Indices des prix à la consommation - Base 1990

Data - INSEE

Info

source dataset .html .RData
insee IPC-1990 2024-11-05 2024-11-09

Données sur l’inflation en France

source dataset .html .RData
insee bdf2017 2024-11-09 2023-11-21
insee ILC-ILAT-ICC 2024-11-09 2024-11-09
insee INDICES_LOYERS 2024-11-09 2024-11-09
insee IPC-1970-1980 2024-11-09 2024-11-09
insee IPC-1990 2024-11-05 2024-11-09
insee IPC-2015 2024-11-05 2024-11-09
insee IPC-PM-2015 2024-11-05 2024-11-09
insee IPCH-2015 2024-11-05 2024-11-09
insee IPGD-2015 2024-08-22 2024-10-26
insee IPLA-IPLNA-2015 2024-11-05 2024-11-09
insee IPPI-2015 2024-11-05 2024-11-09
insee IRL 2024-11-05 2024-11-09
insee SERIES_LOYERS 2024-11-05 2024-11-09
insee T_CONSO_EFF_FONCTION 2024-11-05 2024-07-18

Data on inflation

source dataset .html .RData
bis CPI 2024-07-01 2022-01-20
ecb CES 2024-10-08 2024-01-12
eurostat nama_10_co3_p3 2024-11-08 2024-10-09
eurostat prc_hicp_cow 2024-11-05 2024-10-08
eurostat prc_hicp_ctrb 2024-11-05 2024-10-08
eurostat prc_hicp_inw 2024-11-05 2024-11-09
eurostat prc_hicp_manr 2024-11-05 2024-10-08
eurostat prc_hicp_midx 2024-11-01 2024-11-09
eurostat prc_hicp_mmor 2024-11-05 2024-11-08
eurostat prc_ppp_ind 2024-11-05 2024-10-08
eurostat sts_inpp_m 2024-06-24 2024-10-08
eurostat sts_inppd_m 2024-11-05 2024-10-08
eurostat sts_inppnd_m 2024-06-24 2024-10-08
fred cpi 2024-11-09 2024-11-09
fred inflation 2024-11-09 2024-11-09
imf CPI 2024-06-20 2020-03-13
oecd MEI_PRICES_PPI 2024-09-15 2024-04-15
oecd PPP2017 2024-04-16 2023-07-25
oecd PRICES_CPI 2024-04-16 2024-04-15
wdi FP.CPI.TOTL.ZG 2023-01-15 2024-09-18
wdi NY.GDP.DEFL.KD.ZG 2024-09-18 2024-09-18

LAST_COMPILE

LAST_COMPILE
2024-11-09

LAST_UPDATE

Code
`IPC-1990` %>%
  group_by(LAST_UPDATE) %>%
  summarise(Nobs = n()) %>%
  arrange(desc(LAST_UPDATE)) %>%
  print_table_conditional()
LAST_UPDATE Nobs
2018-02-12 69239

Last TIME_PERIOD

Code
`IPC-1990` %>%
  group_by(TIME_PERIOD) %>%
  summarise(Nobs = n()) %>%
  arrange(desc(TIME_PERIOD)) %>%
  head(1) %>%
  print_table_conditional()
TIME_PERIOD Nobs
1998-12 587

NATURE

Code
`IPC-1990` %>%
  left_join(NATURE,  by = "NATURE") %>%
  group_by(NATURE, Nature) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional
NATURE Nature Nobs
INDICE Indice 60671
POND Pondérations d'indice 3168
VARIATIONS_M Variations mensuelles 2758
GLISSEMENT_ANNUEL Glissement annuel 2627
VARIATIONS_A Variations annuelles 15

MENAGES_IPC

Code
`IPC-1990` %>%
  left_join(MENAGES_IPC,  by = "MENAGES_IPC") %>%
  group_by(MENAGES_IPC, Menages_ipc) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional
MENAGES_IPC Menages_ipc Nobs
POPULATION-TOTALE Population totale 62343
MENAGES-URBAINS Ménages urbains employés ou ouvriers 3918
MENAGES-PARISIENS Ménages parisiens employés ou ouvriers 2049
ENSEMBLE Ensemble des ménages 929

COICOP_1990

Code
`IPC-1990` %>%
  left_join(COICOP_1990,  by = "COICOP_1990") %>%
  group_by(COICOP_1990, Coicop_1990) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional

PRODUITS_1990

Code
`IPC-1990` %>%
  left_join(PRODUITS_1990,  by = "PRODUITS_1990") %>%
  group_by(PRODUITS_1990, Produits_1990) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional

TITLE_FR

Code
`IPC-1990` %>%
  group_by(TITLE_FR, IDBANK) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional

