Purchasing power parities (PPPs), price level indices and real expenditures for ESA 2010 aggregates

Data - Eurostat

Info

Data on inflation

source dataset .html .RData
bis CPI 2024-07-01 2022-01-20
ecb CES 2024-11-21 2024-11-21
eurostat nama_10_co3_p3 2024-11-08 2024-10-09
eurostat prc_hicp_cow 2024-11-22 2024-10-08
eurostat prc_hicp_ctrb 2024-11-22 2024-10-08
eurostat prc_hicp_inw 2024-11-05 2024-11-21
eurostat prc_hicp_manr 2024-11-22 2024-11-21
eurostat prc_hicp_midx 2024-11-01 2024-11-21
eurostat prc_hicp_mmor 2024-11-22 2024-11-21
eurostat prc_ppp_ind 2024-11-05 2024-10-08
eurostat sts_inpp_m 2024-06-24 2024-11-21
eurostat sts_inppd_m 2024-11-21 2024-11-21
eurostat sts_inppnd_m 2024-06-24 2024-11-21
fred cpi 2024-11-21 2024-11-21
fred inflation 2024-11-21 2024-11-21
imf CPI 2024-06-20 2020-03-13
oecd MEI_PRICES_PPI 2024-09-15 2024-04-15
oecd PPP2017 2024-04-16 2023-07-25
oecd PRICES_CPI 2024-04-16 2024-04-15
wdi FP.CPI.TOTL.ZG 2023-01-15 2024-09-18
wdi NY.GDP.DEFL.KD.ZG 2024-09-18 2024-09-18

LAST_COMPILE

LAST_COMPILE
2024-11-22

Last

Code
prc_ppp_ind %>%
  group_by(time) %>%
  summarise(Nobs = n()) %>%
  arrange(desc(time)) %>%
  head(1) %>%
  print_table_conditional()
time Nobs
2023 20921

What’s PPP ?

PPPs are nothing more than price relatives that show the ratio of the prices in national currencies of the same good or service in different countries. For example, if the price of a litre of Coca Cola is 2.30 euros in France and 2.00 dollars in the United States, then the PPP for Coca Cola between France and the United States is the ratio 2.30 euros to 2.00 dollars or 1.15 euros to the dollar. This means that for every dollar spent on Coca Cola in the United States, 1.15 euros would have to be spent in France to obtain the same quantity and quality – or, in other words, the same volume - of Coca Cola.

Eurostat Website

Actual individual consumption per capita

Code
include_graphics("https://ec.europa.eu/eurostat/documents/4187653/11581511/Map+AIC+per+capita+2020.jpg/fbd93f3e-ebe8-29bc-8cd3-8d790990ca30?t=1624002507913")

Volume indices of AIC and GDP per capita

Code
include_graphics("https://ec.europa.eu/eurostat/documents/4187653/11581511/AIC+GDP+per+capita+2020.jpg/c1f554b3-807e-d0b7-1337-333e3eef5d17?t=1624002507551")

na_item

Code
prc_ppp_ind %>%
  left_join(na_item, by = "na_item") %>%
  group_by(na_item, Na_item) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()
na_item Na_item Nobs
PPP_EU15 Purchasing power parities (EU15=1) 72588
PLI_EU15 Price level indices (EU15=100) 72471
PPP_EU27_2007 Purchasing power parities (EU27_2007=1) 67716
PLI_EU27_2007 Price level indices (EU27_2007=100) 67662
PPP_EU27_2020 Purchasing power parities (EU27_2020=1) 66543
PLI_EU27_2020 Price level indices (EU27_2020=100) 66512
EXP_NAC Nominal expenditure in national currency 61728
EXP_EUR_HAB Nominal expenditure per inhabitant (in euro) 61677
EXP_EUR Nominal expenditure (in euro) 61676
EXP_NAC_PC_GDP Nominal expenditure as a percentage of GDP (GDP=100) 61676
PPP_EU28 Purchasing power parities (EU28=1) 57844
PLI_EU28 Price level indices (EU28=100) 57832
EXP_PPS_EU15_HAB Real expenditure per capita (in PPS_EU15) 55259
EXP_PPS_EU15 Real expenditure (in PPS_EU15) 55133
VI_PPS_EU15_HAB Volume indices of real expenditure per capita (in PPS_EU15=100) 55133
EXP_PPS_EU27_2007_HAB Real expenditure per capita (in PPS_EU27_2007) 51648
EXP_PPS_EU27_2007 Real expenditure (in PPS_EU27_2007) 51521
VI_PPS_EU27_2007_HAB Volume indices of real expenditure per capita (in PPS_EU27_2007=100) 51521
EXP_PPS_EU27_2020 Real expenditure (in PPS_EU27_2020) 50708
EXP_PPS_EU27_2020_HAB Real expenditure per capita (in PPS_EU27_2020) 50567
VI_PPS_EU27_2020_HAB Volume indices of real expenditure per capita (in PPS_EU27_2020=100) 50567
EXP_PPS_EU28 Real expenditure (in PPS_EU28) 44113
EXP_PPS_EU28_HAB Real expenditure per capita (in PPS_EU28) 44113
VI_PPS_EU28_HAB Volume indices of real expenditure per capita (in PPS_EU28=100) 44113

