Budget de famille 2017
Data - INSEE
Info
Données sur l’inflation en France
source | dataset | .html | .RData |
---|---|---|---|
insee | bdf2017 | 2024-11-05 | 2023-11-21 |
insee | ILC-ILAT-ICC | 2024-11-05 | 2024-11-09 |
insee | INDICES_LOYERS | 2024-11-05 | 2024-11-09 |
insee | IPC-1970-1980 | 2024-11-05 | 2024-11-09 |
insee | IPC-1990 | 2024-11-05 | 2024-11-09 |
insee | IPC-2015 | 2024-11-05 | 2024-11-09 |
insee | IPC-PM-2015 | 2024-11-05 | 2024-11-09 |
insee | IPCH-2015 | 2024-11-05 | 2024-11-09 |
insee | IPGD-2015 | 2024-08-22 | 2024-10-26 |
insee | IPLA-IPLNA-2015 | 2024-11-05 | 2024-11-09 |
insee | IPPI-2015 | 2024-11-05 | 2024-11-09 |
insee | IRL | 2024-11-05 | 2024-11-09 |
insee | SERIES_LOYERS | 2024-11-05 | 2024-11-09 |
insee | T_CONSO_EFF_FONCTION | 2024-11-05 | 2024-07-18 |
LAST_COMPILE
LAST_COMPILE |
---|
2024-11-09 |
Versions
Bibliographie
Info
AGPR : Âge de la personne de référence
CSPR : Catégorie socioprofessionnelle de la personne de référence
DECUC : Niveau de vie par décile
EQUIP : Taux d’équipement
NOMENCLATURE : Nomenclature des produits
NOMENCLATURE2 : Nomenclature agrégée
STATUT : Statut d’occupation du logement selon le niveau de vie par quintile
STRATE : Catégorie de commune de résidence
TYPMEN : Type de ménage
ZEAT : Zone d’étude et d’aménagement du territoire
ZEAT2 : Zone d’étude et d’aménagement du territoire
MENAGES_IPC_CAT
Code
%>%
bdf2017 left_join(MENAGES_IPC_CAT, by = "MENAGES_IPC_CAT") %>%
group_by(MENAGES_IPC_CAT, Menages_ipc_cat) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
MENAGES_IPC_CAT | Menages_ipc_cat | Nobs |
---|---|---|
STATUT | Statut d'occupation du logement selon le niveau de vie par quintile | 8476 |
DECUC | Niveau de vie par décile | 7172 |
CSPR | Catégorie socioprofessionnelle de la personne de référence | 5868 |
AGPR | Âge de la personne de référence | 5216 |
STRATE | Catégorie de commune de résidence | 3912 |
TYPMEN | Type de ménage | 3912 |
ZEAT | Zone d'étude et d'aménagement du territoire | 3260 |
ZEAT2 | Zone d'étude et d'aménagement du territoire | 2934 |
MENAGES_IPC_CAT, MENAGES_IPC
Code
%>%
bdf2017 group_by(MENAGES_IPC_CAT, MENAGES_IPC) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
REF_AREA
Code
%>%
bdf2017 group_by(REF_AREA) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
REF_AREA | Nobs |
---|---|
FE | 20538 |
FM | 20212 |
NOMENCLATURE - bdf2017
Tous
Code
%>%
bdf2017 left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
group_by(NOMENCLATURE, Nomenclature) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
NOMENCLATURE - tm106
Tous
Code
%>%
tm106 left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
group_by(NOMENCLATURE, Nomenclature) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
2-digit
Code
%>%
tm106 filter(nchar(NOMENCLATURE) == 2) %>%
left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
group_by(NOMENCLATURE, Nomenclature) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
NOMENCLATURE | Nomenclature | Nobs |
---|---|---|
01 | 01 - PRODUITS ALIMENTAIRES ET BOISSONS NON-ALCOOLISEES | 11 |
02 | 02 - BOISSONS ALCOOLISEES ET TABAC | 11 |
03 | 03 - ARTICLES D’HABILLEMENT ET CHAUSSURES | 11 |
04 | 04 - LOGEMENT, EAU, GAZ, ELECTRICITE ET AUTRES COMBUSTIBLES | 11 |
05 | 05 - MEUBLES, ARTICLES DE MENAGE ET ENTRETIEN COURANT DE LA MAISON | 11 |
06 | 06 - SANTE | 11 |
07 | 07 - TRANSPORTS | 11 |
08 | 08 - COMMUNICATIONS | 11 |
09 | 09 - LOISIRS ET CULTURE | 11 |
10 | 10 - ENSEIGNEMENT | 11 |
11 | 11 - RESTAURATION ET HÔTELS | 11 |
12 | 12 - BIENS ET SERVICES DIVERS | 11 |
13 | 13 - HORS CHAMP DE LA CONSOMMATION (IMPOTS ET TAXES, GROS TRAVAUX, REMBOURSEMENT PRET, CADEAUX) | 11 |
3-digit
Code
%>%
tm106 filter(nchar(NOMENCLATURE) == 3) %>%
left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
group_by(NOMENCLATURE, Nomenclature) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
4-digit
Code
%>%
tm106 filter(nchar(NOMENCLATURE) == 4) %>%
left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
group_by(NOMENCLATURE, Nomenclature) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
4-digit
Code
%>%
tm106 filter(nchar(NOMENCLATURE) == 4) %>%
left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
group_by(NOMENCLATURE, Nomenclature) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
5-digit
Code
%>%
tm106 filter(nchar(NOMENCLATURE) == 5) %>%
left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
group_by(NOMENCLATURE, Nomenclature) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
ZEAT2
Code
%>%
tm101 left_join(ZEAT2, by = "ZEAT2") %>%
group_by(ZEAT2, Zeat2) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
ZEAT2 | Zeat2 | Nobs |
---|---|---|
1 | REGION PARISIENNE | 326 |
2 | BASSIN PARISIEN | 326 |
3 | NORD | 326 |
4 | EST | 326 |
5 | OUEST | 326 |
7 | SUD OUEST | 326 |
8 | CENTRE EST | 326 |
9 | MEDITERRANEE | 326 |
TOT | Ensemble | 326 |
AGPR
Code
%>%
tm102 left_join(AGPR, by = "AGPR") %>%
group_by(AGPR, Agpr) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
AGPR | Agpr | Nobs |
---|---|---|
1 | Moins de 25 ans | 326 |
2 | De 25 à 34 ans | 326 |
3 | De 35 à 44 ans | 326 |
4 | De 45 à 54 ans | 326 |
5 | De 55 à 64 ans | 326 |
6 | De 65 à 74 ans | 326 |
7 | 75 ans et plus | 326 |
TOT | Ensemble | 326 |
CSPR
Code
%>%
tm103 left_join(CSPR, by = "CSPR") %>%
group_by(CSPR, Cspr) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
CSPR | Cspr | Nobs |
---|---|---|
1 | Agriculteurs | 326 |
2 | Artisans, commerçants et chefs d entreprise | 326 |
3 | Cadres | 326 |
4 | Professions intermédiaires | 326 |
5 | Employés | 326 |
6 | Ouvriers | 326 |
7 | Retraités | 326 |
8 | Autres inactifs | 326 |
TOT | Ensemble | 326 |
STRATE
Code
%>%
tm104 left_join(STRATE, by = "STRATE") %>%
group_by(STRATE, Strate) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
STRATE | Strate | Nobs |
---|---|---|
0 | Rural | 326 |
1 | Petites villes (- de 20 000 hab.) | 326 |
2 | Villes moyennes (de 20 000 à 100 000 hab.) | 326 |
3 | Grandes villes (+ de 100 000 hab.) | 326 |
4 | Complexe agglo Paris | 326 |
TOT | Ensemble | 326 |
TYPMEN
Code
%>%
tm105 left_join(TYPMEN, by = "TYPMEN") %>%
group_by(TYPMEN, Typmen) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
TYPMEN | Typmen | Nobs |
---|---|---|
1 | Personnes seules | 326 |
2 | Familles monoparentales | 326 |
3 | Couples sans enfant | 326 |
4 | Couples avec enfants | 326 |
5 | Autres ménages | 326 |
TOT | Ensemble | 326 |
DECUC
Code
%>%
tm106 left_join(DECUC, by = "DECUC") %>%
group_by(DECUC, Decuc) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
DECUC | Decuc | Nobs |
---|---|---|
1 | Décile 1 | 326 |
10 | Décile 10 | 326 |
2 | Décile 2 | 326 |
3 | Décile 3 | 326 |
4 | Décile 4 | 326 |
5 | Décile 5 | 326 |
6 | Décile 6 | 326 |
7 | Décile 7 | 326 |
8 | Décile 8 | 326 |
9 | Décile 9 | 326 |
TOT | Ensemble | 326 |
Alimentation - Focus
Décile 1 vs Décile 10
Code
<- bdf2017 %>%
weights filter(MENAGES_IPC_CAT == "DECUC",
%in% c("1", "10"),
MENAGES_IPC substr(NOMENCLATURE, 1, 2) == "01" | NOMENCLATURE == "CTOTALE",
== "FE") %>%
REF_AREA select_if(~ n_distinct(.) > 1) %>%
group_by(MENAGES_IPC) %>%
mutate(OBS_VALUE = OBS_VALUE/OBS_VALUE[NOMENCLATURE == "CTOTALE"]) %>%
filter(NOMENCLATURE != "CTOTALE", NOMENCLATURE != "01") %>%
transmute(COICOP2016 = NOMENCLATURE, MENAGES_IPC, weights = OBS_VALUE) %>%
ungroup
<- `IPC-2015` %>%
inflation filter(NATURE == "INDICE",
== "IPC",
INDICATEUR == "ENSEMBLE",
MENAGES_IPC != "SO",
COICOP2016 substr(COICOP2016, 1, 2) == "01",
== "SO",
PRIX_CONSO %in% c("FE")) %>%
REF_AREA %>%
month_to_date select_if(~ n_distinct(.) > 1) %>%
group_by(COICOP2016) %>%
arrange(date) %>%
mutate(inflation = OBS_VALUE/lag(OBS_VALUE, 12)-1) %>%
select(date, COICOP2016, inflation) %>%
%>%
ungroup filter(date >= as.Date("2021-01-01"))
%>%
weights mutate(COICOP2016_nchar = nchar(COICOP2016)) %>%
