Prix de l’immobilier
Data - BDF
Info
Données sur l’immobilier
source | dataset | .html | .RData |
---|---|---|---|
acpr | as151 | 2024-06-19 | 2024-04-05 |
bdf | BSI1 | 2024-07-26 | 2024-06-14 |
bdf | CPP | 2024-07-26 | 2024-07-01 |
bdf | FM | 2024-11-19 | 2024-11-19 |
bdf | immobilier | 2024-07-26 | 2024-06-18 |
bdf | MIR | 2024-07-26 | 2024-07-01 |
bdf | MIR1 | 2024-11-19 | 2024-11-19 |
bdf | RPP | 2024-11-19 | 2024-11-19 |
cgedd | nombre-vente-maison-appartement-ancien | 2024-09-26 | 2024-09-26 |
insee | CONSTRUCTION-LOGEMENTS | 2024-11-09 | 2024-11-09 |
insee | ENQ-CONJ-ART-BAT | 2024-11-09 | 2024-11-09 |
insee | ENQ-CONJ-IND-BAT | 2024-11-09 | 2024-11-09 |
insee | ENQ-CONJ-PROMO-IMMO | 2024-11-09 | 2024-11-09 |
insee | ENQ-CONJ-TP | 2024-11-09 | 2024-11-09 |
insee | ILC-ILAT-ICC | 2024-11-09 | 2024-11-09 |
insee | INDICES_LOYERS | 2024-11-09 | 2024-11-09 |
insee | IPLA-IPLNA-2015 | 2024-11-09 | 2024-11-09 |
insee | IRL | 2024-11-09 | 2024-11-09 |
insee | PARC-LOGEMENTS | 2024-11-09 | 2023-12-03 |
insee | SERIES_LOYERS | 2024-11-09 | 2024-11-09 |
insee | t_dpe_val | 2024-11-09 | 2024-09-02 |
notaires | arrdt | 2024-06-30 | 2024-09-09 |
notaires | dep | 2024-06-30 | 2024-09-08 |
Data on housing
source | dataset | .html | .RData |
---|---|---|---|
bdf | RPP | 2024-11-19 | 2024-11-19 |
bis | LONG_PP | 2024-08-09 | 2024-05-10 |
bis | SELECTED_PP | 2024-10-31 | 2024-10-31 |
ecb | RPP | 2024-10-08 | 2024-10-30 |
eurostat | ei_hppi_q | 2024-11-08 | 2024-11-09 |
eurostat | hbs_str_t223 | 2024-11-08 | 2024-11-09 |
eurostat | prc_hicp_midx | 2024-11-01 | 2024-11-17 |
eurostat | prc_hpi_q | 2024-11-05 | 2024-10-09 |
fred | housing | 2024-11-18 | 2024-11-18 |
insee | IPLA-IPLNA-2015 | 2024-11-09 | 2024-11-09 |
oecd | housing | 2024-09-15 | 2020-01-18 |
oecd | SNA_TABLE5 | 2024-09-11 | 2023-10-19 |
LAST_COMPILE
LAST_COMPILE |
---|
2024-11-19 |
Last
date | Nobs |
---|---|
2024-06-30 | 6 |
variable
Code
%>%
RPP left_join(RPP_var, by = "variable") %>%
group_by(variable, Variable) %>%
summarise(Nobs = n()) %>%
if (is_html_output()) print_table(.) else .} {
variable | Variable | Nobs |
---|---|---|
RPP.Q.FR.N.ED.00.1.00 | Indices des prix des logements anciens, Ensemble des logements, France métropolitaine | 114 |
RPP.Q.FR.N.EF.CC.1.00 | Indices des prix des logements anciens, Appartements, Paris | 130 |
RPP.Q.FR.N.EF.CS.1.00 | Indices des prix des logements anciens, Appartements, Ile de France Petite Couronne | 130 |
RPP.Q.FR.N.NF.00.1.00 | Prix au mètre carré des appartements neufs, France entière | 118 |
RPP.Q.FR.N.NF.CR.1.00 | Prix au mètre carré des appartements neufs, Ile de France | 78 |
RPP.Q.FR.N.NH.00.1.00 | Prix de vente moyen d'une maison neuve, France entière | 118 |
RPP.Q.FR.N.NH.CR.1.00 | Prix de vente moyen d'une maison neuve, Ile de France | 76 |
RPP_DWELLING
Code
%>%
RPP left_join(RPP_var, by = "variable") %>%
left_join(RPP_DWELLING, by = "RPP_DWELLING") %>%
group_by(RPP_DWELLING, Rpp_dwelling) %>%
summarise(Nobs = n()) %>%
if (is_html_output()) print_table(.) else .} {
RPP_DWELLING | Rpp_dwelling | Nobs |
---|---|---|
ED | Residential property prices, Existing dwellings | 114 |
EF | Residential property prices, Existing flats | 260 |
NF | Residential property prices, New flats | 196 |
NH | Residential property prices, New houses | 194 |
RPP_GEO_COV
Code
%>%
RPP left_join(RPP_var, by = "variable") %>%
left_join(RPP_GEO_COV, by = "RPP_GEO_COV") %>%
group_by(RPP_GEO_COV, Rpp_geo_cov) %>%
summarise(Nobs = n()) %>%
if (is_html_output()) print_table(.) else .} {
RPP_GEO_COV | Rpp_geo_cov | Nobs |
---|---|---|
00 | Whole country | 350 |
CC | Capital city | 130 |
CR | Capital Region | 154 |
CS | Capital city and suburbs | 130 |
RPP_SOURCE
Code
%>%
RPP left_join(RPP_var, by = "variable") %>%
left_join(RPP_SOURCE, by = "RPP_SOURCE") %>%
group_by(RPP_SOURCE, Rpp_source) %>%
summarise(Nobs = n()) %>%
if (is_html_output()) print_table(.) else .} {
RPP_SOURCE | Rpp_source | Nobs |
---|---|---|
1 | NSI | 764 |
Prix au mètre carré des appartements neufs
France entière, Ile de France
Code
%>%
RPP left_join(RPP_var, by = "variable") %>%
filter(RPP_DWELLING == "NF") %>%