ppp_cat

Code
prc_ppp_ind %>%
  left_join(ppp_cat, by = "ppp_cat") %>%
  group_by(ppp_cat, Ppp_cat) %>%
  summarise(Nobs = n()) %>%
  print_table_conditional()

geo

Code
prc_ppp_ind %>%
  left_join(geo, by = "geo") %>%
  group_by(geo, Geo) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
         Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

time

Code
prc_ppp_ind %>%
  group_by(time) %>%
  summarise(Nobs = n()) %>%
  print_table_conditional()
time Nobs
1995 12204
1996 12183
1997 12318
1998 12327
1999 31969
2000 32109
2001 32361
2002 32109
2003 58733
2004 58733
2005 63244
2006 63792
2007 63382
2008 63382
2009 63382
2010 63792
2011 63792
2012 63792
2013 64135
2014 64197
2015 64197
2016 64197
2017 64197
2018 64250
2019 64196
2020 64108
2021 21089
2022 21230
2023 20921

Germany, France, Italy

GDP - Gross domestic product

Code
prc_ppp_ind %>%
  filter(ppp_cat == "GDP",
         geo %in% c("FR", "DE", "IT"),
         na_item == "PPP_EU27_2020") %>%
  year_to_date %>%
  left_join(geo, by = "geo") %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  scale_color_identity() + theme_minimal()  + add_3flags +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2028, 2), "-01-01")),
               labels = date_format("%Y")) +
  xlab("") + ylab("") +
  scale_y_continuous(breaks = seq(0, 4000, .05))

E01 - Final consumption expenditure

Code
prc_ppp_ind %>%
  filter(ppp_cat == "E01",
         geo %in% c("FR", "DE", "IT"),
         na_item == "PPP_EU27_2020") %>%
  year_to_date %>%
  left_join(geo, by = "geo") %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  scale_color_identity() + theme_minimal()  + add_3flags +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2028, 2), "-01-01")),
               labels = date_format("%Y")) +
  xlab("") + ylab("") +
  scale_y_continuous(breaks = seq(0, 4000, .05))

E011 - Household final consumption expenditure

Code
prc_ppp_ind %>%
  filter(ppp_cat == "E011",
         geo %in% c("FR", "DE", "IT"),
         na_item == "PPP_EU27_2020") %>%
  year_to_date %>%
  left_join(geo, by = "geo") %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  scale_color_identity() + theme_minimal()  + add_3flags +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2028, 2), "-01-01")),
               labels = date_format("%Y")) +
  xlab("") + ylab("") +
  scale_y_continuous(breaks = seq(0, 4000, .05))

A01 - Actual individual consumption

Code
prc_ppp_ind %>%
  filter(ppp_cat == "A01",
         geo %in% c("FR", "DE", "IT"),
         na_item == "PPP_EU27_2020") %>%
  year_to_date %>%
  left_join(geo, by = "geo") %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  scale_color_identity() + theme_minimal()  + add_3flags +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2028, 2), "-01-01")),
               labels = date_format("%Y")) +
  xlab("") + ylab("") +
  scale_y_continuous(breaks = seq(0, 4000, .05))

Housing, water, electricity, gas and other fuels - A0104

France

Code
prc_ppp_ind %>%
  filter(ppp_cat == "A0104",
         geo %in% c("FR")) %>%
  left_join(na_item, by = "na_item") %>%
  group_by(na_item, Na_item) %>%
  summarise(Nobs = n(),
            first = first(time),
            last = last(time)) %>%
  print_table_conditional()
na_item Na_item Nobs first last
EXP_EUR Nominal expenditure (in euro) 29 1995 2023
EXP_EUR_HAB Nominal expenditure per inhabitant (in euro) 29 1995 2023
EXP_NAC Nominal expenditure in national currency 29 1995 2023
EXP_NAC_PC_GDP Nominal expenditure as a percentage of GDP (GDP=100) 29 1995 2023
EXP_PPS_EU15 Real expenditure (in PPS_EU15) 26 1995 2020
EXP_PPS_EU15_HAB Real expenditure per capita (in PPS_EU15) 26 1995 2020
EXP_PPS_EU27_2007 Real expenditure (in PPS_EU27_2007) 22 1999 2020
EXP_PPS_EU27_2007_HAB Real expenditure per capita (in PPS_EU27_2007) 22 1999 2020
EXP_PPS_EU27_2020 Real expenditure (in PPS_EU27_2020) 21 2003 2023
EXP_PPS_EU27_2020_HAB Real expenditure per capita (in PPS_EU27_2020) 21 2003 2023
EXP_PPS_EU28 Real expenditure (in PPS_EU28) 18 2003 2020
EXP_PPS_EU28_HAB Real expenditure per capita (in PPS_EU28) 18 2003 2020
PLI_EU15 Price level indices (EU15=100) 26 1995 2020
PLI_EU27_2007 Price level indices (EU27_2007=100) 22 1999 2020
PLI_EU27_2020 Price level indices (EU27_2020=100) 21 2003 2023
PLI_EU28 Price level indices (EU28=100) 18 2003 2020
PPP_EU15 Purchasing power parities (EU15=1) 26 1995 2020
PPP_EU27_2007 Purchasing power parities (EU27_2007=1) 22 1999 2020
PPP_EU27_2020 Purchasing power parities (EU27_2020=1) 21 2003 2023
PPP_EU28 Purchasing power parities (EU28=1) 18 2003 2020
VI_PPS_EU15_HAB Volume indices of real expenditure per capita (in PPS_EU15=100) 26 1995 2020
VI_PPS_EU27_2007_HAB Volume indices of real expenditure per capita (in PPS_EU27_2007=100) 22 1999 2020
VI_PPS_EU27_2020_HAB Volume indices of real expenditure per capita (in PPS_EU27_2020=100) 21 2003 2023
VI_PPS_EU28_HAB Volume indices of real expenditure per capita (in PPS_EU28=100) 18 2003 2020