full_join(inflation) %>%
group_by(COICOP2016_nchar, MENAGES_IPC, date) %>%
summarise(inflation_sum = sum(inflation*weights/sum(weights))) %>%
+ geom_line(aes(x = date, y = inflation_sum, color = factor(COICOP2016_nchar), linetype = MENAGES_IPC)) ggplot
Somme des poids
Par décile
Code
%>%
bdf2017 filter(MENAGES_IPC_CAT == "DECUC",
== "FE") %>%
REF_AREA group_by(MENAGES_IPC) %>%
mutate(OBS_VALUE = OBS_VALUE/OBS_VALUE[NOMENCLATURE == "CTOTALE"]) %>%
%>%
ungroup select(NOMENCLATURE, DECUC = MENAGES_IPC, OBS_VALUE) %>%
left_join(DECUC, by = "DECUC") %>%
# 13: hors champ de la consommation -----
filter(NOMENCLATURE != "CTOTALE",
substr(NOMENCLATURE, 1, 2) != "13") %>%
mutate(NOMENCLATURE_DIGIT = nchar(NOMENCLATURE)) %>%
group_by(NOMENCLATURE_DIGIT, DECUC2) %>%
summarise(OBS_VALUE = sum(OBS_VALUE),
Nobs = n()) %>%
arrange(NOMENCLATURE_DIGIT, DECUC2) %>%
print_table_conditional()
Par âge
Code
%>%
bdf2017 filter(MENAGES_IPC_CAT == "AGPR",
== "FE") %>%
REF_AREA group_by(MENAGES_IPC) %>%
mutate(OBS_VALUE = OBS_VALUE/OBS_VALUE[NOMENCLATURE == "CTOTALE"]) %>%
%>%
ungroup select(NOMENCLATURE, AGPR = MENAGES_IPC, OBS_VALUE) %>%
left_join(AGPR, by = "AGPR") %>%
# 13: hors champ de la consommation -----
filter(NOMENCLATURE != "CTOTALE",
substr(NOMENCLATURE, 1, 2) != "13") %>%
mutate(NOMENCLATURE_DIGIT = nchar(NOMENCLATURE)) %>%
group_by(NOMENCLATURE_DIGIT, AGPR2) %>%
summarise(OBS_VALUE = sum(OBS_VALUE),
Nobs = n()) %>%
arrange(NOMENCLATURE_DIGIT, AGPR2) %>%
print_table_conditional()
Par strate (type ville)
Code
%>%
bdf2017 filter(MENAGES_IPC_CAT == "STRATE",
== "FE") %>%
REF_AREA group_by(MENAGES_IPC) %>%
mutate(OBS_VALUE = OBS_VALUE/OBS_VALUE[NOMENCLATURE == "CTOTALE"]) %>%
%>%
ungroup select(NOMENCLATURE, STRATE = MENAGES_IPC, OBS_VALUE) %>%
left_join(STRATE, by = "STRATE") %>%
# 13: hors champ de la consommation -----
filter(NOMENCLATURE != "CTOTALE",
substr(NOMENCLATURE, 1, 2) != "13") %>%
mutate(NOMENCLATURE_DIGIT = nchar(NOMENCLATURE)) %>%
group_by(NOMENCLATURE_DIGIT, Strate) %>%
summarise(OBS_VALUE = sum(OBS_VALUE),
Nobs = n()) %>%
arrange(NOMENCLATURE_DIGIT, Strate) %>%
print_table_conditional()
NOMENCLATURE_DIGIT | Strate | OBS_VALUE | Nobs |
---|---|---|---|
2 | Complexe agglo Paris | 1.0000000 | 12 |
2 | Ensemble | 1.0000365 | 12 |
2 | Grandes villes (+ de 100 000 hab.) | 0.9999627 | 12 |
2 | Petites villes (- de 20 000 hab.) | 1.0000000 | 12 |
2 | Rural | 1.0000000 | 12 |
2 | Villes moyennes (de 20 000 à 100 000 hab.) | 1.0000000 | 12 |
3 | Complexe agglo Paris | 1.0000000 | 48 |
3 | Ensemble | 1.0000000 | 48 |
3 | Grandes villes (+ de 100 000 hab.) | 1.0001118 | 48 |
3 | Petites villes (- de 20 000 hab.) | 1.0000376 | 48 |
3 | Rural | 1.0001479 | 48 |
3 | Villes moyennes (de 20 000 à 100 000 hab.) | 0.9999607 | 48 |
4 | Complexe agglo Paris | 0.9999371 | 105 |
4 | Ensemble | 1.0000000 | 105 |
4 | Grandes villes (+ de 100 000 hab.) | 1.0002237 | 105 |
4 | Petites villes (- de 20 000 hab.) | 1.0001129 | 105 |
4 | Rural | 1.0001479 | 105 |
4 | Villes moyennes (de 20 000 à 100 000 hab.) | 0.9999607 | 105 |
5 | Complexe agglo Paris | 0.9999685 | 138 |
5 | Ensemble | 1.0000365 | 138 |
5 | Grandes villes (+ de 100 000 hab.) | 1.0002237 | 138 |
5 | Petites villes (- de 20 000 hab.) | 1.0001129 | 138 |
5 | Rural | 1.0001109 | 138 |
5 | Villes moyennes (de 20 000 à 100 000 hab.) | 0.9998820 | 138 |
Alimentation - Tous
DECUC
% de la consommation
Code
%>%
tm106 filter(NOMENCLATURE %in% c("011", "0111", "0112", "0113", "CTOTALE"),
!= "TOT") %>%
DECUC left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
left_join(DECUC, by = "DECUC") %>%
mutate(DECUC = DECUC %>% as.numeric) %>%
group_by(DECUC) %>%
mutate(CONSO = CONSO/CONSO[NOMENCLATURE == "CTOTALE"]) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
+ geom_line(aes(x = DECUC2, y = CONSO, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("") + ylab("% de la Consommation Totale") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.5),
labels = percent_format(accuracy = .1)) +
#
theme(legend.position = c(0.4, 0.15),
legend.title = element_blank())
% du revenu
Code
%>%
tm106 filter(NOMENCLATURE %in% c("011", "0111", "0112", "0113"),
!= "TOT") %>%
DECUC left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
left_join(DECUC, by = "DECUC") %>%
left_join(revenu_dispo_decile, by = "DECUC") %>%
mutate(DECUC = DECUC %>% as.numeric) %>%
group_by(DECUC) %>%
+ geom_line(aes(x = DECUC2, y = CONSO/revenu_dispo_decile, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("") + ylab("% du revenu") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 2),
labels = percent_format(accuracy = 1)) +
#
theme(legend.position = c(0.4, 0.15),
legend.title = element_blank())
Alimentation
DECUC
% de la consommation
Code
%>%
bdf2017 filter(NOMENCLATURE %in% c("0111", "0112", "0113", "0114", "0115",
"0116", "0117", "0118", "0119", "CTOTALE"),
!= "TOT",
MENAGES_IPC == "DECUC",
MENAGES_IPC_CAT == "FE") %>%
REF_AREA rename(DECUC = MENAGES_IPC) %>%
left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
left_join(DECUC, by = "DECUC") %>%
mutate(DECUC = DECUC %>% as.numeric) %>%
group_by(DECUC) %>%
mutate(OBS_VALUE = OBS_VALUE/OBS_VALUE[NOMENCLATURE == "CTOTALE"]) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
+ geom_line(aes(x = DECUC2, y = OBS_VALUE, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("") + ylab("% de la Consommation Totale") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.5),
labels = percent_format(accuracy = .1)) +
theme(legend.position = c(0.4, 0.6),
legend.title = element_blank())
% du revenu
Code
%>%
bdf2017 filter(NOMENCLATURE %in% c("0111", "0112", "0113", "0114", "0115",
"0116", "0117", "0118", "0119", "CTOTALE"),
!= "TOT",
MENAGES_IPC == "DECUC",
MENAGES_IPC_CAT == "FE") %>%
REF_AREA rename(DECUC = MENAGES_IPC) %>%
left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
left_join(DECUC, by = "DECUC") %>%
left_join(revenu_dispo_decile, by = "DECUC") %>%
mutate(DECUC = DECUC %>% as.numeric) %>%
group_by(DECUC) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
+ geom_line(aes(x = DECUC2, y = OBS_VALUE/revenu_dispo_decile, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("") + ylab("% de la Consommation Totale") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.5),
labels = percent_format(accuracy = .1)) +
#
theme(legend.position = c(0.4, 0.6),
legend.title = element_blank())
Pains et Céréales (0111), Pain (01112)
CSPR
Code
%>%
tm103 filter(NOMENCLATURE %in% c("0111", "01112", "CTOTALE"),
!= "TOT") %>%
CSPR left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
left_join(CSPR, by = "CSPR") %>%
group_by(CSPR) %>%
mutate(CONSO = CONSO/CONSO[NOMENCLATURE == "CTOTALE"]) %>%
mutate(Cspr = gsub(" ", " \n", Cspr),
Cspr = ifelse(CSPR == "2", "Artisans, \ncommerçants \net chefs \nd'entreprise", Cspr)) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
+ geom_line(aes(x = paste0(CSPR, " - ", Cspr), y = CONSO, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("") + ylab("% de la Consommation Totale (Budget de famille 2017)") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.5),
labels = percent_format(accuracy = .1)) +
theme(legend.position = c(0.4, 0.9),
legend.title = element_blank())
AGPR
Code
%>%
tm102 filter(NOMENCLATURE %in% c("0111", "01112", "CTOTALE")) %>%
left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
left_join(AGPR, by = "AGPR") %>%
filter(AGPR != "TOT") %>%
group_by(AGPR) %>%
mutate(AGPR2 = gsub(" ", " \n", AGPR2)) %>%
mutate(CONSO = CONSO/CONSO[NOMENCLATURE == "CTOTALE"]) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
+ geom_line(aes(x = AGPR2, y = CONSO, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("") + ylab("% de la Consommation Totale (Budget de famille 2017)") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.2),
