmonisé (IPCH)") %>%
select(variable, date, value = OBS_VALUE)) %>%
group_by(variable) %>%
filter(date >= as.Date("2000-01-01")) %>%
mutate(value = 100*value/value[date == as.Date("2000-01-01")]) %>%
mutate(variable = gsub("Indice des prix à la consommation - Base 2015 - Ensemble des ménages - France - ", "", variable)) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
#
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 500, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
2017-
Code
%>%
T_CONSO_EFF_FONCTION filter(Fonction %in% c("Consommation effective des ménages",
"Dépense de consommation des ménages",
"Dépense de consommation des ménages hors SIFIM"),
== "IPRIX2020") %>%
variable mutate(Fonction = ifelse(fonction =="Consommation effective des ménages",
"Dépense de consommation effective des ménages",
%>%
Fonction)) %>%
year_to_date2 filter(date >= as.Date("2017-01-01")) %>%
select(variable = Fonction, date, value) %>%
mutate(variable = paste0("Déflateur de la ", variable)) %>%
bind_rows(`IPC-2015` %>%
filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC %in% c("00"),
COICOP2016 == "M",
FREQ == "SO",
PRIX_CONSO == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
month_to_date filter(month(date) == 1) %>%
mutate(variable = "Indice des Prix à la Consommation (IPC)") %>%
select(variable, date, value = OBS_VALUE)) %>%
bind_rows(`IPCH-2015` %>%
filter(INDICATEUR == "IPCH",
%in% c("00"),
COICOP2016 == "M",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
month_to_date filter(month(date) == 1) %>%
mutate(variable = "Indice des Prix à la Consommation Harmonisé (IPCH)") %>%
select(variable, date, value = OBS_VALUE)) %>%
group_by(variable) %>%
filter(date >= as.Date("2017-01-01")) %>%
mutate(value = 100*value/value[date == as.Date("2017-01-01")]) %>%
mutate(variable = gsub("Indice des prix à la consommation - Base 2015 - Ensemble des ménages - France - ", "", variable)) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
#
scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.35, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 500, 1),
labels = dollar_format(accuracy = 1, prefix = ""))
00 - Tous
All
2000-
Code
%>%
T_CONSO_EFF_FONCTION filter(Fonction %in% c("Consommation effective des ménages",
"Dépense de consommation des ménages",
"Dépense de consommation des ménages hors SIFIM"),
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1990-01-01")) %>%
select(variable = Fonction, date, value) %>%
bind_rows(`IPC-2015` %>%
filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC %in% c("00"),
COICOP2016 == "M",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
month_to_date filter(month(date) == 1) %>%
select(variable = TITLE_FR, date, value = OBS_VALUE)
%>%
) group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
mutate(variable = gsub("Indice des prix à la consommation - Base 2015 - Ensemble des ménages - France - ", "", variable)) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
#
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 500, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
1996-
Code
%>%
T_CONSO_EFF_FONCTION filter(Fonction %in% c("Consommation effective des ménages",
"Dépense de consommation des ménages",
"Dépense de consommation des ménages hors SIFIM"),
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1996-01-01")) %>%
select(variable = Fonction, date, value) %>%
bind_rows(`IPC-2015` %>%
filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC %in% c("00"),
COICOP2016 == "A",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
year_to_date filter(date >= as.Date("1996-01-01")) %>%
select(variable = TITLE_FR, date, value = OBS_VALUE)
%>%
) group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1996-01-01")]) %>%
mutate(variable = gsub("Indice des prix à la consommation - Base 2015 - Ensemble des ménages - France - ", "", variable)) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
#
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 500, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
CP01 - Produits alimentaires et boissons non alcoolisées
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP01",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1990-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
bind_rows(`IPC-2015` %>%
filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC %in% c("01"),
COICOP2016 == "A",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
year_to_date select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation")) %>%
bind_rows(`IPCH-2015` %>%
filter(INDICATEUR == "IPCH",
%in% c("01"),
COICOP2016 == "A",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
year_to_date select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation Harmonisé")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1996-01-01")]) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.75, 0.3),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 500, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
CP02 - Boissons alcoolisées et tabac
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP02",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1990-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
bind_rows(`IPC-2015` %>%
filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC %in% c("02"),
COICOP2016 == "A",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
year_to_date select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation")) %>%
bind_rows(`IPCH-2015` %>%
filter(INDICATEUR == "IPCH",
%in% c("02"),
COICOP2016 == "A",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
year_to_date select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation Harmonisé")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1996-01-01")]) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.75, 0.3),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 500, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
CP03 - Articles d’habillement et chaussures
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP03",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1990-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
bind_rows(`IPC-2015` %>%
filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC %in% c("03"),
COICOP2016 == "A",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
year_to_date select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation")) %>%
bind_rows(`IPCH-2015` %>%
filter(INDICATEUR == "IPCH",
%in% c("03"),
COICOP2016 == "A",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
year_to_date select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation Harmonisé")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1996-01-01")]) %>%
ggplot() + ylab("Indice des prix (03 - Habillement et chaussures)") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.75, 0.3),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 500, 1),
labels = dollar_format(accuracy = 1, prefix = ""))
CP04 - Logement, eau, gaz, électricité et autres combustibles
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP04",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1990-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
bind_rows(`IPC-2015` %>%
filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC %in% c("04"),
COICOP2016 == "A",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
year_to_date select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation")) %>%
bind_rows(`IPCH-2015` %>%
filter(INDICATEUR == "IPCH",
%in% c("04"),
COICOP2016 == "A",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
year_to_date select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation Harmonisé")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1996-01-01")]) %>%
ggplot() + ylab("Indice des prix (04 - Logement)") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.75, 0.3),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 500, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
CP05 - Meubles, articles de ménage et entretien courant de l’habitation