2019

Code
prc_ppp_ind %>%
  filter(ppp_cat == "A0104",
         time == "2019",
         geo %in% c("FR", "DE", "IT")) %>%
  select(na_item, geo, values) %>%
  left_join(na_item, by = "na_item") %>%
  spread(geo, values) %>%
  print_table_conditional()
na_item Na_item DE FR IT
EXP_EUR Nominal expenditure (in euro) 4.12979e+05 3.49680e+05 2.44421e+05
EXP_EUR_HAB Nominal expenditure per inhabitant (in euro) 4.97000e+03 5.16100e+03 4.09200e+03
EXP_NAC Nominal expenditure in national currency 4.12979e+05 3.49680e+05 2.44421e+05
EXP_NAC_PC_GDP Nominal expenditure as a percentage of GDP (GDP=100) 1.19000e+01 1.43000e+01 1.36000e+01
EXP_PPS_EU15 Real expenditure (in PPS_EU15) 4.33826e+05 3.49751e+05 3.00961e+05
EXP_PPS_EU15_HAB Real expenditure per capita (in PPS_EU15) 5.20000e+03 5.20000e+03 5.00000e+03
EXP_PPS_EU27_2007 Real expenditure (in PPS_EU27_2007) 3.88743e+05 3.13404e+05 2.69685e+05
EXP_PPS_EU27_2007_HAB Real expenditure per capita (in PPS_EU27_2007) 4.70000e+03 4.60000e+03 4.50000e+03
EXP_PPS_EU27_2020 Real expenditure (in PPS_EU27_2020) 3.57556e+05 2.88262e+05 2.48049e+05
EXP_PPS_EU27_2020_HAB Real expenditure per capita (in PPS_EU27_2020) 4.30000e+03 4.30000e+03 4.20000e+03
EXP_PPS_EU28 Real expenditure (in PPS_EU28) 3.87061e+05 3.12049e+05 2.68518e+05
EXP_PPS_EU28_HAB Real expenditure per capita (in PPS_EU28) 4.70000e+03 4.60000e+03 4.50000e+03
PLI_EU15 Price level indices (EU15=100) 9.52000e+01 1.00000e+02 8.12000e+01
PLI_EU27_2007 Price level indices (EU27_2007=100) 1.06200e+02 1.11600e+02 9.06000e+01
PLI_EU27_2020 Price level indices (EU27_2020=100) 1.15500e+02 1.21300e+02 9.85000e+01
PLI_EU28 Price level indices (EU28=100) 1.06700e+02 1.12100e+02 9.10000e+01
PPP_EU15 Purchasing power parities (EU15=1) 9.51945e-01 9.99797e-01 8.12135e-01
PPP_EU27_2007 Purchasing power parities (EU27_2007=1) 1.06234e+00 1.11575e+00 9.06320e-01
PPP_EU27_2020 Purchasing power parities (EU27_2020=1) 1.15500e+00 1.21306e+00 9.85372e-01
PPP_EU28 Purchasing power parities (EU28=1) 1.06696e+00 1.12059e+00 9.10258e-01
VI_PPS_EU15_HAB Volume indices of real expenditure per capita (in PPS_EU15=100) 1.09000e+02 1.07000e+02 1.05000e+02
VI_PPS_EU27_2007_HAB Volume indices of real expenditure per capita (in PPS_EU27_2007=100) 1.12000e+02 1.10000e+02 1.08000e+02
VI_PPS_EU27_2020_HAB Volume indices of real expenditure per capita (in PPS_EU27_2020=100) 1.10000e+02 1.09000e+02 1.06000e+02
VI_PPS_EU28_HAB Volume indices of real expenditure per capita (in PPS_EU28=100) 1.12000e+02 1.10000e+02 1.08000e+02