mutate(Variable = gsub("Prix au mètre carré des appartements neufs, ", "", Variable)) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot
theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.2, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Prix au mètre carré des appartements neufs") +
scale_y_log10(breaks = seq(0, 7000, 500),
labels = dollar_format(suffix = " €/m2", prefix = "", accuracy = 1))
Indices de prix des logements anciens
100 = 2009
Log
Code
%>%
RPP left_join(RPP_var, by = "variable") %>%
filter(RPP_DWELLING %in% c("ED", "EF")) %>%
mutate(Variable = gsub("Indices des prix des logements anciens, ", "", Variable)) %>%
group_by(Variable) %>%
mutate(value = 100*value/value[date == as.Date("2007-12-31")]) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot
theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 2), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Indice des prix des logements anciens") +
scale_y_log10(breaks = seq(0, 7000, 10))
Lineaire
Code
%>%
RPP left_join(RPP_var, by = "variable") %>%
filter(RPP_DWELLING %in% c("ED", "EF")) %>%
mutate(Variable = gsub("Indices des prix des logements anciens, ", "", Variable)) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot
theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 2), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Indice des prix des logements anciens") +
scale_y_continuous(breaks = seq(0, 7000, 10))
100 = 2015
Log
Code
%>%
RPP left_join(RPP_var, by = "variable") %>%
filter(RPP_DWELLING %in% c("ED", "EF")) %>%
mutate(Variable = gsub("Indices des prix des logements anciens, ", "", Variable)) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot
theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 2), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Indice des prix des logements anciens") +
scale_y_log10(breaks = seq(0, 7000, 10))
Lineaire
Code
%>%
RPP left_join(RPP_var, by = "variable") %>%
filter(RPP_DWELLING %in% c("ED", "EF")) %>%
mutate(Variable = gsub("Indices des prix des logements anciens, ", "", Variable)) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot
theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 2), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Indice des prix des logements anciens") +
scale_y_continuous(breaks = seq(0, 7000, 10))
100 = 2001
Log
Code
%>%
RPP left_join(RPP_var, by = "variable") %>%
filter(RPP_DWELLING %in% c("ED", "EF")) %>%
group_by(Variable) %>%
filter(date >= as.Date("2000-12-31")) %>%
mutate(value = 100*value/value[date == as.Date("2000-12-31")]) %>%
mutate(Variable = gsub("Indices des prix des logements anciens, ", "", Variable)) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot
theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 2), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Indice des prix des logements anciens") +
scale_y_log10(breaks = seq(0, 7000, 10))
Lineaire
Code
%>%
RPP left_join(RPP_var, by = "variable") %>%
filter(RPP_DWELLING %in% c("ED", "EF")) %>%
group_by(Variable) %>%
filter(date >= as.Date("2000-12-31")) %>%
mutate(value = 100*value/value[date == as.Date("2000-12-31")]) %>%
mutate(Variable = gsub("Indices des prix des logements anciens, ", "", Variable)) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot
theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 2), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Indice des prix des logements anciens") +
scale_y_continuous(breaks = seq(0, 7000, 10))
100 = 1998
Lineaire
Code
<- RPP %>%
plot_lineaire left_join(RPP_var, by = "variable") %>%
filter(RPP_DWELLING %in% c("ED", "EF")) %>%
mutate(Variable = gsub("Indices des prix des logements anciens, ", "", Variable)) %>%
group_by(Variable) %>%
filter(date >= as.Date("1997-12-31")) %>%
mutate(value = 100*value/value[date == as.Date("1997-12-31")]) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot
theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 5), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Indice des prix des logements anciens") +
scale_y_continuous(breaks = seq(0, 7000, 50))
plot_lineaire
Log
Code
<- plot_lineaire +
plot_log ylab("") + scale_y_log10(breaks = seq(0, 7000, 50))
plot_log
Bind
Code