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP05",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1990-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
bind_rows(`IPC-2015` %>%
filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC %in% c("05"),
COICOP2016 == "A",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
year_to_date select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation")) %>%
bind_rows(`IPCH-2015` %>%
filter(INDICATEUR == "IPCH",
%in% c("05"),
COICOP2016 == "A",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
year_to_date select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation Harmonisé")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1996-01-01")]) %>%
ggplot() + ylab("Indice des prix (05 - Meubles)") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.75, 0.3),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 500, 5),
labels = dollar_format(accuracy = 1, prefix = ""))
CP06 - Santé
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP06",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1990-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
bind_rows(`IPC-2015` %>%
filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC %in% c("06"),
COICOP2016 == "A",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
year_to_date select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation")) %>%
bind_rows(`IPCH-2015` %>%
filter(INDICATEUR == "IPCH",
%in% c("06"),
COICOP2016 == "A",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
year_to_date select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation Harmonisé")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1996-01-01")]) %>%
ggplot() + ylab("Indice des prix (06 - Santé)") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 500, 5),
labels = dollar_format(accuracy = 1, prefix = ""))
CP07 - Transports
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP07",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1990-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
bind_rows(`IPC-2015` %>%
filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC %in% c("07"),
COICOP2016 == "A",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
year_to_date select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation")) %>%
bind_rows(`IPCH-2015` %>%
filter(INDICATEUR == "IPCH",
%in% c("07"),
COICOP2016 == "A",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
year_to_date select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation Harmonisé")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1996-01-01")]) %>%
ggplot() + ylab("Indice des prix (07 - Transports)") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.75, 0.3),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 500, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
CP08 - Communications
All
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP08",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1990-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
bind_rows(`IPC-2015` %>%
filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC %in% c("08"),
COICOP2016 == "A",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
year_to_date select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation")) %>%
bind_rows(`IPCH-2015` %>%
filter(INDICATEUR == "IPCH",
%in% c("08"),
COICOP2016 == "A",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
year_to_date select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation Harmonisé")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1996-01-01")]) %>%
ggplot() + ylab("Indice des prix (08 - Communications)") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.3),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 500, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
1996
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP08",
== "IPRIX2020") %>%
variable %>%
year_to_date2 mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
bind_rows(`IPC-2015` %>%
filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC %in% c("08"),
COICOP2016 == "A",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
year_to_date select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation (IPC)")) %>%
bind_rows(`IPCH-2015` %>%
filter(INDICATEUR == "IPCH",
%in% c("08"),
COICOP2016 == "A",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
year_to_date select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation Harmonisé (IPCH)")) %>%
group_by(variable) %>%
filter(date >= as.Date("1996-01-01")) %>%
mutate(value = 100*value/value[date == as.Date("1996-01-01")]) %>%
ggplot() + ylab("Indice des prix (08 - Communications)") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.3),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 500, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
CP09 - Loisirs et culture
All
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP09",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1990-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
bind_rows(`IPC-2015` %>%
filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC %in% c("09"),
COICOP2016 == "A",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
year_to_date select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation (IPC)")) %>%
bind_rows(`IPCH-2015` %>%
filter(INDICATEUR == "IPCH",
%in% c("09"),
COICOP2016 == "A",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
year_to_date select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation Harmonisé (IPCH)")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1996-01-01")]) %>%
ggplot() + ylab("Indice des prix (09 - Loisirs et culture)") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.75, 0.3),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 500, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
1996
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP09",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1996-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
bind_rows(`IPC-2015` %>%
filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC %in% c("09"),
COICOP2016 == "A",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
year_to_date select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation (IPC)")) %>%
bind_rows(`IPCH-2015` %>%
filter(INDICATEUR == "IPCH",
%in% c("09"),
COICOP2016 == "A",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
year_to_date select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation Harmonisé (IPCH)")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1996-01-01")]) %>%
ggplot() + ylab("Indice des prix (09)") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.3),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 500, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
CP10 - Éducation
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP10",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1990-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
bind_rows(`IPC-2015` %>%
filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC %in% c("10"),
COICOP2016 == "A",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
year_to_date select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation (IPC)")) %>%
bind_rows(`IPCH-2015` %>%
filter(INDICATEUR == "IPCH",
%in% c("10"),
COICOP2016 == "A",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
year_to_date select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation Harmonisé (IPCH)")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1996-01-01")]) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.75, 0.3),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 500, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
CP11 - Hôtels, cafés et restaurants
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP11",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1990-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
bind_rows(`IPC-2015` %>%
filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC %in% c("11"),
COICOP2016 == "A",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