Germany, France, Italy

PPP_EU27_2020

Code
prc_ppp_ind %>%
  filter(ppp_cat == "A0104",
         geo %in% c("FR", "DE", "IT"),
         na_item == "PPP_EU27_2020") %>%
  year_to_date %>%
  left_join(geo, by = "geo") %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  scale_color_identity() + theme_minimal()  + add_3flags +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2028, 2), "-01-01")),
               labels = date_format("%Y")) +
  xlab("") + ylab("") +
  scale_y_continuous(breaks = seq(0, 4000, .05))

PLI_EU28

Code
prc_ppp_ind %>%
  filter(ppp_cat == "A0104",
         geo %in% c("FR", "DE", "IT"),
         na_item == "PLI_EU28") %>%
  year_to_date %>%
  left_join(geo, by = "geo") %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  scale_color_identity() + theme_minimal()  + add_3flags +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2028, 2), "-01-01")),
               labels = date_format("%Y")) +
  xlab("") + ylab("") +
  scale_y_continuous(breaks = seq(0, 4000, 5))

Table

Household final consumption expenditure - E011

Code
prc_ppp_ind %>%
  filter(ppp_cat == "E011",
         time == "2019",
         geo %in% c("FR", "DE", "IT")) %>%
  select(na_item, geo, values) %>%
  left_join(na_item, by = "na_item") %>%
  spread(geo, values) %>%
  print_table_conditional()
na_item Na_item DE FR IT
EXP_EUR Nominal expenditure (in euro) 1.752890e+06 1.256724e+06 1.064898e+06
EXP_EUR_HAB Nominal expenditure per inhabitant (in euro) 2.109600e+04 1.854800e+04 1.782900e+04
EXP_NAC Nominal expenditure in national currency 1.752890e+06 1.256724e+06 1.064898e+06
EXP_NAC_PC_GDP Nominal expenditure as a percentage of GDP (GDP=100) 5.050000e+01 5.160000e+01 5.930000e+01
EXP_PPS_EU15 Real expenditure (in PPS_EU15) 1.802651e+06 1.219566e+06 1.153480e+06
EXP_PPS_EU15_HAB Real expenditure per capita (in PPS_EU15) 2.170000e+04 1.800000e+04 1.930000e+04
EXP_PPS_EU27_2007 Real expenditure (in PPS_EU27_2007) 1.691938e+06 1.144664e+06 1.082637e+06
EXP_PPS_EU27_2007_HAB Real expenditure per capita (in PPS_EU27_2007) 2.040000e+04 1.690000e+04 1.810000e+04
EXP_PPS_EU27_2020 Real expenditure (in PPS_EU27_2020) 1.637171e+06 1.107612e+06 1.047593e+06
EXP_PPS_EU27_2020_HAB Real expenditure per capita (in PPS_EU27_2020) 1.970000e+04 1.630000e+04 1.750000e+04
EXP_PPS_EU28 Real expenditure (in PPS_EU28) 1.689270e+06 1.142859e+06 1.080930e+06
EXP_PPS_EU28_HAB Real expenditure per capita (in PPS_EU28) 2.030000e+04 1.690000e+04 1.810000e+04
PLI_EU15 Price level indices (EU15=100) 9.720000e+01 1.030000e+02 9.230000e+01
PLI_EU27_2007 Price level indices (EU27_2007=100) 1.036000e+02 1.098000e+02 9.840000e+01
PLI_EU27_2020 Price level indices (EU27_2020=100) 1.071000e+02 1.135000e+02 1.017000e+02
PLI_EU28 Price level indices (EU28=100) 1.038000e+02 1.100000e+02 9.850000e+01
PPP_EU15 Purchasing power parities (EU15=1) 9.723960e-01 1.030470e+00 9.232050e-01
PPP_EU27_2007 Purchasing power parities (EU27_2007=1) 1.036020e+00 1.097900e+00 9.836150e-01
PPP_EU27_2020 Purchasing power parities (EU27_2020=1) 1.070680e+00 1.134620e+00 1.016520e+00
PPP_EU28 Purchasing power parities (EU28=1) 1.037660e+00 1.099630e+00 9.851680e-01
VI_PPS_EU15_HAB Volume indices of real expenditure per capita (in PPS_EU15=100) 1.120000e+02 9.300000e+01 9.900000e+01
VI_PPS_EU27_2007_HAB Volume indices of real expenditure per capita (in PPS_EU27_2007=100) 1.180000e+02 9.800000e+01 1.050000e+02
VI_PPS_EU27_2020_HAB Volume indices of real expenditure per capita (in PPS_EU27_2020=100) 1.220000e+02 1.010000e+02 1.080000e+02
VI_PPS_EU28_HAB Volume indices of real expenditure per capita (in PPS_EU28=100) 1.190000e+02 9.800000e+01 1.060000e+02

