Indices des prix à la consommation harmonisés
Data - INSEE
Info
Données sur l’inflation en France
Title | source | dataset | .html | .RData |
---|---|---|---|---|
Budget de famille 2017 | insee | bdf2017 | 2025-01-31 | 2023-11-21 |
Indices pour la révision d’un bail commercial ou professionnel | insee | ILC-ILAT-ICC | 2025-01-31 | 2025-01-31 |
Indices des loyers - Base 2019 | insee | INDICES_LOYERS | 2025-01-31 | 2025-01-31 |
Indice des prix à la consommation - Base 1970, 1980 | insee | IPC-1970-1980 | 2025-01-31 | 2025-01-31 |
Indices des prix à la consommation - Base 1990 | insee | IPC-1990 | 2025-01-31 | 2025-01-31 |
Indice des prix à la consommation - Base 2015 | insee | IPC-2015 | 2025-01-31 | 2025-01-31 |
Prix moyens de vente de détail | insee | IPC-PM-2015 | 2025-01-31 | 2025-01-31 |
Indices des prix à la consommation harmonisés | insee | IPCH-2015 | 2025-01-31 | 2025-01-31 |
Indice des prix dans la grande distribution | insee | IPGD-2015 | 2025-01-31 | 2025-01-26 |
Indices des prix des logements neufs et Indices Notaires-Insee des prix des logements anciens | insee | IPLA-IPLNA-2015 | 2025-01-26 | 2025-01-31 |
Indices de prix de production et d'importation dans l'industrie | insee | IPPI-2015 | 2025-01-31 | 2025-01-31 |
Indice pour la révision d’un loyer d’habitation | insee | IRL | 2025-01-26 | 2025-01-31 |
Variation des loyers | insee | SERIES_LOYERS | 2025-01-26 | 2025-01-31 |
Consommation effective des ménages par fonction | insee | T_CONSO_EFF_FONCTION | 2025-01-26 | 2024-07-18 |
LAST_COMPILE
LAST_COMPILE |
---|
2025-01-31 |
IPC vs IPCH
Annuel
1996-
Code
`IPCH-IPC-2015-ensemble-A` %>%
filter(date >= zoo::as.Date("1996-01-01")) %>%
arrange(date) %>%
group_by(INDICATEUR) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = INDICATEUR)) +
ggplot xlab("") + ylab("") + theme_minimal() +
theme(legend.title = element_blank(),
legend.position = c(0.3, 0.9)) +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 1000, 10)) +
geom_label_repel(data = . %>% filter(date == max(date)),
aes(x = date, y = OBS_VALUE, color = INDICATEUR, label = round(OBS_VALUE, 1)))
1999-
Code
`IPCH-IPC-2015-ensemble-A` %>%
filter(date >= zoo::as.Date("1999-01-01")) %>%
arrange(date) %>%
group_by(INDICATEUR) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = INDICATEUR)) +
ggplot xlab("") + ylab("") + theme_minimal() +
theme(legend.title = element_blank(),
legend.position = c(0.3, 0.9)) +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 1000, 10)) +
geom_label_repel(data = . %>% filter(date == max(date)),
aes(x = date, y = OBS_VALUE, color = INDICATEUR, label = round(OBS_VALUE, 1)))
2008-
Code
`IPCH-IPC-2015-ensemble-A` %>%
filter(date >= zoo::as.Date("2008-01-01")) %>%
arrange(date) %>%
group_by(INDICATEUR) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = INDICATEUR)) +
ggplot xlab("") + ylab("") + theme_minimal() +
theme(legend.title = element_blank(),
legend.position = c(0.3, 0.9)) +
scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 1000, 5)) +
geom_label_repel(data = . %>% filter(date == max(date)),
aes(x = date, y = OBS_VALUE, color = INDICATEUR, label = round(OBS_VALUE, 1)))
Trimestriel
1996-
Code
`IPCH-IPC-2015-ensemble-Q` %>%
filter(date >= zoo::as.yearqtr("1996 Q1")) %>%
arrange(date) %>%
group_by(INDICATEUR) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = INDICATEUR)) +
ggplot xlab("") + ylab("") + theme_minimal() +
theme(legend.title = element_blank(),
legend.position = c(0.3, 0.9)) +
scale_x_yearqtr() +
scale_y_log10(breaks = seq(0, 1000, 10)) +
geom_label_repel(data = . %>% filter(date == max(date)),
aes(x = date, y = OBS_VALUE, color = INDICATEUR, label = round(OBS_VALUE, 1)))
1999-
Code