year_to_date select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation (IPC)")) %>%
bind_rows(`IPCH-2015` %>%
filter(INDICATEUR == "IPCH",
%in% c("11"),
COICOP2016 == "A",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
year_to_date select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation Harmonisé (IPCH)")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1996-01-01")]) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.75, 0.3),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 500, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
CP12 - Biens et services divers
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP12",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1990-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
bind_rows(`IPC-2015` %>%
filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC %in% c("12"),
COICOP2016 == "A",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
year_to_date select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation (IPC)")) %>%
bind_rows(`IPCH-2015` %>%
filter(INDICATEUR == "IPCH",
%in% c("12"),
COICOP2016 == "A",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
year_to_date select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation Harmonisé (IPCH)")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1996-01-01")]) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.9),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 500, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
CP13 - Dépense de consommation finale individualisable des ISBLSM
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP13",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1990-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.9),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 500, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
CP14 - Dépense de consommation finale individualisable des APU
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP14",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1990-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.9),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 500, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
CP15 - Solde territorial
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP15",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1990-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.9),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 500, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
3-digit
CP023 - Tabac
All
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP023",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1990-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
bind_rows(`IPC-2015` %>%
filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC %in% c("022"),
COICOP2016 == "M",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
month_to_date filter(month(date) == 1) %>%
select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.9),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 800, 50),
labels = dollar_format(accuracy = 1, prefix = ""))
1996-
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP023",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1996-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
bind_rows(`IPC-2015` %>%
filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC %in% c("022"),
COICOP2016 == "M",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
month_to_date filter(month(date) == 1,
>= as.Date("1996-01-01")) %>%
date select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1996-01-01")]) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.9),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 800, 50),
labels = dollar_format(accuracy = 1, prefix = ""))
02.3 - Bière
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP0213",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1990-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
bind_rows(`IPC-2015` %>%
filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC %in% c("0213"),
COICOP2016 == "M",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
month_to_date filter(month(date) == 1) %>%
select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.9),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 800, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
CP041 - Loyers effectifs
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP041",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1990-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
bind_rows(`IPC-2015` %>%
filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC %in% c("041"),
COICOP2016 == "M",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
month_to_date filter(month(date) == 1) %>%
select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.9),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 500, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
CP043 - Entretien et réparation des logements
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP043",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1990-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
bind_rows(`IPC-2015` %>%
filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC %in% c("043"),
COICOP2016 == "M",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
month_to_date filter(month(date) == 1) %>%
select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.75, 0.9),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 500, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
CP044 - Autres services liés au logement
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP044",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1990-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
bind_rows(`IPC-2015` %>%
filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC %in% c("044"),
COICOP2016 == "M",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
month_to_date filter(month(date) == 1) %>%
select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.9),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 500, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
CP051 - Meubles, articles d’ameublement, tapis et autres revêtements de sol
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP051",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1990-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
bind_rows(`IPC-2015` %>%
filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC %in% c("051"),
COICOP2016 == "M",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
month_to_date filter(month(date) == 1) %>%
select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.9),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 500, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
CP052 - Articles de ménage en textile
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP052",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1990-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
bind_rows(`IPC-2015` %>%
filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC %in% c("052"),
COICOP2016 == "M",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
month_to_date filter(month(date) == 1) %>%
select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.9),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 500, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
CP053 - Appareils ménagers
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP053",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1990-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
bind_rows(`IPC-2015` %>%
filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC %in% c("053"),
COICOP2016 == "M",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
month_to_date filter(month(date) == 1) %>%
select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 500, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
CP054 - Verrerie, vaisselle et ustensiles de ménage
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP054",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1990-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