labels = percent_format(accuracy = .1)) +
theme(legend.position = c(0.55, 0.9),
legend.title = element_blank())
DECUC
Code
%>%
tm106 filter(NOMENCLATURE %in% c("0111", "01112", "01113", "CTOTALE"),
!= "TOT") %>%
DECUC left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
left_join(DECUC, by = "DECUC") %>%
mutate(DECUC = DECUC %>% as.numeric) %>%
group_by(DECUC) %>%
mutate(CONSO = CONSO/CONSO[NOMENCLATURE == "CTOTALE"]) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
+ geom_line(aes(x = DECUC2, y = CONSO, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("") + ylab("% de la Consommation Totale") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.5),
labels = percent_format(accuracy = .1)) +
#
theme(legend.position = c(0.4, 0.3),
legend.title = element_blank())
STRATE
Code
%>%
tm104 filter(NOMENCLATURE %in% c("0111", "01112", "CTOTALE"),
!= "TOT") %>%
STRATE left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
left_join(STRATE, by = "STRATE") %>%
group_by(STRATE) %>%
mutate(CONSO = CONSO/CONSO[NOMENCLATURE == "CTOTALE"]) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
mutate(Strate = gsub("\\(", "\n\\(", Strate)) %>%
+ geom_line(aes(x = paste0(STRATE, " - ", Strate), y = CONSO, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("") + ylab("% de la Consommation Totale") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.5),
labels = percent_format(accuracy = .1),
limits = c(0, 0.032)) +
theme(legend.position = c(0.4, 0.15),
legend.title = element_blank())
TYPMEN
Code
%>%
tm105 filter(NOMENCLATURE %in% c("0111", "01112", "CTOTALE")) %>%
left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
left_join(TYPMEN, by = "TYPMEN") %>%
filter(TYPMEN != "TOT") %>%
group_by(TYPMEN) %>%
mutate(CONSO = CONSO/CONSO[NOMENCLATURE == "CTOTALE"]) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
mutate(Typmen = gsub(" ", " \n", Typmen)) %>%
+ geom_line(aes(x = paste0(TYPMEN, " - ", Typmen), y = CONSO, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("") + ylab("% de la Consommation Totale (Budget de famille 2017)") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.2),
labels = percent_format(accuracy = .1)) +
theme(legend.position = c(0.4, 0.9),
legend.title = element_blank())
ZEAT2
Code
%>%
tm101 filter(NOMENCLATURE %in% c("0111", "01112", "CTOTALE")) %>%
left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
left_join(ZEAT2, by = "ZEAT2") %>%
filter(ZEAT2 != "TOT") %>%
group_by(ZEAT2) %>%
mutate(CONSO = CONSO/CONSO[NOMENCLATURE == "CTOTALE"]) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
mutate(Zeat2 = gsub(" ", " \n", Zeat2)) %>%
+ geom_line(aes(x = Zeat2, y = CONSO, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("") + ylab("% de la Consommation Totale (Budget de famille 2017)") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.5),
labels = percent_format(accuracy = .1)) +
theme(legend.position = c(0.4, 0.2),
legend.title = element_blank())
HORS CHAMP DE LA CONSOMMATION (IMPOTS ET TAXES, GROS TRAVAUX, REMBOURSEMENT PRET, CADEAUX)
DECUC
% de la consommation
All
Code
%>%
tm106 filter(NOMENCLATURE %in% c("131", "132", "133", "134", "135", "CTOTALE"),
!= "TOT") %>%
DECUC left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
left_join(DECUC, by = "DECUC") %>%
mutate(DECUC = DECUC %>% as.numeric) %>%
group_by(DECUC) %>%
mutate(CONSO = CONSO/CONSO[NOMENCLATURE == "CTOTALE"]) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
+ geom_line(aes(x = DECUC2, y = CONSO, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("") + ylab("% de la Consommation Totale") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 1),
labels = percent_format(accuracy = .1)) +
#
theme(legend.position = c(0.4, 0.8),
legend.title = element_blank())
All
Code
%>%
tm106 filter(NOMENCLATURE %in% c("132", "133", "134", "135", "CTOTALE"),
!= "TOT") %>%
DECUC left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
left_join(DECUC, by = "DECUC") %>%
mutate(DECUC = DECUC %>% as.numeric) %>%
group_by(DECUC) %>%
mutate(CONSO = CONSO/CONSO[NOMENCLATURE == "CTOTALE"]) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
+ geom_line(aes(x = DECUC2, y = CONSO, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("") + ylab("% de la Consommation Totale") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 1),
labels = percent_format(accuracy = .1)) +
#
theme(legend.position = c(0.4, 0.8),
legend.title = element_blank())
Remboursements de prêts immobiliers, Loyers
DECUC
% de la consommation
Code
%>%
tm106 filter(NOMENCLATURE %in% c("132Z", "0411", "0412", "CTOTALE"),
!= "TOT") %>%
DECUC left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
left_join(DECUC, by = "DECUC") %>%
mutate(DECUC = DECUC %>% as.numeric) %>%
group_by(DECUC) %>%
mutate(CONSO = CONSO/CONSO[NOMENCLATURE == "CTOTALE"]) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
+ geom_line(aes(x = DECUC2, y = CONSO, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("") + ylab("% de la Consommation Totale") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.5),
labels = percent_format(accuracy = .1)) +
#
theme(legend.position = c(0.4, 0.15),
legend.title = element_blank())
Remboursements de prêts immobiliers, Loyers
DECUC
% de la consommation
Code
%>%
tm106 filter(NOMENCLATURE %in% c("132Z", "0411", "CTOTALE"),
!= "TOT") %>%
DECUC left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
left_join(DECUC, by = "DECUC") %>%
mutate(DECUC = DECUC %>% as.numeric) %>%
group_by(DECUC) %>%
mutate(CONSO = CONSO/CONSO[NOMENCLATURE == "CTOTALE"]) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
+ geom_line(aes(x = DECUC2, y = CONSO, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("") + ylab("% de la Consommation Totale") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.5),
labels = percent_format(accuracy = .1)) +
#
theme(legend.position = c(0.4, 0.8),
legend.title = element_blank())
Electricité, Gaz, Electricite + gaz
DECUC
% de la consommation
Code
%>%
tm106 filter(NOMENCLATURE %in% c("0451", "045", "0452","CTOTALE"),
!= "TOT") %>%
DECUC left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
left_join(DECUC, by = "DECUC") %>%
mutate(DECUC = DECUC %>% as.numeric) %>%
group_by(DECUC) %>%
mutate(CONSO = CONSO/CONSO[NOMENCLATURE == "CTOTALE"]) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
+ geom_line(aes(x = DECUC2, y = CONSO, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("") + ylab("% de la Consommation Totale") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.5),
labels = percent_format(accuracy = .1),
limits = c(0, 0.065)) +
#
theme(legend.position = c(0.4, 0.15),
legend.title = element_blank())
% du revenu
Code
%>%
tm106 filter(NOMENCLATURE %in% c("0451", "045", "0452","CTOTALE"),
!= "TOT") %>%
DECUC left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
left_join(DECUC, by = "DECUC") %>%
left_join(revenu_dispo_decile, by = "DECUC") %>%
mutate(DECUC = DECUC %>% as.numeric) %>%
group_by(DECUC) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
+ geom_line(aes(x = DECUC2, y = CONSO/revenu_dispo_decile, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("") + ylab("% du revenu") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.5),
labels = percent_format(accuracy = .1),
limits = c(0, 0.09)) +
theme(legend.position = c(0.6, 0.8),
legend.title = element_blank())
Carburants et lubrifiants, antigel (0722), Electricité (045)
CSPR
Code
%>%
tm103 filter(NOMENCLATURE %in% c("0722", "045", "CTOTALE"),
!= "TOT") %>%
CSPR left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
left_join(CSPR, by = "CSPR") %>%
group_by(CSPR) %>%
mutate(CONSO = CONSO/CONSO[NOMENCLATURE == "CTOTALE"]) %>%
mutate(Cspr = gsub(" ", " \n", Cspr),
Cspr = ifelse(CSPR == "2", "Artisans, \ncommerçants \net chefs \nd'entreprise", Cspr)) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