Gross domestic product - GDP

Code
prc_ppp_ind %>%
  filter(ppp_cat == "GDP",
         time == "2019",
         geo %in% c("FR", "DE", "IT")) %>%
  select(na_item, geo, values) %>%
  left_join(na_item, by = "na_item") %>%
  spread(geo, values) %>%
  print_table_conditional()
na_item Na_item DE FR IT
EXP_EUR Nominal expenditure (in euro) 3.474110e+06 2.437635e+06 1.796648e+06
EXP_EUR_HAB Nominal expenditure per inhabitant (in euro) 4.181000e+04 3.597700e+04 3.008000e+04
EXP_NAC Nominal expenditure in national currency 3.474110e+06 2.437635e+06 1.796648e+06
EXP_NAC_PC_GDP Nominal expenditure as a percentage of GDP (GDP=100) 1.000000e+02 1.000000e+02 1.000000e+02
EXP_PPS_EU15 Real expenditure (in PPS_EU15) 3.431902e+06 2.448238e+06 1.967979e+06
EXP_PPS_EU15_HAB Real expenditure per capita (in PPS_EU15) 4.130000e+04 3.610000e+04 3.290000e+04
EXP_PPS_EU27_2007 Real expenditure (in PPS_EU27_2007) 3.226565e+06 2.301755e+06 1.850231e+06
EXP_PPS_EU27_2007_HAB Real expenditure per capita (in PPS_EU27_2007) 3.880000e+04 3.400000e+04 3.100000e+04
EXP_PPS_EU27_2020 Real expenditure (in PPS_EU27_2020) 3.147362e+06 2.245254e+06 1.804813e+06
EXP_PPS_EU27_2020_HAB Real expenditure per capita (in PPS_EU27_2020) 3.790000e+04 3.310000e+04 3.020000e+04
EXP_PPS_EU28 Real expenditure (in PPS_EU28) 3.220444e+06 2.297389e+06 1.846721e+06
EXP_PPS_EU28_HAB Real expenditure per capita (in PPS_EU28) 3.880000e+04 3.390000e+04 3.090000e+04
PLI_EU15 Price level indices (EU15=100) 1.012000e+02 9.960000e+01 9.130000e+01
PLI_EU27_2007 Price level indices (EU27_2007=100) 1.077000e+02 1.059000e+02 9.710000e+01
PLI_EU27_2020 Price level indices (EU27_2020=100) 1.104000e+02 1.086000e+02 9.950000e+01
PLI_EU28 Price level indices (EU28=100) 1.079000e+02 1.061000e+02 9.730000e+01
PPP_EU15 Purchasing power parities (EU15=1) 1.012300e+00 9.956690e-01 9.129410e-01
PPP_EU27_2007 Purchasing power parities (EU27_2007=1) 1.076720e+00 1.059030e+00 9.710400e-01
PPP_EU27_2020 Purchasing power parities (EU27_2020=1) 1.103820e+00 1.085680e+00 9.954760e-01
PPP_EU28 Purchasing power parities (EU28=1) 1.078770e+00 1.061050e+00 9.728860e-01
VI_PPS_EU15_HAB Volume indices of real expenditure per capita (in PPS_EU15=100) 1.130000e+02 9.900000e+01 9.000000e+01
VI_PPS_EU27_2007_HAB Volume indices of real expenditure per capita (in PPS_EU27_2007=100) 1.200000e+02 1.050000e+02 9.600000e+01
VI_PPS_EU27_2020_HAB Volume indices of real expenditure per capita (in PPS_EU27_2020=100) 1.210000e+02 1.060000e+02 9.700000e+01
VI_PPS_EU28_HAB Volume indices of real expenditure per capita (in PPS_EU28=100) 1.200000e+02 1.050000e+02 9.600000e+01