bind_rows(`IPC-2015` %>%
filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC %in% c("054"),
COICOP2016 == "M",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
month_to_date filter(month(date) == 1) %>%
select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.9),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 500, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
CP055 - Outillage et autre matériel pour la maison et le jardin
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP055",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1990-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
bind_rows(`IPC-2015` %>%
filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC %in% c("055"),
COICOP2016 == "M",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
month_to_date filter(month(date) == 1) %>%
select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.9),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 500, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
CP056 - Biens et services pour l’entretien courant du foyer
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP056",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1990-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
bind_rows(`IPC-2015` %>%
filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC %in% c("056"),
COICOP2016 == "M",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
month_to_date filter(month(date) == 1) %>%
select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.9),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 500, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
CP072 - Dépenses d’utilisation des véhicules
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP072",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1990-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
bind_rows(`IPC-2015` %>%
filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC %in% c("072"),
COICOP2016 == "M",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
month_to_date filter(month(date) == 1) %>%
select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.9),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 500, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
CP081 - Services postaux
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP081",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1990-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
bind_rows(`IPC-2015` %>%
filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC %in% c("081"),
COICOP2016 == "M",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
month_to_date filter(month(date) == 1) %>%
select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.75, 0.9),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 500, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
CP082 - Matériel de téléphonie et de télécopie
1990-
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP082",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1990-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
bind_rows(`IPC-2015` %>%
filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC %in% c("082"),
COICOP2016 == "M",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
month_to_date filter(month(date) == 1) %>%
select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1993-01-01")]) %>%
ggplot() + ylab("Indice des prix (1993=100)") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.75, 0.9),
legend.title = element_blank()) +
scale_y_log10(breaks = c(1, 2, 3, 5, 8, 10, 20, 30, 50, 100),
labels = dollar_format(accuracy = 1, prefix = ""))
1996-
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP082",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1996-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
bind_rows(`IPC-2015` %>%
filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC %in% c("082"),
COICOP2016 == "M",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
month_to_date filter(month(date) == 1,
>= as.Date("1996-01-01")) %>%
date select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1996-01-01")]) %>%
ggplot() + ylab("Indice des prix (1996=100)") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.75, 0.9),
legend.title = element_blank()) +
scale_y_log10(breaks = c(1, 2, 3, 5, 8, 10, 20, 30, 50, 100),
labels = dollar_format(accuracy = 1, prefix = ""))
CP083 - Services de télécommunications
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP083",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1990-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
bind_rows(`IPC-2015` %>%
filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC %in% c("083"),
COICOP2016 == "M",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
month_to_date filter(month(date) == 1) %>%
select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 500, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
CP091 - Matériel audiovisuel, photographique et informatique
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP091",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1990-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
bind_rows(`IPC-2015` %>%
filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC %in% c("091"),
COICOP2016 == "M",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
month_to_date filter(month(date) == 1) %>%
select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.3),
legend.title = element_blank()) +
scale_y_log10(breaks = c(seq(0, 500, 10), 15),
labels = dollar_format(accuracy = 1, prefix = ""))
CP092 - Autres biens durables culturels et récréatifs
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP092",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1990-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
bind_rows(`IPC-2015` %>%
filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC %in% c("092"),
COICOP2016 == "M",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
month_to_date filter(month(date) == 1) %>%
select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.3),
legend.title = element_blank()) +
scale_y_log10(breaks = c(seq(0, 500, 10), 15),
labels = dollar_format(accuracy = 1, prefix = ""))
CP093 - Autres articles et matériel de loisirs, de jardinage et animaux de compagnie
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP093",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1990-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
bind_rows(`IPC-2015` %>%
filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC %in% c("093"),
COICOP2016 == "M",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
month_to_date filter(month(date) == 1) %>%
select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.3),
legend.title = element_blank()) +
scale_y_log10(breaks = c(seq(0, 500, 10), 15),
labels = dollar_format(accuracy = 1, prefix = ""))
CP094 - Services récréatifs et culturels
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP094",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1990-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
bind_rows(`IPC-2015` %>%
filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC %in% c("094"),
COICOP2016 == "M",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
month_to_date filter(month(date) == 1) %>%
select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.3),
legend.title = element_blank()) +
scale_y_log10(breaks = c(seq(0, 500, 10), 15),
labels = dollar_format(accuracy = 1, prefix = ""))
CP095 - Journaux, livres et articles de papeterie
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP095",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1990-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
bind_rows(`IPC-2015` %>%
filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC %in% c("095"),
COICOP2016 == "M",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
month_to_date filter(month(date) == 1) %>%
select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = c(seq(0, 500, 10), 15),