+ geom_line(aes(x = paste0(CSPR, " - ", Cspr), y = CONSO, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("") + ylab("% de la Consommation Totale (Budget de famille 2017)") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.5),
labels = percent_format(accuracy = .1)) +
#
theme(legend.position = c(0.4, 0.9),
legend.title = element_blank())
AGPR
% de la consommation
Code
%>%
tm102 filter(NOMENCLATURE %in% c("0722", "045", "CTOTALE")) %>%
left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
left_join(AGPR, by = "AGPR") %>%
filter(AGPR != "TOT") %>%
group_by(AGPR) %>%
mutate(AGPR2 = gsub(" ", " \n", AGPR2)) %>%
mutate(CONSO = CONSO/CONSO[NOMENCLATURE == "CTOTALE"]) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
+ geom_line(aes(x = AGPR2, y = CONSO, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("") + ylab("% de la Consommation Totale") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 1),
labels = percent_format(accuracy = 1),
limits = c(0, 0.08)) +
#
theme(legend.position = c(0.35, 0.9),
legend.title = element_blank())
DECUC
% de la consommation
Code
%>%
tm106 filter(NOMENCLATURE %in% c("0722", "045", "CTOTALE"),
!= "TOT") %>%
DECUC left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
left_join(DECUC, by = "DECUC") %>%
mutate(DECUC = DECUC %>% as.numeric) %>%
group_by(DECUC) %>%
mutate(CONSO = CONSO/CONSO[NOMENCLATURE == "CTOTALE"]) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
+ geom_line(aes(x = DECUC2, y = CONSO, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("") + ylab("% de la Consommation Totale") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.5),
labels = percent_format(accuracy = .1),
limits = c(0, 0.065)) +
#
theme(legend.position = c(0.4, 0.15),
legend.title = element_blank())
% du revenu
Code
%>%
tm106 filter(NOMENCLATURE %in% c("0722", "045"),
!= "TOT") %>%
DECUC left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
left_join(DECUC, by = "DECUC") %>%
left_join(revenu_dispo_decile, by = "DECUC") %>%
mutate(DECUC = DECUC %>% as.numeric) %>%
group_by(DECUC) %>%
+ geom_line(aes(x = DECUC2, y = CONSO/revenu_dispo_decile, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("") + ylab("% du revenu") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.5),
labels = percent_format(accuracy = .1),
limits = c(0, 0.09)) +
#
theme(legend.position = c(0.4, 0.15),
legend.title = element_blank())
STRATE
Code
%>%
tm104 filter(NOMENCLATURE %in% c("0722", "045", "CTOTALE"),
!= "TOT") %>%
STRATE left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
left_join(STRATE, by = "STRATE") %>%
group_by(STRATE) %>%
mutate(CONSO = CONSO/CONSO[NOMENCLATURE == "CTOTALE"]) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
mutate(Strate = gsub("\\(", "\n\\(", Strate)) %>%
+ geom_line(aes(x = paste0(STRATE, " - ", Strate), y = CONSO, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("") + ylab("% de la Consommation Totale") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.5),
labels = percent_format(accuracy = .1),
limits = c(0, 0.065)) +
#
theme(legend.position = c(0.4, 0.15),
legend.title = element_blank())
TYPMEN
Code
%>%
tm105 filter(NOMENCLATURE %in% c("0722", "045", "CTOTALE")) %>%
left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
left_join(TYPMEN, by = "TYPMEN") %>%
filter(TYPMEN != "TOT") %>%
group_by(TYPMEN) %>%
mutate(CONSO = CONSO/CONSO[NOMENCLATURE == "CTOTALE"]) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
mutate(Typmen = gsub(" ", " \n", Typmen)) %>%
+ geom_line(aes(x = paste0(TYPMEN, " - ", Typmen), y = CONSO, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("") + ylab("% de la Consommation Totale (Budget de famille 2017)") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.2),
labels = percent_format(accuracy = .1)) +
theme(legend.position = c(0.4, 0.9),
legend.title = element_blank())
ZEAT2
Code
%>%
tm101 filter(NOMENCLATURE %in% c("0722", "045", "CTOTALE")) %>%
left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
left_join(ZEAT2, by = "ZEAT2") %>%
filter(ZEAT2 != "TOT") %>%
group_by(ZEAT2) %>%
mutate(CONSO = CONSO/CONSO[NOMENCLATURE == "CTOTALE"]) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
mutate(Zeat2 = gsub(" ", " \n", Zeat2)) %>%
+ geom_line(aes(x = Zeat2, y = CONSO, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("") + ylab("% de la Consommation Totale (Budget de famille 2017)") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.5),
labels = percent_format(accuracy = .1)) +
theme(legend.position = c(0.4, 0.2),
legend.title = element_blank())
Communications (081), Services de téléphone (0813)
CSPR
Code
%>%
tm103 filter(NOMENCLATURE %in% c("081", "0813", "CTOTALE"),
!= "TOT") %>%
CSPR left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
left_join(CSPR, by = "CSPR") %>%
group_by(CSPR) %>%
mutate(CONSO = CONSO/CONSO[NOMENCLATURE == "CTOTALE"]) %>%
mutate(Cspr = gsub(" ", " \n", Cspr),
Cspr = ifelse(CSPR == "2", "Artisans, \ncommerçants \net chefs \nd'entreprise", Cspr)) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
+ geom_line(aes(x = paste0(CSPR, " - ", Cspr), y = CONSO, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("") + ylab("% de la Consommation Totale (Budget de famille 2017)") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.5),
labels = percent_format(accuracy = .1)) +
theme(legend.position = c(0.4, 0.9),
legend.title = element_blank())
AGPR
Code
%>%
tm102 filter(NOMENCLATURE %in% c("081", "0813", "CTOTALE")) %>%
left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
left_join(AGPR, by = "AGPR") %>%
filter(AGPR != "TOT") %>%
group_by(AGPR) %>%
mutate(AGPR2 = gsub(" ", " \n", AGPR2)) %>%
mutate(CONSO = CONSO/CONSO[NOMENCLATURE == "CTOTALE"]) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
+ geom_line(aes(x = AGPR2, y = CONSO, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("") + ylab("% de la Consommation Totale (Budget de famille 2017)") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.2),
labels = percent_format(accuracy = .1),
limits = c(0, 0.037)) +
theme(legend.position = c(0.55, 0.9),
legend.title = element_blank())
DECUC
Code
%>%
tm106 filter(NOMENCLATURE %in% c("081", "0813", "CTOTALE"),
!= "TOT") %>%
DECUC left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
left_join(DECUC, by = "DECUC") %>%
mutate(DECUC = DECUC %>% as.numeric) %>%
group_by(DECUC) %>%
mutate(CONSO = CONSO/CONSO[NOMENCLATURE == "CTOTALE"]) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
+ geom_line(aes(x = DECUC2, y = CONSO, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("") + ylab("% de la Consommation Totale") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.5),
labels = percent_format(accuracy = .1),
limits = c(0, 0.039)) +
theme(legend.position = c(0.4, 0.15),
legend.title = element_blank())
STRATE
Code
%>%
tm104 filter(NOMENCLATURE %in% c("081", "0813", "CTOTALE"),
!= "TOT") %>%
STRATE left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
left_join(STRATE, by = "STRATE") %>%
group_by(STRATE) %>%
mutate(CONSO = CONSO/CONSO[NOMENCLATURE == "CTOTALE"]) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
mutate(Strate = gsub("\\(", "\n\\(", Strate)) %>%
+ geom_line(aes(x = paste0(STRATE, " - ", Strate), y = CONSO, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("") + ylab("% de la Consommation Totale") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.1),
labels = percent_format(accuracy = .1),
limits = c(0, 0.029)) +
theme(legend.position = c(0.4, 0.15),
legend.title = element_blank())
TYPMEN
Code
%>%
tm105 filter(NOMENCLATURE %in% c("081", "0813", "CTOTALE")) %>%
left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
left_join(TYPMEN, by = "TYPMEN") %>%
filter(TYPMEN != "TOT") %>%
group_by(TYPMEN) %>%
mutate(CONSO = CONSO/CONSO[NOMENCLATURE == "CTOTALE"]) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