Actual individual consumption - A01

Code
prc_ppp_ind %>%
  filter(ppp_cat == "E011",
         time == "2019",
         geo %in% c("FR", "DE", "IT")) %>%
  select(na_item, geo, values) %>%
  left_join(na_item, by = "na_item") %>%
  spread(geo, values) %>%
  print_table_conditional()
na_item Na_item DE FR IT
EXP_EUR Nominal expenditure (in euro) 1.752890e+06 1.256724e+06 1.064898e+06
EXP_EUR_HAB Nominal expenditure per inhabitant (in euro) 2.109600e+04 1.854800e+04 1.782900e+04
EXP_NAC Nominal expenditure in national currency 1.752890e+06 1.256724e+06 1.064898e+06
EXP_NAC_PC_GDP Nominal expenditure as a percentage of GDP (GDP=100) 5.050000e+01 5.160000e+01 5.930000e+01
EXP_PPS_EU15 Real expenditure (in PPS_EU15) 1.802651e+06 1.219566e+06 1.153480e+06
EXP_PPS_EU15_HAB Real expenditure per capita (in PPS_EU15) 2.170000e+04 1.800000e+04 1.930000e+04
EXP_PPS_EU27_2007 Real expenditure (in PPS_EU27_2007) 1.691938e+06 1.144664e+06 1.082637e+06
EXP_PPS_EU27_2007_HAB Real expenditure per capita (in PPS_EU27_2007) 2.040000e+04 1.690000e+04 1.810000e+04
EXP_PPS_EU27_2020 Real expenditure (in PPS_EU27_2020) 1.637171e+06 1.107612e+06 1.047593e+06
EXP_PPS_EU27_2020_HAB Real expenditure per capita (in PPS_EU27_2020) 1.970000e+04 1.630000e+04 1.750000e+04
EXP_PPS_EU28 Real expenditure (in PPS_EU28) 1.689270e+06 1.142859e+06 1.080930e+06
EXP_PPS_EU28_HAB Real expenditure per capita (in PPS_EU28) 2.030000e+04 1.690000e+04 1.810000e+04
PLI_EU15 Price level indices (EU15=100) 9.720000e+01 1.030000e+02 9.230000e+01
PLI_EU27_2007 Price level indices (EU27_2007=100) 1.036000e+02 1.098000e+02 9.840000e+01
PLI_EU27_2020 Price level indices (EU27_2020=100) 1.071000e+02 1.135000e+02 1.017000e+02
PLI_EU28 Price level indices (EU28=100) 1.038000e+02 1.100000e+02 9.850000e+01
PPP_EU15 Purchasing power parities (EU15=1) 9.723960e-01 1.030470e+00 9.232050e-01
PPP_EU27_2007 Purchasing power parities (EU27_2007=1) 1.036020e+00 1.097900e+00 9.836150e-01
PPP_EU27_2020 Purchasing power parities (EU27_2020=1) 1.070680e+00 1.134620e+00 1.016520e+00
PPP_EU28 Purchasing power parities (EU28=1) 1.037660e+00 1.099630e+00 9.851680e-01
VI_PPS_EU15_HAB Volume indices of real expenditure per capita (in PPS_EU15=100) 1.120000e+02 9.300000e+01 9.900000e+01
VI_PPS_EU27_2007_HAB Volume indices of real expenditure per capita (in PPS_EU27_2007=100) 1.180000e+02 9.800000e+01 1.050000e+02
VI_PPS_EU27_2020_HAB Volume indices of real expenditure per capita (in PPS_EU27_2020=100) 1.220000e+02 1.010000e+02 1.080000e+02
VI_PPS_EU28_HAB Volume indices of real expenditure per capita (in PPS_EU28=100) 1.190000e+02 9.800000e+01 1.060000e+02

Actual Individual Consumption

Table - 2019 - Countries

Code
prc_ppp_ind %>%
  filter(ppp_cat == "A01",
         na_item == "VI_PPS_EU28_HAB",
         time == "2019") %>%
  left_join(geo, by = "geo") %>%
  select(-ppp_cat, -time, -na_item) %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
         Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

Maps

Text

Code
europe_NUTS0_new <- prc_ppp_ind %>%
  filter(ppp_cat == "A01",
         na_item == "VI_PPS_EU28_HAB",
         time == "2019") %>%
  select(geo, values) %>%
  right_join(europe_NUTS0 %>%
               filter(long >= -10,
                      lat >= 20), by = "geo") %>%
  group_by(geo, values) %>%
  summarise(long = mean(long), lat = mean(lat))

prc_ppp_ind %>%
  filter(ppp_cat == "A01",
         na_item == "VI_PPS_EU28_HAB",
         time == "2019") %>%
  select(geo, values) %>%
  right_join(europe_NUTS0 %>%
               filter(long >= -10,
                      lat >= 20), by = "geo") %>%
  ggplot(aes(x = long, y = lat)) +
  geom_polygon(aes(group = group, fill = values)) + coord_map() +
  scale_fill_viridis_c(na.value = "white",
                       labels = dollar_format(a = 1, p = "", su = ""),
                       breaks = seq(20, 140, 20)) +
  geom_text(aes(label = values), data = europe_NUTS0_new,  size = 3, hjust = 0.5) +
  theme_void() + theme(legend.position = c(0.25, 0.85)) + 
  labs(fill = "Actual Individual Consumption")

No Text

Code
europe_NUTS0_new <- prc_ppp_ind %>%
  filter(ppp_cat == "A01",
         na_item == "VI_PPS_EU28_HAB",
         time == "2019") %>%
  select(geo, values) %>%
  right_join(europe_NUTS0 %>%
               filter(long >= -10,
                      lat >= 20), by = "geo") %>%
  group_by(geo, values) %>%
  summarise(long = mean(long), lat = mean(lat))

prc_ppp_ind %>%
  filter(ppp_cat == "A01",
         na_item == "VI_PPS_EU28_HAB",
         time == "2019") %>%
  select(geo, values) %>%
  right_join(europe_NUTS0 %>%
               filter(long >= -10,
                      lat >= 20), by = "geo") %>%
  ggplot(aes(x = long, y = lat)) +
  geom_polygon(aes(group = group, fill = values)) + coord_map() +
  scale_fill_viridis_c(na.value = "white",
                       labels = dollar_format(a = 1, p = "", su = ""),
                       breaks = seq(20, 140, 20)) +
  theme_void() + theme(legend.position = c(0.25, 0.85)) + 
  labs(fill = "Actual Individual Consumption")

