source | dataset | .html | .RData |
---|---|---|---|
2024-06-20 | 2024-06-18 | ||
2024-06-20 | 2024-06-08 | ||
2024-06-20 | 2024-06-08 |
Producer prices in industry, total - monthly data
Data - Eurostat
Info
Data on industry
source | dataset | .html | .RData |
---|---|---|---|
2024-06-19 | 2023-10-01 | ||
2024-06-23 | 2024-06-08 | ||
2024-06-23 | 2024-06-08 | ||
2024-06-24 | 2024-06-18 | ||
2024-06-23 | 2024-06-18 | ||
2024-06-24 | 2024-06-08 | ||
2024-06-24 | 2024-06-08 | ||
2024-06-20 | 2024-06-18 | ||
2024-06-20 | 2024-06-08 | ||
2024-06-20 | 2024-06-08 | ||
2024-06-20 | 2024-06-08 | ||
2024-06-20 | 2024-06-07 | ||
2024-04-16 | 2024-05-12 | ||
2024-04-16 | 2023-09-09 | ||
2024-04-16 | 2023-11-22 | ||
2024-05-12 | 2024-05-03 | ||
2024-06-20 | 2023-10-04 | ||
2024-06-20 | 2024-04-30 | ||
2024-01-06 | 2024-04-14 | ||
2024-06-20 | 2024-06-09 | ||
2024-01-06 | 2024-04-14 | ||
2024-01-06 | 2024-04-14 | ||
2024-01-06 | 2024-04-14 | ||
2024-01-06 | 2024-04-14 | ||
2024-01-06 | 2024-04-14 |
Info
Code
include_graphics("https://ec.europa.eu/eurostat/statistics-explained/images/3/33/EU%2C_EA-19_Industrial_producer_prices%2C_total%2C_domestic_and_non-domestic_market%2C_2010_-_2022%2C_undadjusted_data_%282015_%3D_100%29_01-06-2022.png")
LAST_COMPILE
LAST_COMPILE |
---|
2024-06-24 |
Last
Code
%>%
sts_inpp_m group_by(time) %>%
summarise(Nobs = n()) %>%
arrange(desc(time)) %>%
head(1) %>%
print_table_conditional()
time | Nobs |
---|---|
2024M05 | 1232 |
indic_bt
Code
%>%
sts_inpp_m left_join(indic_bt, by = "indic_bt") %>%
group_by(indic_bt, Indic_bt) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
indic_bt | Indic_bt | Nobs |
---|---|---|
PRON | Total output price index - in national currency | 6791679 |
nace_r2
Code
%>%
sts_inpp_m left_join(nace_r2, by = "nace_r2") %>%
group_by(nace_r2, Nace_r2) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
s_adj
Code
%>%
sts_inpp_m left_join(s_adj, by = "s_adj") %>%
group_by(s_adj, S_adj) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
s_adj | S_adj | Nobs |
---|---|---|
NSA | Unadjusted data (i.e. neither seasonally adjusted nor calendar adjusted data) | 6791679 |
unit
Code
%>%
sts_inpp_m left_join(unit, by = "unit") %>%
group_by(unit, Unit) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
unit | Unit | Nobs |
---|---|---|
PCH_PRE | Percentage change on previous period | 1567617 |
PCH_SM | Percentage change compared to same period in previous year | 1499542 |
I15 | Index, 2015=100 | 1498240 |
I21 | Index, 2021=100 | 1328863 |
I10 | Index, 2010=100 | 897417 |
geo
Code
%>%
sts_inpp_m left_join(geo, by = "geo") %>%
group_by(geo, Geo) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
time
Code
%>%
sts_inpp_m group_by(time) %>%
summarise(Nobs = n()) %>%
print_table_conditional()
France, Germany, Italy
MIG_DCOG - MIG - durable consumer goods
Percentage change compared to same period in previous year - PCH_SM
All
Code
%>%
sts_inpp_m filter(nace_r2 == "MIG_DCOG",
== "PRON",
indic_bt == "PCH_SM",
unit %in% c("FR", "DE", "IT")) %>%
geo transmute(geo, time, values = values/100) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
%>%
month_to_date ggplot() + ylab("MIG_DCOG - MIG - durable consumer goods") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
+
add_3flags scale_y_continuous(breaks = 0.01*seq(-60, 300, 1),
labels = percent_format(a = 1))
MIG_ING - MIG - intermediate goods
Percentage change compared to same period in previous year - PCH_SM
All
Code
%>%
sts_inpp_m filter(nace_r2 == "MIG_ING",
== "PRON",
indic_bt == "PCH_SM",
unit %in% c("FR", "DE", "IT")) %>%
geo transmute(geo, time, values = values/100) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
%>%
month_to_date ggplot() + ylab("MIG - intermediate goods") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
+
add_3flags scale_y_continuous(breaks = 0.01*seq(-60, 300, 1),
labels = percent_format(a = 1))
MIG_CAG - MIG - capital goods
Percentage change compared to same period in previous year - PCH_SM
All
Code
%>%
sts_inpp_m filter(nace_r2 == "MIG_CAG",
== "PRON",
indic_bt == "PCH_SM",
unit %in% c("FR", "DE", "IT")) %>%
geo transmute(geo, time, values = values/100) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
%>%
month_to_date ggplot() + ylab("MIG - capital goods") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
+
add_3flags scale_y_continuous(breaks = 0.01*seq(-60, 300, 1),
labels = percent_format(a = 1))
D - Electricity, gas, steam and air conditioning supply
Percentage change compared to same period in previous year - PCH_SM
All
Code
%>%
sts_inpp_m filter(nace_r2 == "D",
== "PRON",
indic_bt == "PCH_SM",
unit %in% c("FR", "DE", "IT")) %>%