mutate(Typmen = gsub(" ", " \n", Typmen)) %>%
+ geom_line(aes(x = paste0(TYPMEN, " - ", Typmen), y = CONSO, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("") + ylab("% de la Consommation Totale (Budget de famille 2017)") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.1),
labels = percent_format(accuracy = .1)) +
theme(legend.position = c(0.4, 0.9),
legend.title = element_blank())
ZEAT2
Code
%>%
tm101 filter(NOMENCLATURE %in% c("081", "0813", "CTOTALE")) %>%
left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
left_join(ZEAT2, by = "ZEAT2") %>%
filter(ZEAT2 != "TOT") %>%
group_by(ZEAT2) %>%
mutate(CONSO = CONSO/CONSO[NOMENCLATURE == "CTOTALE"]) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
mutate(Zeat2 = gsub(" ", " \n", Zeat2)) %>%
+ geom_line(aes(x = Zeat2, y = CONSO, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("") + ylab("% de la Consommation Totale (Budget de famille 2017)") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.1),
labels = percent_format(accuracy = .1)) +
theme(legend.position = c(0.4, 0.7),
legend.title = element_blank())
Pâtes
DECUC
Code
%>%
tm106 filter(NOMENCLATURE %in% c("01113", "CTOTALE"),
!= "TOT") %>%
DECUC left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
left_join(DECUC, by = "DECUC") %>%
mutate(DECUC = DECUC %>% as.numeric) %>%
group_by(DECUC) %>%
mutate(CONSO = CONSO/CONSO[NOMENCLATURE == "CTOTALE"]) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
+ geom_line(aes(x = DECUC2, y = CONSO, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("") + ylab("% de la Consommation Totale") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.01),
labels = percent_format(accuracy = .01)) +
#
theme(legend.position = c(0.4, 0.3),
legend.title = element_blank())
% du revenu
Code
%>%
tm106 filter(NOMENCLATURE %in% c("01113"),
!= "TOT") %>%
DECUC left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
left_join(DECUC, by = "DECUC") %>%
left_join(revenu_dispo_decile, by = "DECUC") %>%
mutate(DECUC = DECUC %>% as.numeric) %>%
group_by(DECUC) %>%
+ geom_line(aes(x = DECUC2, y = CONSO/revenu_dispo_decile, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("") + ylab("% du revenu") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.02),
labels = percent_format(accuracy = .01)) +
#
theme(legend.position = c(0.4, 0.15),
legend.title = element_blank())
Santé (06), Assurances liées à la santé (1253)
CSPR
Code
%>%
tm103 filter(NOMENCLATURE %in% c("1253", "06", "CTOTALE"),
!= "TOT", CSPR != "8") %>%
CSPR left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
left_join(CSPR, by = "CSPR") %>%
group_by(CSPR) %>%
mutate(CONSO = CONSO/CONSO[NOMENCLATURE == "CTOTALE"]) %>%
mutate(Cspr = gsub(" ", " \n", Cspr),
Cspr = ifelse(CSPR == "2", "Artisans, \ncommerçants \net chefs \nd'entreprise", Cspr)) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
+ geom_line(aes(x = paste0(CSPR, " - ", Cspr), y = CONSO, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("") + ylab("% de la Consommation Totale (Budget de famille 2017)") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.5),
labels = percent_format(accuracy = .1),
limits = c(0, 0.07)) +
theme(legend.position = c(0.4, 0.9),
legend.title = element_blank())
AGPR
Code
%>%
tm102 filter(NOMENCLATURE %in% c("1253", "06", "CTOTALE")) %>%
left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
left_join(AGPR, by = "AGPR") %>%
filter(AGPR != "TOT") %>%
group_by(AGPR) %>%
mutate(AGPR2 = gsub(" ", " \n", AGPR2)) %>%
mutate(CONSO = CONSO/CONSO[NOMENCLATURE == "CTOTALE"]) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
+ geom_line(aes(x = AGPR2, y = CONSO, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("") + ylab("% de la Consommation Totale (Budget de famille 2017)") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.5),
labels = percent_format(accuracy = .1),
limits = c(0, 0.085)) +
theme(legend.position = c(0.2, 0.9),
legend.title = element_blank())
DECUC
% de la consommation
Code
%>%
tm106 filter(NOMENCLATURE %in% c("1253", "06", "CTOTALE"),
!= "TOT") %>%
DECUC left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
left_join(DECUC, by = "DECUC") %>%
mutate(DECUC = DECUC %>% as.numeric) %>%
group_by(DECUC) %>%
mutate(CONSO = CONSO/CONSO[NOMENCLATURE == "CTOTALE"]) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
+ geom_line(aes(x = DECUC2, y = CONSO, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("") + ylab("% de la Consommation Totale") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.5),
labels = percent_format(accuracy = .1)) +
theme(legend.position = c(0.8, 0.9),
legend.title = element_blank())
% du revenu
Code
%>%
tm106 filter(NOMENCLATURE %in% c("1253", "06"),
!= "TOT") %>%
DECUC left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
left_join(DECUC, by = "DECUC") %>%
left_join(revenu_dispo_decile, by = "DECUC") %>%
mutate(DECUC = DECUC %>% as.numeric) %>%
group_by(DECUC) %>%
+ geom_line(aes(x = DECUC2, y = CONSO/revenu_dispo_decile, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("") + ylab("% du revenu") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.5),
labels = percent_format(accuracy = .1),
limits = c(0, 0.05)) +
theme(legend.position = c(0.4, 0.15),
legend.title = element_blank())
STRATE
Code
%>%
tm104 filter(NOMENCLATURE %in% c("1253", "06", "CTOTALE"),
!= "TOT") %>%
STRATE left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
left_join(STRATE, by = "STRATE") %>%
group_by(STRATE) %>%
mutate(CONSO = CONSO/CONSO[NOMENCLATURE == "CTOTALE"]) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
mutate(Strate = gsub("\\(", "\n\\(", Strate)) %>%
+ geom_line(aes(x = paste0(STRATE, " - ", Strate), y = CONSO, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("") + ylab("% de la Consommation Totale") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.5),
labels = percent_format(accuracy = .1)) +
theme(legend.position = c(0.8, 0.9),
legend.title = element_blank())
TYPMEN
Code
%>%
tm105 filter(NOMENCLATURE %in% c("1253", "06", "CTOTALE")) %>%
left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
left_join(TYPMEN, by = "TYPMEN") %>%
filter(TYPMEN != "TOT") %>%
group_by(TYPMEN) %>%
mutate(CONSO = CONSO/CONSO[NOMENCLATURE == "CTOTALE"]) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
mutate(Typmen = gsub(" ", " \n", Typmen)) %>%
+ geom_line(aes(x = paste0(TYPMEN, " - ", Typmen), y = CONSO, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("") + ylab("% de la Consommation Totale (Budget de famille 2017)") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.5),
labels = percent_format(accuracy = .1)) +
theme(legend.position = c(0.2, 0.9),
legend.title = element_blank())
ZEAT2
Code
%>%
tm101 filter(NOMENCLATURE %in% c("1253", "06", "CTOTALE")) %>%
left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
left_join(ZEAT2, by = "ZEAT2") %>%
filter(ZEAT2 != "TOT") %>%
group_by(ZEAT2) %>%
mutate(CONSO = CONSO/CONSO[NOMENCLATURE == "CTOTALE"]) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
mutate(Zeat2 = gsub(" ", " \n", Zeat2)) %>%
+ geom_line(aes(x = Zeat2, y = CONSO, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("") + ylab("% de la Consommation Totale (Budget de famille 2017)") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.5),
labels = percent_format(accuracy = .1)) +
theme(legend.position = c(0.2, 0.7),
legend.title = element_blank())
Catégories Socioprofessionelles
%
Code
%>%
tm103 filter(CSPR %in% c("TOT", "3", "4", "5", "6")) %>%
left_join(CSPR, by = "CSPR") %>%
left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
select(NOMENCLATURE, Nomenclature, Cspr, CONSO) %>%
spread(Cspr, CONSO) %>%
mutate_at(vars(-1, -2), funs(round(100*./.[NOMENCLATURE == "CTOTALE"],2))) %>%
print_table_conditional()
Tabac, Enseignement Supérieur, Communications
Code