France - 1995, 2005, 2015, 2019

Code
prc_ppp_ind %>%
  filter(ppp_cat == "A01",
         geo == "FR",
         time %in% c("1995", "2005", "2015", "2019")) %>%
  left_join(na_item, by = "na_item") %>%
  select(-ppp_cat, -geo) %>%
  spread(time, values) %>%
  print_table_conditional()
freq na_item Na_item 1995 2005 2015 2019
A EXP_EUR Nominal expenditure (in euro) 8.44481e+05 1.221802e+06 1.530261e+06 1.671646e+06
A EXP_EUR_HAB Nominal expenditure per inhabitant (in euro) 1.41860e+04 1.934200e+04 2.298300e+04 2.467200e+04
A EXP_NAC Nominal expenditure in national currency 8.40038e+05 1.221802e+06 1.530261e+06 1.671646e+06
A EXP_NAC_PC_GDP Nominal expenditure as a percentage of GDP (GDP=100) 6.90000e+01 6.920000e+01 6.960000e+01 6.860000e+01
A EXP_PPS_EU15 Real expenditure (in PPS_EU15) 7.83611e+05 1.230688e+06 1.584982e+06 1.698275e+06
A EXP_PPS_EU15_HAB Real expenditure per capita (in PPS_EU15) 1.32000e+04 1.950000e+04 2.380000e+04 2.510000e+04
A EXP_PPS_EU27_2007 Real expenditure (in PPS_EU27_2007) 7.33407e+05 1.161646e+06 1.475084e+06 1.583076e+06
A EXP_PPS_EU27_2007_HAB Real expenditure per capita (in PPS_EU27_2007) 1.23000e+04 1.840000e+04 2.220000e+04 2.340000e+04
A EXP_PPS_EU27_2020 Real expenditure (in PPS_EU27_2020) 7.23469e+05 1.106640e+06 1.384009e+06 1.524679e+06
A EXP_PPS_EU27_2020_HAB Real expenditure per capita (in PPS_EU27_2020) 1.22000e+04 1.750000e+04 2.080000e+04 2.250000e+04
A EXP_PPS_EU28 Real expenditure (in PPS_EU28) 7.31966e+05 1.159664e+06 1.472121e+06 1.580139e+06
A EXP_PPS_EU28_HAB Real expenditure per capita (in PPS_EU28) 1.23000e+04 1.840000e+04 2.210000e+04 2.330000e+04
A PLI_EU15 Price level indices (EU15=100) 1.07800e+02 9.930000e+01 9.650000e+01 9.840000e+01
A PLI_EU27_2007 Price level indices (EU27_2007=100) 1.15100e+02 1.052000e+02 1.037000e+02 1.056000e+02
A PLI_EU27_2020 Price level indices (EU27_2020=100) 1.16700e+02 1.104000e+02 1.106000e+02 1.096000e+02
A PLI_EU28 Price level indices (EU28=100) 1.15400e+02 1.054000e+02 1.039000e+02 1.058000e+02
A PPP_EU15 Purchasing power parities (EU15=1) 1.07201e+00 9.927800e-01 9.654750e-01 9.843200e-01
A PPP_EU27_2007 Purchasing power parities (EU27_2007=1) 1.14539e+00 1.051780e+00 1.037410e+00 1.055950e+00
A PPP_EU27_2020 Purchasing power parities (EU27_2020=1) 1.16112e+00 1.104060e+00 1.105670e+00 1.096390e+00
A PPP_EU28 Purchasing power parities (EU28=1) 1.14765e+00 1.053580e+00 1.039490e+00 1.057910e+00
A VI_PPS_EU15_HAB Volume indices of real expenditure per capita (in PPS_EU15=100) 1.01000e+02 1.000000e+02 1.020000e+02 1.010000e+02
A VI_PPS_EU27_2007_HAB Volume indices of real expenditure per capita (in PPS_EU27_2007=100) 1.17000e+02 1.120000e+02 1.100000e+02 1.070000e+02
A VI_PPS_EU27_2020_HAB Volume indices of real expenditure per capita (in PPS_EU27_2020=100) 1.20000e+02 1.170000e+02 1.130000e+02 1.090000e+02
A VI_PPS_EU28_HAB Volume indices of real expenditure per capita (in PPS_EU28=100) 1.18000e+02 1.130000e+02 1.100000e+02 1.070000e+02