geo transmute(geo, time, values = values/100) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
%>%
month_to_date ggplot() + ylab("Non-domestic output price index") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
+
add_3flags scale_y_continuous(breaks = 0.01*seq(-60, 300, 10),
labels = percent_format(a = 1))
B - Mining and quarrying
Percentage change compared to same period in previous year - PCH_SM
All
Code
%>%
sts_inpp_m filter(nace_r2 == "B",
== "PRON",
indic_bt == "PCH_SM",
unit %in% c("FR", "DE", "IT")) %>%
geo transmute(geo, time, values = values/100) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
%>%
month_to_date ggplot() + ylab("Mining and quarrying") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
+
add_3flags scale_y_continuous(breaks = 0.01*seq(-60, 300, 10),
labels = percent_format(a = 1))
C - Manufacturing
Percentage change compared to same period in previous year - PCH_SM
All
Code
%>%
sts_inpp_m filter(nace_r2 == "C",
== "PRON",
indic_bt == "PCH_SM",
unit %in% c("FR", "DE", "IT")) %>%
geo transmute(geo, time, values = values/100) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
%>%
month_to_date ggplot() + ylab("% change compared to same period in previous year") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
+
add_3flags scale_y_continuous(breaks = 0.01*seq(-60, 300, 2),
labels = percent_format(a = 1))
2000-
Code
%>%
sts_inpp_m filter(nace_r2 == "C",
== "PRON",
indic_bt == "PCH_SM",
unit %in% c("FR", "DE", "IT")) %>%
geo transmute(geo, time, values = values/100) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
%>%
month_to_date filter(date >= as.Date("2000-01-01")) %>%
ggplot() + ylab("% change compared to same period in previous year") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
+
add_3flags scale_y_continuous(breaks = 0.01*seq(-60, 300, 2),
labels = percent_format(a = 1))
2018-
Code
%>%
sts_inpp_m filter(nace_r2 == "C",
== "PRON",
indic_bt == "PCH_SM",
unit %in% c("FR", "DE", "IT")) %>%
geo transmute(geo, time, values = values/100) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
%>%
month_to_date filter(date >= as.Date("2018-01-01")) %>%
ggplot() + ylab("% change compared to same period in previous year") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() +
scale_x_date(breaks = seq(1920, 2025, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
+
add_3flags scale_y_continuous(breaks = 0.01*seq(-60, 300, 2),
labels = percent_format(a = 1))
Index
All
Code
%>%
sts_inpp_m filter(nace_r2 == "C",
== "PRON",
indic_bt == "I15",
unit %in% c("FR", "DE", "IT")) %>%
geo select(geo, time, values) %>%
group_by(geo) %>%
mutate(values = 100*values/values[time == "2000M01"]) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
%>%
month_to_date ggplot() + ylab("Non-domestic output price index - in national currency") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
+
add_3flags theme(legend.position = "none") +
scale_y_log10(breaks = seq(-60, 300, 10))
2000-
Code
%>%
sts_inpp_m filter(nace_r2 == "C",
== "PRON",
indic_bt == "I15",
unit %in% c("FR", "DE", "IT")) %>%
geo select(geo, time, values) %>%
group_by(geo) %>%
mutate(values = 100*values/values[time == "2000M01"]) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
%>%
month_to_date filter(date >= as.Date("2000-01-01")) %>%
ggplot() + ylab("Total output price index - in national currency") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
+
add_3flags theme(legend.position = "none") +
scale_y_log10(breaks = seq(-60, 300, 5))
2015-
Code
%>%
sts_inpp_m filter(nace_r2 == "C",
== "PRON",
indic_bt == "I15",
unit %in% c("FR", "DE", "IT")) %>%
geo select(geo, time, values) %>%
group_by(geo) %>%
mutate(values = 100*values/values[time == "2015M01"]) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
%>%
month_to_date filter(date >= as.Date("2015-01-01")) %>%
ggplot() + geom_line(aes(x = date, y = values, color = color)) + scale_color_identity() +
+ ylab("Total output price index") + xlab("") + theme_minimal() +
add_3flags scale_x_date(breaks = seq(1920, 2025, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(-60, 300, 5))
2018-
Code
%>%
sts_inpp_m filter(nace_r2 == "C",
== "PRON",
indic_bt == "I15",
unit %in% c("FR", "DE", "IT")) %>%
geo select(geo, time, values) %>%
group_by(geo) %>%
mutate(values = 100*values/values[time == "2018M01"]) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
%>%
month_to_date filter(date >= as.Date("2018-01-01")) %>%
ggplot() + geom_line(aes(x = date, y = values, color = color)) + scale_color_identity() +
+ ylab("Total output price index") + xlab("") + theme_minimal() +
add_3flags scale_x_date(breaks = seq(1920, 2025, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(-60, 300, 5))