%>%
tm103 filter(NOMENCLATURE %in% c("1013", "022", "081", "CTOTALE"),
%in% c("3", "4", "5", "6", "7")) %>%
CSPR left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
left_join(CSPR, by = "CSPR") %>%
group_by(CSPR) %>%
mutate(CONSO = CONSO/CONSO[NOMENCLATURE == "CTOTALE"]) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
+ geom_line(aes(x = paste0(CSPR, " - ", Cspr), y = CONSO, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("") + ylab("% de la Consommation Totale") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.5),
labels = percent_format(accuracy = .1)) +
#scale_x_continuous(breaks = seq(0, 10, 1)) +
theme(legend.position = c(0.2, 0.9),
legend.title = element_blank())
Enseignement, Achats de téléphones, Services
Code
%>%
tm103 filter(NOMENCLATURE %in% c("0813", "0812", "10", "CTOTALE"),
%in% c("3", "4", "5", "6", "7")) %>%
CSPR left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
left_join(CSPR, by = "CSPR") %>%
group_by(CSPR) %>%
mutate(CONSO = CONSO/CONSO[NOMENCLATURE == "CTOTALE"]) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
+ geom_line(aes(x = paste0(CSPR, " - ", Cspr), y = CONSO, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("") + ylab("% de la Consommation Totale") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.5),
labels = percent_format(accuracy = .1)) +
#scale_x_continuous(breaks = seq(0, 10, 1)) +
theme(legend.position = c(0.4, 0.9),
legend.title = element_blank())
Enseignement secondaire, Enseignement supérieur, Assurances liées à la santé
Code
%>%
tm103 filter(NOMENCLATURE %in% c("1253", "1013", "1012", "CTOTALE"),
%in% c("3", "4", "5", "6", "7")) %>%
CSPR left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
left_join(CSPR, by = "CSPR") %>%
group_by(CSPR) %>%
mutate(CONSO = CONSO/CONSO[NOMENCLATURE == "CTOTALE"]) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
+ geom_line(aes(x = paste0(CSPR, " - ", Cspr), y = CONSO, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("") + ylab("% de la Consommation Totale") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.5),
labels = percent_format(accuracy = .1)) +
#scale_x_continuous(breaks = seq(0, 10, 1)) +
theme(legend.position = c(0.4, 0.9),
legend.title = element_blank())
Santé, Assurances liées à la santé
Code
%>%
tm103 filter(NOMENCLATURE %in% c("1253", "06", "061", "CTOTALE"),
%in% c("3", "4", "5", "6", "7")) %>%
CSPR left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
left_join(CSPR, by = "CSPR") %>%
group_by(CSPR) %>%
mutate(CONSO = CONSO/CONSO[NOMENCLATURE == "CTOTALE"]) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
+ geom_line(aes(x = paste0(CSPR, " - ", Cspr), y = CONSO, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("") + ylab("% de la Consommation Totale") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.5),
labels = percent_format(accuracy = .1)) +
#scale_x_continuous(breaks = seq(0, 10, 1)) +
theme(legend.position = c(0.4, 0.9),
legend.title = element_blank())
Déciles
% du revenu disponible
Code
%>%
tm106 filter(DECUC %in% c("1", "4", "7", "10")) %>%
left_join(revenu_dispo_decile, by = "DECUC") %>%
left_join(DECUC, by = "DECUC") %>%
left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
transmute(NOMENCLATURE, Nomenclature, DECUC2,
CONSO = round(100*CONSO/revenu_dispo_decile, 2)) %>%
spread(DECUC2, CONSO) %>%
print_table_conditional()
% de la Consommation
Tous
Code
%>%
tm106 filter(DECUC %in% c("1", "4", "7", "10", "TOT")) %>%
left_join(DECUC, by = "DECUC") %>%
left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
select(NOMENCLATURE, Nomenclature, DECUC2, CONSO) %>%
spread(DECUC2, CONSO) %>%
mutate_at(vars(-1, -2), funs(round(100*./.[NOMENCLATURE == "CTOTALE"],2))) %>%
print_table_conditional()
2-digit
Code
%>%
tm106 filter(nchar(NOMENCLATURE) == 2 | NOMENCLATURE == "CTOTALE") %>%
filter(DECUC %in% c("1", "4", "7", "10", "TOT")) %>%
left_join(DECUC, by = "DECUC") %>%
left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
select(NOMENCLATURE, Nomenclature, DECUC2, CONSO) %>%
spread(DECUC2, CONSO) %>%
mutate_at(vars(-1, -2), funs(round(100*./.[NOMENCLATURE == "CTOTALE"],2))) %>%
print_table_conditional()
NOMENCLATURE | Nomenclature | D1- | D3-D4 | D6-D7 | D9+ | TOT |
---|---|---|---|---|---|---|
01 | 01 - PRODUITS ALIMENTAIRES ET BOISSONS NON-ALCOOLISEES | 17.44 | 17.91 | 15.57 | 13.56 | 16.08 |
02 | 02 - BOISSONS ALCOOLISEES ET TABAC | 3.57 | 3.42 | 2.85 | 2.25 | 2.89 |
03 | 03 - ARTICLES D’HABILLEMENT ET CHAUSSURES | 5.45 | 4.61 | 4.91 | 4.86 | 5.00 |
04 | 04 - LOGEMENT, EAU, GAZ, ELECTRICITE ET AUTRES COMBUSTIBLES | 22.75 | 19.65 | 15.49 | 12.01 | 16.29 |
05 | 05 - MEUBLES, ARTICLES DE MENAGE ET ENTRETIEN COURANT DE LA MAISON | 3.60 | 4.32 | 5.76 | 8.02 | 5.67 |
06 | 06 - SANTE | 1.60 | 1.87 | 1.99 | 1.59 | 1.85 |
07 | 07 - TRANSPORTS | 13.61 | 15.11 | 17.33 | 18.11 | 16.28 |
08 | 08 - COMMUNICATIONS | 3.84 | 3.09 | 2.65 | 1.82 | 2.66 |
09 | 09 - LOISIRS ET CULTURE | 7.84 | 8.02 | 9.66 | 11.05 | 9.40 |
10 | 10 - ENSEIGNEMENT | 1.88 | 0.69 | 0.54 | 0.98 | 0.78 |
11 | 11 - RESTAURATION ET HÔTELS | 5.36 | 6.16 | 6.80 | 10.28 | 7.23 |
12 | 12 - BIENS ET SERVICES DIVERS | 13.08 | 15.14 | 16.46 | 15.47 | 15.87 |
13 | 13 - HORS CHAMP DE LA CONSOMMATION (IMPOTS ET TAXES, GROS TRAVAUX, REMBOURSEMENT PRET, CADEAUX) | 14.85 | 21.19 | 36.36 | 63.20 | 34.97 |
CTOTALE | TOTAL DE LA CONSOMMATION - CHAMP COMPTABILITE NATIONALE | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
3-digit
Code
%>%
tm106 filter(nchar(NOMENCLATURE) == 3 | NOMENCLATURE == "CTOTALE") %>%
filter(DECUC %in% c("1", "4", "7", "10", "TOT")) %>%
left_join(DECUC, by = "DECUC") %>%
left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
select(NOMENCLATURE, Nomenclature, DECUC2, CONSO) %>%
spread(DECUC2, CONSO) %>%
mutate_at(vars(-1, -2), funs(round(100*./.[NOMENCLATURE == "CTOTALE"],2))) %>%
print_table_conditional()
4-digit
Code
%>%
tm106 filter(nchar(NOMENCLATURE) == 4 | NOMENCLATURE == "CTOTALE") %>%
filter(DECUC %in% c("1", "4", "7", "10", "TOT")) %>%
left_join(DECUC, by = "DECUC") %>%
left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
select(NOMENCLATURE, Nomenclature, DECUC2, CONSO) %>%
spread(DECUC2, CONSO) %>%
mutate_at(vars(-1, -2), funs(round(100*./.[NOMENCLATURE == "CTOTALE"],2))) %>%
print_table_conditional()
5-digit
Code
%>%
tm106 filter(nchar(NOMENCLATURE) == 5 | NOMENCLATURE == "CTOTALE") %>%
filter(DECUC %in% c("1", "4", "7", "10", "TOT")) %>%
left_join(DECUC, by = "DECUC") %>%
left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
select(NOMENCLATURE, Nomenclature, DECUC2, CONSO) %>%
spread(DECUC2, CONSO) %>%
mutate_at(vars(-1, -2), funs(round(100*./.[NOMENCLATURE == "CTOTALE"],2))) %>%
print_table_conditional()
Euros
Code
%>%
tm106 filter(DECUC %in% c("TOT", "1", "4", "7", "10")) %>%
left_join(DECUC, by = "DECUC") %>%
left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
select(NOMENCLATURE, Nomenclature, Decuc, CONSO) %>%
spread(Decuc, CONSO) %>%
print_table_conditional()
Biais du 1er décile
Code
%>%
tm106 filter(DECUC %in% c("TOT", "1", "10")) %>%
left_join(DECUC, by = "DECUC") %>%
left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
select(NOMENCLATURE, Nomenclature, Decuc, CONSO) %>%
spread(Decuc, CONSO) %>%
mutate_at(vars(-1, -2), funs(round(100*./.[NOMENCLATURE == "CTOTALE"],2))) %>%
mutate(`Décile 1 - Ensemble` = round(`Décile 1`/`Ensemble`-1,2)) %>%
arrange(-`Décile 1 - Ensemble`) %>%
print_table_conditional()
Biais du 10ème décile
Code
%>%
tm106 filter(DECUC %in% c("TOT", "1", "10")) %>%
left_join(DECUC, by = "DECUC") %>%
left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
select(NOMENCLATURE, Nomenclature, Decuc, CONSO) %>%
spread(Decuc, CONSO) %>%
mutate_at(vars(-1, -2), funs(round(100*./.[NOMENCLATURE == "CTOTALE"],2))) %>%
mutate(`Décile 10 - Ensemble` = round(`Décile 10`/`Ensemble`-1, 2)) %>%