::ggarrange(plot_lineaire + ggtitle("Echelle linéaire"), plot_log + ggtitle("Echelle log"), common.legend = T) ggpubr
100 = 1999
Lineaire
Code
<- RPP %>%
plot_lineaire left_join(RPP_var, by = "variable") %>%
filter(RPP_DWELLING %in% c("ED", "EF")) %>%
mutate(Variable = gsub("Indices des prix des logements anciens, ", "", Variable)) %>%
group_by(Variable) %>%
filter(date >= as.Date("1998-12-31")) %>%
mutate(value = 100*value/value[date == as.Date("1998-12-31")]) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot
theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1999, 2030, 5), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Indice des prix des logements anciens") +
scale_y_continuous(breaks = seq(0, 7000, 50))
plot_lineaire
Log
Code
<- plot_lineaire +
plot_log ylab("") + scale_y_log10(breaks = seq(0, 7000, 50))
plot_log
Bind
Code
::ggarrange(plot_lineaire + ggtitle("Echelle linéaire"), plot_log + ggtitle("Echelle log"), common.legend = T) ggpubr
100 = 2000
Paris, IDF, France
Code
%>%
RPP left_join(RPP_var, by = "variable") %>%
filter(RPP_DWELLING %in% c("ED", "EF"),
>= as.Date("1999-12-31")) %>%
date mutate(Variable = gsub("Indices des prix des logements anciens, ", "", Variable)) %>%
group_by(Variable) %>%
mutate(value = 100*value/value[date == as.Date("1999-12-31")]) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot
theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 2), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Indice des prix des logements anciens") +
scale_y_log10(breaks = seq(0, 7000, 50))
Paris, France
Lineaire
Code
<- RPP %>%
plot_lineaire left_join(RPP_var, by = "variable") %>%
filter(RPP_DWELLING %in% c("ED", "EF"),
>= as.Date("1998-12-31"),
date %in% c("CC", "00")) %>%
RPP_GEO_COV mutate(Variable = gsub("Indices des prix des logements anciens, ", "", Variable)) %>%
group_by(Variable) %>%
mutate(value = 100*value/value[date == as.Date("1998-12-31")]) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot
theme_minimal() + xlab("") + ylab("Indice des prix des logements anciens") +
scale_x_date(breaks = seq(1999, 2030, 5) %>% paste0(., "-01-01") %>% as.Date(),
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = seq(0, 7000, 50))
plot_lineaire
Log
Code
<- plot_lineaire +
plot_log scale_y_log10(breaks = seq(0, 7000, 50)) + ylab("")
plot_log
Bind
Code
::ggarrange(plot_lineaire + ggtitle("Echelle linéaire"),
ggpubr+ ggtitle("Echelle log"), common.legend = T) plot_log
100 = 2007
Paris, IDF, France
Code
%>%
RPP left_join(RPP_var, by = "variable") %>%
filter(RPP_DWELLING %in% c("ED", "EF"),
>= as.Date("2007-12-31")) %>%
date mutate(Variable = gsub("Indices des prix des logements anciens, ", "", Variable)) %>%
group_by(Variable) %>%
mutate(value = 100*value/value[date == as.Date("2007-12-31")]) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot
theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 1), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Indice des prix des logements anciens (2008 = 100") +
scale_y_log10(breaks = seq(0, 7000, 10))
Paris, France
Code
%>%
RPP left_join(RPP_var, by = "variable") %>%
filter(RPP_DWELLING %in% c("ED", "EF"),
>= as.Date("2007-12-31"),
date %in% c("CC", "00")) %>%
RPP_GEO_COV mutate(Variable = gsub("Indices des prix des logements anciens, ", "", Variable)) %>%
group_by(Variable) %>%
mutate(value = 100*value/value[date == as.Date("2007-12-31")]) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot
theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 1), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Indice des prix des logements anciens (2008 = 100") +
scale_y_log10(breaks = seq(0, 7000, 10))
Prix de vente moyen d’une maison neuve
Code
%>%
RPP left_join(RPP_var, by = "variable") %>%
filter(RPP_DWELLING == "NH") %>%
mutate(Variable = gsub("Prix de vente moyen d'une maison neuve, ","", Variable)) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot
theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 2), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.15, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Prix de vente moyen d'une maison neuve") +
scale_y_log10(breaks = seq(0, 7000, 20))