Germany - 1995, 2005, 2015, 2019

Code
prc_ppp_ind %>%
  filter(ppp_cat == "A01",
         geo == "DE",
         time %in% c("1995", "2005", "2015", "2019")) %>%
  left_join(na_item, by = "na_item") %>%
  select(-ppp_cat, -geo) %>%
  spread(time, values) %>%
  print_table_conditional()
freq na_item Na_item 1995 2005 2015 2019
A EXP_EUR Nominal expenditure (in euro) 1.331342e+06 1.557206e+06 1.986392e+06 2.255723e+06
A EXP_EUR_HAB Nominal expenditure per inhabitant (in euro) 1.637400e+04 1.914500e+04 2.431700e+04 2.714700e+04
A EXP_NAC Nominal expenditure in national currency 1.275470e+06 1.557206e+06 1.986392e+06 2.255723e+06
A EXP_NAC_PC_GDP Nominal expenditure as a percentage of GDP (GDP=100) 6.730000e+01 6.810000e+01 6.560000e+01 6.490000e+01
A EXP_PPS_EU15 Real expenditure (in PPS_EU15) 1.214004e+06 1.626496e+06 2.129675e+06 2.333751e+06
A EXP_PPS_EU15_HAB Real expenditure per capita (in PPS_EU15) 1.490000e+04 2.000000e+04 2.610000e+04 2.810000e+04
A EXP_PPS_EU27_2007 Real expenditure (in PPS_EU27_2007) 1.136226e+06 1.535249e+06 1.982009e+06 2.175446e+06
A EXP_PPS_EU27_2007_HAB Real expenditure per capita (in PPS_EU27_2007) 1.400000e+04 1.890000e+04 2.430000e+04 2.620000e+04
A EXP_PPS_EU27_2020 Real expenditure (in PPS_EU27_2020) 1.120830e+06 1.462552e+06 1.859635e+06 2.095197e+06
A EXP_PPS_EU27_2020_HAB Real expenditure per capita (in PPS_EU27_2020) 1.380000e+04 1.800000e+04 2.280000e+04 2.520000e+04
A EXP_PPS_EU28 Real expenditure (in PPS_EU28) 1.133993e+06 1.532629e+06 1.978028e+06 2.171410e+06
A EXP_PPS_EU28_HAB Real expenditure per capita (in PPS_EU28) 1.390000e+04 1.880000e+04 2.420000e+04 2.610000e+04
A PLI_EU15 Price level indices (EU15=100) 1.097000e+02 9.570000e+01 9.330000e+01 9.670000e+01
A PLI_EU27_2007 Price level indices (EU27_2007=100) 1.172000e+02 1.014000e+02 1.002000e+02 1.037000e+02
A PLI_EU27_2020 Price level indices (EU27_2020=100) 1.188000e+02 1.065000e+02 1.068000e+02 1.077000e+02
A PLI_EU28 Price level indices (EU28=100) 1.174000e+02 1.016000e+02 1.004000e+02 1.039000e+02
A PPP_EU15 Purchasing power parities (EU15=1) 1.050630e+00 9.573990e-01 9.327210e-01 9.665650e-01
A PPP_EU27_2007 Purchasing power parities (EU27_2007=1) 1.122550e+00 1.014300e+00 1.002210e+00 1.036900e+00
A PPP_EU27_2020 Purchasing power parities (EU27_2020=1) 1.137970e+00 1.064720e+00 1.068160e+00 1.076620e+00
A PPP_EU28 Purchasing power parities (EU28=1) 1.124760e+00 1.016040e+00 1.004230e+00 1.038830e+00
A VI_PPS_EU15_HAB Volume indices of real expenditure per capita (in PPS_EU15=100) 1.150000e+02 1.020000e+02 1.120000e+02 1.130000e+02
A VI_PPS_EU27_2007_HAB Volume indices of real expenditure per capita (in PPS_EU27_2007=100) 1.330000e+02 1.150000e+02 1.200000e+02 1.200000e+02
A VI_PPS_EU27_2020_HAB Volume indices of real expenditure per capita (in PPS_EU27_2020=100) 1.360000e+02 1.200000e+02 1.230000e+02 1.220000e+02
A VI_PPS_EU28_HAB Volume indices of real expenditure per capita (in PPS_EU28=100) 1.330000e+02 1.160000e+02 1.210000e+02 1.200000e+02

Gross Domestic Product

Table - 2019 - Countries

Code
prc_ppp_ind %>%
  filter(ppp_cat == "GDP",
         na_item == "VI_PPS_EU28_HAB",
         time == "2019") %>%
  left_join(geo, by = "geo") %>%
  select(-ppp_cat, -time, -na_item) %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
         Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

Maps

Code
europe_NUTS0_new <- prc_ppp_ind %>%
  filter(ppp_cat == "GDP",
         na_item == "VI_PPS_EU28_HAB",
         time == "2019") %>%
  select(geo, values) %>%
  right_join(europe_NUTS0 %>%
               filter(long >= -10,
                      lat >= 20), by = "geo") %>%
  group_by(geo, values) %>%
  summarise(long = mean(long), lat = mean(lat))

prc_ppp_ind %>%
  filter(ppp_cat == "GDP",
         na_item == "VI_PPS_EU28_HAB",
         time == "2019") %>%
  select(geo, values) %>%
  right_join(europe_NUTS0 %>%
               filter(long >= -10,
                      lat >= 20), by = "geo") %>%
  ggplot(aes(x = long, y = lat)) +
  geom_polygon(aes(group = group, fill = values)) + coord_map() +
  scale_fill_viridis_c(na.value = "white",
                       labels = dollar_format(a = 1, p = "", su = ""),
                       breaks = seq(20, 260, 20)) +
  geom_text(aes(label = values), data = europe_NUTS0_new,  size = 3, hjust = 0.5) +
  theme_void() + theme(legend.position = c(0.25, 0.85)) + 
  labs(fill = "Gross Domestic Product")