arrange(-`Décile 10 - Ensemble`) %>%
print_table_conditional()
Communications (081), Services de téléphone (0813)
Code
%>%
tm106 filter(NOMENCLATURE %in% c("081", "0813", "CTOTALE"),
!= "TOT") %>%
DECUC left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
left_join(DECUC, by = "DECUC") %>%
mutate(DECUC = DECUC %>% as.numeric) %>%
group_by(DECUC) %>%
mutate(CONSO = CONSO/CONSO[NOMENCLATURE == "CTOTALE"]) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
+ geom_line(aes(x = DECUC2, y = CONSO, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("") + ylab("% de la Consommation Totale") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.5),
labels = percent_format(accuracy = .1)) +
theme(legend.position = c(0.6, 0.9),
legend.title = element_blank())
Tabac (022), Enseignement Supérieur (1013), Communications (081)
% de la consommation
Code
%>%
tm106 filter(NOMENCLATURE %in% c("1013", "022", "081", "CTOTALE"),
!= "TOT") %>%
DECUC left_join(DECUC, by = "DECUC") %>%
left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
mutate(DECUC = DECUC %>% as.numeric) %>%
group_by(DECUC) %>%
mutate(value = CONSO/CONSO[NOMENCLATURE == "CTOTALE"]) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
select(DECUC2, value, Nomenclature, everything()) %>%
+ geom_line(aes(x = DECUC2, y = value, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("") + ylab("% de la Consommation Totale") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.5),
labels = percent_format(accuracy = .1)) +
theme(legend.position = c(0.7, 0.9),
legend.title = element_blank())
% du revenu disponible
Code
%>%
tm106 filter(NOMENCLATURE %in% c("1013", "022", "081"),
!= "TOT") %>%
DECUC left_join(DECUC, by = "DECUC") %>%
left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
left_join(revenu_dispo_decile, by = "DECUC") %>%
mutate(DECUC = DECUC %>% as.numeric) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
mutate(value = CONSO/revenu_dispo_decile) %>%
select(DECUC2, value, Nomenclature, everything()) %>%
+ geom_line(aes(x = DECUC2, y = value, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("") + ylab("% de la Consommation Totale") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.5),
labels = percent_format(accuracy = .1)) +
theme(legend.position = c(0.7, 0.9),
legend.title = element_blank())
Tabac (022), Loyer (041)
% de la consommation
Code
%>%
tm106 filter(NOMENCLATURE %in% c("041", "022", "CTOTALE"),
!= "TOT") %>%
DECUC left_join(DECUC, by = "DECUC") %>%
left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
mutate(DECUC = DECUC %>% as.numeric) %>%
group_by(DECUC) %>%
mutate(value = CONSO/CONSO[NOMENCLATURE == "CTOTALE"]) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
select(DECUC2, value, Nomenclature, everything()) %>%
+ geom_line(aes(x = DECUC2, y = value, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("") + ylab("% de la Consommation Totale") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.5),
labels = percent_format(accuracy = .1)) +
theme(legend.position = c(0.7, 0.9),
legend.title = element_blank())
% du revenu disponible
Code
%>%
tm106 filter(NOMENCLATURE %in% c("041", "022"),
!= "TOT") %>%
DECUC left_join(DECUC, by = "DECUC") %>%
left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
left_join(revenu_dispo_decile, by = "DECUC") %>%
mutate(DECUC = DECUC %>% as.numeric) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
mutate(value = CONSO/revenu_dispo_decile) %>%
select(DECUC2, value, Nomenclature, everything()) %>%
+ geom_line(aes(x = DECUC2, y = value, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("") + ylab("% ddu revenu disponible") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 1),
labels = percent_format(accuracy = 1)) +
#
theme(legend.position = c(0.5, 0.9),
legend.title = element_blank())
Tabac (022), Loyer (041)
% de la consommation
Code
%>%
tm106 filter(NOMENCLATURE %in% c("011", "041", "022", "CTOTALE"),
!= "TOT") %>%
DECUC left_join(DECUC, by = "DECUC") %>%
left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
mutate(DECUC = DECUC %>% as.numeric) %>%
group_by(DECUC) %>%
mutate(value = CONSO/CONSO[NOMENCLATURE == "CTOTALE"]) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
select(DECUC2, value, Nomenclature, everything()) %>%
+ geom_line(aes(x = DECUC2, y = value, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("") + ylab("% de la Consommation Totale") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 1),
labels = percent_format(accuracy = .1)) +
theme(legend.position = c(0.6, 0.9),
legend.title = element_blank())
% du revenu disponible
Code
%>%
tm106 filter(NOMENCLATURE %in% c("011", "041", "022"),
!= "TOT") %>%
DECUC left_join(DECUC, by = "DECUC") %>%
left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
left_join(revenu_dispo_decile, by = "DECUC") %>%
mutate(DECUC = DECUC %>% as.numeric) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
mutate(value = CONSO/revenu_dispo_decile) %>%
select(DECUC2, value, Nomenclature, everything()) %>%
+ geom_line(aes(x = DECUC2, y = value, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("") + ylab("% ddu revenu disponible") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 1),
labels = percent_format(accuracy = 1)) +
#
theme(legend.position = c(0.5, 0.9),
legend.title = element_blank())
Tabac (022)
% de la consommation
Code
%>%
tm106 filter(NOMENCLATURE %in% c("022", "CTOTALE"),
!= "TOT") %>%
DECUC left_join(DECUC, by = "DECUC") %>%
left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
mutate(DECUC = DECUC %>% as.numeric) %>%
group_by(DECUC) %>%
mutate(value = CONSO/CONSO[NOMENCLATURE == "CTOTALE"]) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
select(DECUC2, value, Nomenclature, everything()) %>%
+ geom_line(aes(x = DECUC, y = value, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("Dixième de revenu") + ylab("% de la Consommation Totale") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.2),
labels = percent_format(accuracy = .1)) +
scale_x_continuous(breaks = seq(1, 10, 1)) +
theme(legend.position = c(0.7, 0.9),
legend.title = element_blank())
% du revenu disponible
Code
%>%
tm106 filter(NOMENCLATURE %in% c("022"),
!= "TOT") %>%
DECUC left_join(DECUC, by = "DECUC") %>%
left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
left_join(revenu_dispo_decile, by = "DECUC") %>%
mutate(DECUC = DECUC %>% as.numeric) %>%
arrange(DECUC2) %>%
+ geom_line(aes(x = DECUC, y = CONSO/revenu_dispo_decile, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("Dixième de revenu") + ylab("% du revenu disponible") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.5),
labels = percent_format(accuracy = .1),
limits = c(0, 0.035)) +
scale_x_continuous(breaks = seq(1, 10, 1)) +
theme(legend.position = c(0.7, 0.9),
legend.title = element_blank())
Services de communications (081, 0811, 0812, 0813)
Code
%>%
tm106 filter(NOMENCLATURE %in% c("081", "0811", "0812", "0813", "CTOTALE")) %>%
left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
mutate(DECUC = DECUC %>% as.numeric) %>%
group_by(DECUC) %>%
mutate(CONSO = CONSO/CONSO[NOMENCLATURE == "CTOTALE"]) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
+ geom_line(aes(x = DECUC, y = CONSO, color = Nomenclature)) +
ggplot theme_minimal() + xlab("Décile") + ylab("% de la Consommation Totale") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.5),
labels = percent_format(accuracy = .1)) +
scale_x_continuous(breaks = seq(0, 10, 1)) +
theme(legend.position = c(0.7, 0.9),
legend.title = element_blank())
Communications, Services de téléphone
Code
%>%
tm106 filter(NOMENCLATURE %in% c("0811", "0812", "CTOTALE")) %>%
left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
mutate(DECUC = DECUC %>% as.numeric) %>%
group_by(DECUC) %>%