REF_AREA

Code
`IPC-1990` %>%
  group_by(REF_AREA) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional
REF_AREA Nobs
FE 62343
FM 4847
D75 2049

TIME_PERIOD

Code
`IPC-1990` %>%
  group_by(TIME_PERIOD) %>%
  summarise(Nobs = n()) %>%
  arrange(desc(TIME_PERIOD)) %>%
  print_table_conditional

Pondérations d’indice

1992, 1994, 1996, 1998

Code
`IPC-1990` %>%
  filter(NATURE == "POND",
         TIME_PERIOD %in% c("1998", "1996", "1994", "1992", "1990"),
         MENAGES_IPC == "POPULATION-TOTALE") %>%
  select_if(function(col) length(unique(col)) > 1) %>%
  select(-IDBANK, -TITLE_FR, -TITLE_EN, -OBS_STATUS, -OBS_TYPE) %>%
  left_join(PRODUITS_1990,  by = "PRODUITS_1990") %>%
  left_join(COICOP_1990,  by = "COICOP_1990") %>%
  spread(TIME_PERIOD, OBS_VALUE) %>%
  print_table_conditional

Tabac

Code
`IPC-1990` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "POPULATION-TOTALE",
         COICOP_1990 %in% c("14"),
         NATURE == "POND") %>%
  year_to_date %>%
  mutate(OBS_VALUE = OBS_VALUE/10000) %>%
  ggplot() + ylab("Poids du tabac dans l'indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE)) +
  scale_color_manual(values = viridis(3)[1:2]) +
  scale_x_date(breaks = seq(1920, 2025, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(0, 10, 0.1),
                     labels = percent_format(accuracy = .1))

Santé

Code
`IPC-1990` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "POPULATION-TOTALE",
         COICOP_1990 %in% c("5"),
         NATURE == "POND") %>%
  year_to_date %>%
  mutate(OBS_VALUE = OBS_VALUE/10000) %>%
  ggplot() + ylab("Poids de la santé dans l'indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE)) +
  scale_color_manual(values = viridis(3)[1:2]) +
  scale_x_date(breaks = seq(1920, 2025, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(0, 10, 0.1),
                     labels = percent_format(accuracy = .1))

2-digit

Boissons Alcoolisées, Logement, Restaurants et hôtels

Code
`IPC-1990` %>%
  filter(COICOP_1990 %in% c("0", "2", "11", "4"),
         REF_AREA == "FE",
         NATURE == "INDICE",
         FREQ == "M") %>%
  month_to_date %>%
  left_join(COICOP_1990, by = "COICOP_1990") %>%
  group_by(COICOP_1990) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Coicop_1990)) +
  scale_color_manual(values = viridis(5)[1:4]) +
  scale_x_date(breaks = seq(1920, 2025, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.3, 0.85),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(100, 200, 1),
                     labels = dollar_format(accuracy = 1, prefix = ""))

Transports, Enseignement, B&S Divers

Code
`IPC-1990` %>%
  filter(COICOP_1990 %in% c("00", "1", "7", "12"),
         REF_AREA == "FE",
         NATURE == "INDICE",
         FREQ == "M") %>%
  month_to_date %>%
  left_join(COICOP_1990, by = "COICOP_1990") %>%
  group_by(COICOP_1990) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Coicop_1990)) +
  scale_color_manual(values = viridis(5)[1:4]) +
  scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.3, 0.85),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(100, 300, 1),
                     labels = dollar_format(accuracy = 1, prefix = ""))

Alimentation, Habillement, Meubles

Code
`IPC-1990` %>%
  filter(COICOP_1990 %in% c("00", "5", "1", "3"),
         REF_AREA == "FE",
         NATURE == "INDICE",
         FREQ == "M") %>%
  month_to_date %>%
  left_join(COICOP_1990, by = "COICOP_1990") %>%
  group_by(COICOP_1990) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Coicop_1990)) +
  scale_color_manual(values = viridis(5)[1:4]) +
  scale_x_date(breaks = seq(1920, 2025, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.3, 0.85),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(100, 300, 1),
                     labels = dollar_format(accuracy = 1, prefix = ""))

Santé, Communications, Loisirs

Code
`IPC-1990` %>%
  filter(COICOP_1990 %in% c("00", "6", "9", "8"),
         REF_AREA == "FE",
         NATURE == "INDICE",
         FREQ == "M") %>%
  month_to_date %>%
  left_join(COICOP_1990, by = "COICOP_1990") %>%
  group_by(COICOP_1990) %>%
  arrange(date) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Coicop_1990)) +
  scale_color_manual(values = viridis(5)[1:4]) +
  scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(10, 300, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))