`IPCH-IPC-2015-ensemble-Q` %>%
filter(date >= zoo::as.yearqtr("1999 Q1")) %>%
arrange(date) %>%
group_by(INDICATEUR) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = INDICATEUR)) +
ggplot xlab("") + ylab("") + theme_minimal() +
theme(legend.title = element_blank(),
legend.position = c(0.3, 0.9)) +
scale_x_yearqtr() +
scale_y_log10(breaks = seq(0, 1000, 10)) +
geom_label(data = . %>% filter(date == max(date)),
aes(x = date, y = OBS_VALUE, color = INDICATEUR, label = round(OBS_VALUE, 1)))
2008-
Code
`IPCH-IPC-2015-ensemble-Q` %>%
filter(date >= zoo::as.yearqtr("2008 Q1")) %>%
arrange(date) %>%
group_by(INDICATEUR) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = INDICATEUR)) +
ggplot xlab("") + ylab("") + theme_minimal() +
theme(legend.title = element_blank(),
legend.position = c(0.3, 0.9)) +
scale_x_yearqtr() +
scale_y_log10(breaks = seq(0, 1000, 5)) +
geom_label(data = . %>% filter(date == max(date)),
aes(x = date, y = OBS_VALUE, color = INDICATEUR, label = round(OBS_VALUE, 1)))
2017T2-2024T2
Code
`IPCH-IPC-2015-ensemble-Q` %>%
filter(date >= zoo::as.yearqtr("2017 Q2"),
<= zoo::as.yearqtr("2024 Q2")) %>%
date arrange(date) %>%
group_by(INDICATEUR) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = INDICATEUR)) +
ggplot xlab("") + ylab("") + theme_minimal() +
theme(legend.title = element_blank(),
legend.position = c(0.3, 0.9)) +
scale_x_yearqtr() +
scale_y_log10(breaks = seq(0, 1000, 2)) +
geom_label(data = . %>% filter(date == max(date)),
aes(x = date, y = OBS_VALUE, color = INDICATEUR, label = round(OBS_VALUE, 1)))
2017T2-
Code
`IPCH-IPC-2015-ensemble-Q` %>%
filter(date >= zoo::as.yearqtr("2017 Q2")) %>%
arrange(date) %>%
group_by(INDICATEUR) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = INDICATEUR)) +
ggplot xlab("") + ylab("") + theme_minimal() +
theme(legend.title = element_blank(),
legend.position = c(0.3, 0.9)) +
scale_x_yearqtr() +
scale_y_log10(breaks = seq(0, 1000, 2)) +
geom_label(data = . %>% filter(date == max(date)),
aes(x = date, y = OBS_VALUE, color = INDICATEUR, label = round(OBS_VALUE, 1)))
Ratio IPC IPCH
Annuel
1996-
Code
`IPCH-IPC-2015-ensemble-A` %>%
filter(date >= zoo::as.Date("1996-01-01")) %>%
arrange(date) %>%
spread(INDICATEUR, OBS_VALUE) %>%
mutate(OBS_VALUE = 100*IPCH/IPC) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE)) +
ggplot xlab("") + ylab("") + theme_minimal() +
theme(legend.title = element_blank(),
legend.position = c(0.3, 0.9)) +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 1000, 1)) +
geom_label_repel(data = . %>% filter(date == max(date)),
aes(x = date, y = OBS_VALUE, label = round(OBS_VALUE, 1)))
1999-
Code
`IPCH-IPC-2015-ensemble-A` %>%
filter(date >= zoo::as.Date("1999-01-01")) %>%
arrange(date) %>%
spread(INDICATEUR, OBS_VALUE) %>%
mutate(OBS_VALUE = 100*IPCH/IPC) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE)) +
ggplot xlab("") + ylab("") + theme_minimal() +
theme(legend.title = element_blank(),
legend.position = c(0.3, 0.9)) +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 1000, 1)) +
geom_label_repel(data = . %>% filter(date == max(date)),
aes(x = date, y = OBS_VALUE, label = round(OBS_VALUE, 1)))
2008-
Code
`IPCH-IPC-2015-ensemble-A` %>%
filter(date >= zoo::as.Date("2008-01-01")) %>%
arrange(date) %>%
spread(INDICATEUR, OBS_VALUE) %>%
mutate(OBS_VALUE = 100*IPCH/IPC) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE)) +
ggplot xlab("") + ylab("") + theme_minimal() +
theme(legend.title = element_blank(),
legend.position = c(0.3, 0.9)) +
scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 1000, 1)) +
geom_label_repel(data = . %>% filter(date == max(date)),
aes(x = date, y = OBS_VALUE, label = round(OBS_VALUE, 1)))