mutate(CONSO = CONSO/CONSO[NOMENCLATURE == "CTOTALE"]) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
+ geom_line(aes(x = DECUC, y = CONSO, color = Nomenclature)) +
ggplot theme_minimal() + xlab("Décile") + ylab("% de la Consommation Totale") +
scale_y_continuous(breaks = 0.01*seq(-30, 50,0.05),
labels = percent_format(accuracy = .01)) +
scale_x_continuous(breaks = seq(0, 10, 1)) +
theme(legend.position = c(0.6, 0.9),
legend.title = element_blank())
Alimentation, Logement, Loyer
Code
%>%
tm106 filter(NOMENCLATURE %in% c("01", "04", "041", "CTOTALE")) %>%
left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
mutate(DECUC = DECUC %>% as.numeric) %>%
group_by(DECUC) %>%
mutate(CONSO = CONSO/CONSO[NOMENCLATURE == "CTOTALE"]) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
+ geom_line(aes(x = DECUC, y = CONSO, color = Nomenclature)) +
ggplot theme_minimal() + xlab("Décile") + ylab("% de la Consommation Totale") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.5),
labels = percent_format(accuracy = .1)) +
scale_x_continuous(breaks = seq(0, 10, 1)) +
theme(legend.position = c(0.7, 0.9),
legend.title = element_blank())
Alimentation, Electricité, Frais utilisation
Code
%>%
tm106 filter(NOMENCLATURE %in% c("01", "072", "045", "CTOTALE")) %>%
left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
mutate(DECUC = DECUC %>% as.numeric) %>%
group_by(DECUC) %>%
mutate(CONSO = CONSO/CONSO[NOMENCLATURE == "CTOTALE"]) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
+ geom_line(aes(x = DECUC, y = CONSO, color = Nomenclature)) +
ggplot theme_minimal() + xlab("Décile") + ylab("% de la Consommation Totale") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.5),
labels = percent_format(accuracy = .1)) +
scale_x_continuous(breaks = seq(0, 10, 1)) +
theme(legend.position = c(0.7, 0.9),
legend.title = element_blank())
Carburants et lubrifiants, antigel (0722), Electricité + gaz (045)
% de la consommation
Code
%>%
tm106 filter(NOMENCLATURE %in% c("045", "0722", "CTOTALE"),
!= "TOT") %>%
DECUC left_join(DECUC, by = "DECUC") %>%
left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
mutate(DECUC = DECUC %>% as.numeric) %>%
group_by(DECUC) %>%
mutate(value = CONSO/CONSO[NOMENCLATURE == "CTOTALE"]) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
select(DECUC2, value, Nomenclature, everything()) %>%
+ geom_line(aes(x = DECUC2, y = value, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("") + ylab("% de la Consommation Totale") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.5),
labels = percent_format(accuracy = .1)) +
theme(legend.position = c(0.7, 0.9),
legend.title = element_blank())
% du revenu disponible
Code
%>%
tm106 filter(NOMENCLATURE %in% c("045", "0722"),
!= "TOT") %>%
DECUC left_join(DECUC, by = "DECUC") %>%
left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
left_join(revenu_dispo_decile, by = "DECUC") %>%
mutate(DECUC = DECUC %>% as.numeric) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
mutate(value = CONSO/revenu_dispo_decile) %>%
select(DECUC2, value, Nomenclature, everything()) %>%
+ geom_line(aes(x = DECUC2, y = value, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("") + ylab("% ddu revenu disponible") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 1),
labels = percent_format(accuracy = 1)) +
#
theme(legend.position = c(0.5, 0.9),
legend.title = element_blank())
Carburants et lubrifiants, antigel (0722), Electricité (045), Pains et Céréales (0111)
Code
%>%
tm106 filter(NOMENCLATURE %in% c("045", "0722", "0111", "CTOTALE"),
!= "TOT") %>%
DECUC left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
left_join(DECUC, by = "DECUC") %>%
mutate(DECUC = DECUC %>% as.numeric) %>%
group_by(DECUC) %>%
mutate(CONSO = CONSO/CONSO[NOMENCLATURE == "CTOTALE"]) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
+ geom_line(aes(x = DECUC2, y = CONSO, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("") + ylab("% de la Consommation Totale") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.5),
labels = percent_format(accuracy = .1),
limits = c(0, 0.065)) +
theme(legend.position = c(0.5, 0.2),
legend.title = element_blank())
Electricité (045), Pains et Céréales (0111), Pâtes
Code
%>%
tm106 filter(NOMENCLATURE %in% c("045", "01113", "0111", "CTOTALE")) %>%
left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
left_join(DECUC, by = "DECUC") %>%
mutate(DECUC = DECUC %>% as.numeric) %>%
group_by(DECUC) %>%
mutate(CONSO = CONSO/CONSO[NOMENCLATURE == "CTOTALE"]) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
+ geom_line(aes(x = DECUC2, y = CONSO, color = Nomenclature, group = Nomenclature)) +
ggplot theme_minimal() + xlab("Décile") + ylab("% de la Consommation Totale") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.5),
labels = percent_format(accuracy = .1)) +
theme(legend.position = c(0.5, 0.9),
legend.title = element_blank())
Enseignement, Achats de téléphones, Services
Code
%>%
tm106 filter(NOMENCLATURE %in% c("0813", "0812", "10", "CTOTALE")) %>%
left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
mutate(DECUC = DECUC %>% as.numeric) %>%
group_by(DECUC) %>%
mutate(CONSO = CONSO/CONSO[NOMENCLATURE == "CTOTALE"]) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
+ geom_line(aes(x = DECUC, y = CONSO, color = Nomenclature)) +
ggplot theme_minimal() + xlab("Décile") + ylab("% de la Consommation Totale") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.5),
labels = percent_format(accuracy = .1)) +
scale_x_continuous(breaks = seq(0, 10, 1)) +
theme(legend.position = c(0.7, 0.9),
legend.title = element_blank())
Enseignement secondaire, Enseignement supérieur, Assurances liées à la santé
Code
%>%
tm106 filter(NOMENCLATURE %in% c("1011", "1013", "1012", "CTOTALE")) %>%
left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
mutate(DECUC = DECUC %>% as.numeric) %>%
group_by(DECUC) %>%
mutate(CONSO = CONSO/CONSO[NOMENCLATURE == "CTOTALE"]) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
+ geom_line(aes(x = DECUC, y = CONSO, color = Nomenclature)) +
ggplot theme_minimal() + xlab("Décile") + ylab("% de la Consommation Totale") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.5),
labels = percent_format(accuracy = .1)) +
scale_x_continuous(breaks = seq(0, 10, 1)) +
theme(legend.position = c(0.7, 0.9),
legend.title = element_blank())
Enseignement secondaire, Enseignement supérieur, Assurances liées à la santé
Code
%>%
tm106 filter(NOMENCLATURE %in% c("1253", "1013", "1012", "CTOTALE")) %>%
left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
mutate(DECUC = DECUC %>% as.numeric) %>%
group_by(DECUC) %>%
mutate(CONSO = CONSO/CONSO[NOMENCLATURE == "CTOTALE"]) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
+ geom_line(aes(x = DECUC, y = CONSO, color = Nomenclature)) +
ggplot theme_minimal() + xlab("Décile") + ylab("% de la Consommation Totale") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.5),
labels = percent_format(accuracy = .1)) +
scale_x_continuous(breaks = seq(0, 10, 1)) +
theme(legend.position = c(0.7, 0.9),
legend.title = element_blank())
Santé, Assurances liées à la santé
Code
%>%
tm106 filter(NOMENCLATURE %in% c("1253", "06", "061", "CTOTALE")) %>%
left_join(NOMENCLATURE, by = "NOMENCLATURE") %>%
mutate(DECUC = DECUC %>% as.numeric) %>%
group_by(DECUC) %>%
mutate(CONSO = CONSO/CONSO[NOMENCLATURE == "CTOTALE"]) %>%
filter(NOMENCLATURE != "CTOTALE") %>%
+ geom_line(aes(x = DECUC, y = CONSO, color = Nomenclature)) +
ggplot theme_minimal() + xlab("Décile") + ylab("% de la Consommation Totale") +
scale_y_continuous(breaks = 0.01*seq(-30, 50, 0.5),
labels = percent_format(accuracy = .1)) +
scale_x_continuous(breaks = seq(0, 10, 1)) +
theme(legend.position = c(0.7, 0.9),
legend.title = element_blank())
IPC par déciles ?
Code
load_data("insee/IPC-2015.RData")
load_data("insee/IPCH-2015.RData")