labels = dollar_format(accuracy = 1, prefix = ""))
CP096 - Forfaits touristiques
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP096",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1990-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
bind_rows(`IPC-2015` %>%
filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC %in% c("096"),
COICOP2016 == "M",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
month_to_date filter(month(date) == 1) %>%
select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = c(seq(0, 500, 10), 15),
labels = dollar_format(accuracy = 1, prefix = ""))
CP126 - Services financiers
All
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP126",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1990-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
bind_rows(`IPC-2015` %>%
filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC %in% c("126"),
COICOP2016 == "M",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
month_to_date filter(month(date) == 1) %>%
select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.75, 0.7),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 500, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
All
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP126",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1996-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
bind_rows(`IPC-2015` %>%
filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC %in% c("126"),
COICOP2016 == "M",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
month_to_date filter(month(date) == 1) %>%
select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1996-01-01")]) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.75, 0.7),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 500, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
CP141 - Logement
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP141",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1990-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.9),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 500, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
CP142 - Santé
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP142",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1990-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.9),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 500, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
CP143 - Loisirs et culture
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP143",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1990-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.9),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 500, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
CP144 - Enseignement
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP144",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1990-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.9),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 500, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
4-digit
CP0562 - Services domestiques et services ménagers
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP0562",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1990-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
bind_rows(`IPC-2015` %>%
filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC %in% c("0562"),
COICOP2016 == "M",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
month_to_date filter(month(date) == 1) %>%
select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.9),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 500, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
CP0911 -
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP0912",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1990-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
bind_rows(`IPC-2015` %>%
filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC %in% c("0912"),
COICOP2016 == "M",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
month_to_date filter(month(date) == 1) %>%
select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.75, 0.3),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 500, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
CP0914
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP0914",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1990-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
bind_rows(`IPC-2015` %>%
filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC %in% c("0914"),
COICOP2016 == "M",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
month_to_date filter(month(date) == 1) %>%
select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.75, 0.3),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 500, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
CP0913
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP0913",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1990-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
bind_rows(`IPC-2015` %>%
filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC %in% c("0913"),
COICOP2016 == "M",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
month_to_date filter(month(date) == 1) %>%
select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.75, 0.3),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 500, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
CP0915 - Réparation de matériels audiovisuel, photographique et informatique
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP0915",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1990-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
bind_rows(`IPC-2015` %>%
filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC %in% c("0914"),
COICOP2016 == "M",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
month_to_date filter(month(date) == 1) %>%
select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.75, 0.3),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 500, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
CP0931 - Jeux, jouets et passe-temps
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP0931",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1990-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
bind_rows(`IPC-2015` %>%
filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC %in% c("0931"),
COICOP2016 == "M",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
month_to_date filter(month(date) == 1) %>%
select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.9),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 500, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
CP0954 - Papeterie et matériel de dessin
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP0954",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1990-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
bind_rows(`IPC-2015` %>%
filter(INDICATEUR == "IPC",
== "ENSEMBLE",
MENAGES_IPC %in% c("0954"),
COICOP2016 == "M",
FREQ == "FE",
REF_AREA == "INDICE") %>%
NATURE %>%
month_to_date filter(month(date) == 1) %>%
select(date, value = OBS_VALUE) %>%
mutate(variable = "Indice des Prix à la Consommation")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.9),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 500, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
CP1261 - Services financiers indirectement mesurés
Code
%>%
T_CONSO_EFF_FONCTION filter(fonction =="CP1261",
== "IPRIX2020") %>%
variable %>%
year_to_date2 filter(date >= as.Date("1990-01-01")) %>%
mutate(variable = "Deflateur de la Consommation") %>%
select(variable, date, value) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.75, 0.7),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 500, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
Différences
- Santé est en categorie 13 et 14 dans la COICOP lorsque c’est une dépense de consommation des APU ou des IBSLM, ie dans le déflateur de la consommation finale (pareil dans l’IPCH). Dans l’IPC en revanche, la santé est incluse dans la classification n°6 ce qui apparait contradictoire…