Final consumption expenditure of households by consumption purpose (COICOP 3 digit)

Data - Eurostat

Info

source dataset .html .RData
eurostat nama_10_co3_p3 2025-01-05 2024-12-14
eurostat nama_10_gdp 2025-01-07 2025-01-07

Data on inflation

source dataset .html .RData
bis CPI 2024-12-29 2022-01-20
ecb CES 2025-01-07 2025-01-07
eurostat nama_10_co3_p3 2025-01-05 2024-12-14
eurostat prc_hicp_cow 2025-01-05 2024-10-08
eurostat prc_hicp_ctrb 2025-01-05 2024-10-08
eurostat prc_hicp_inw 2025-01-05 2025-01-07
eurostat prc_hicp_manr 2025-01-07 2025-01-07
eurostat prc_hicp_midx 2024-11-01 2025-01-07
eurostat prc_hicp_mmor 2025-01-05 2025-01-07
eurostat prc_ppp_ind 2025-01-05 2024-10-08
eurostat sts_inpp_m 2024-06-24 2025-01-07
eurostat sts_inppd_m 2025-01-07 2025-01-07
eurostat sts_inppnd_m 2024-06-24 2025-01-07
fred cpi 2025-01-07 2025-01-07
fred inflation 2025-01-07 2025-01-07
imf CPI 2024-06-20 2020-03-13
oecd MEI_PRICES_PPI 2024-09-15 2024-04-15
oecd PPP2017 2024-04-16 2023-07-25
oecd PRICES_CPI 2024-04-16 2024-04-15
wdi FP.CPI.TOTL.ZG 2023-01-15 2024-09-18
wdi NY.GDP.DEFL.KD.ZG 2024-09-18 2024-09-18

LAST_COMPILE

LAST_COMPILE
2025-01-07

Last

Code
nama_10_co3_p3 %>%
  group_by(time) %>%
  summarise(Nobs = n()) %>%
  arrange(desc(time)) %>%
  head(1) %>%
  print_table_conditional()
time Nobs
2023 21650

coicop

All

Code
nama_10_co3_p3 %>%
  left_join(coicop, by = "coicop") %>%
  group_by(coicop, Coicop) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()

2-digit

Code
nama_10_co3_p3 %>%
  filter(nchar(coicop) == 4) %>%
  left_join(coicop, by = "coicop") %>%
  group_by(coicop, Coicop) %>%
  summarise(Nobs = n()) %>%
  print_table_conditional()
coicop Coicop Nobs
CP01 Food and non-alcoholic beverages 33165
CP02 Alcoholic beverages, tobacco and narcotics 33165
CP03 Clothing and footwear 33165
CP04 Housing, water, electricity, gas and other fuels 33165
CP05 Furnishings, household equipment and routine household maintenance 33165
CP06 Health 33165
CP07 Transport 33165
CP08 Communications 33462
CP09 Recreation and culture 33165
CP10 Education 33165
CP11 Restaurants and hotels 33165
CP12 Miscellaneous goods and services 33165

3-digit

Code
nama_10_co3_p3 %>%
  filter(nchar(coicop) == 5) %>%
  left_join(coicop, by = "coicop") %>%
  group_by(coicop, Coicop) %>%
  summarise(Nobs = n()) %>%
  print_table_conditional()

unit

Code
nama_10_co3_p3 %>%
  left_join(unit, by = "unit") %>%
  group_by(unit, Unit) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

geo

Code
nama_10_co3_p3 %>%
  left_join(geo, by = "geo") %>%
  group_by(geo, Geo) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
         Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

time

Code
nama_10_co3_p3 %>%
  group_by(time) %>%
  summarise(Nobs = n()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

France

2 digit and 3 digit

Code
table2 <- nama_10_co3_p3 %>%
  filter(unit == "PC_TOT",
         geo == "FR",
         time %in% c("2017", "2022"),
         coicop != "TOTAL") %>%
  left_join(coicop, by = "coicop") %>%
  select_if(~ n_distinct(.) > 1) %>%
  spread(time, values)

table2 %>%
  print_table_conditional()
Code
`table2` %>%
  gt::gt() %>%
  gt::gtsave(filename = "nama_10_co3_p3_files/figure-html/table2-1.png")

2 digit

Code
`table2-2digit` <- nama_10_co3_p3 %>%
  filter(unit == "PC_TOT",
         geo == "FR",
         nchar(coicop) == 4,
         time %in% c("2017", "2022"),
         coicop != "TOTAL") %>%
  left_join(coicop, by = "coicop") %>%
  select_if(~ n_distinct(.) > 1) %>%
  spread(time, values)

`table2-2digit` %>%
  print_table_conditional()
coicop Coicop 2017 2022
CP01 Food and non-alcoholic beverages 13.3 13.3
CP02 Alcoholic beverages, tobacco and narcotics 3.7 3.7
CP03 Clothing and footwear 3.8 3.3
CP04 Housing, water, electricity, gas and other fuels 26.2 26.2
CP05 Furnishings, household equipment and routine household maintenance 4.9 4.6
CP06 Health 4.1 4.0
CP07 Transport 13.6 13.6
CP08 Communications 2.4 2.3
CP09 Recreation and culture 8.0 8.0
CP10 Education 0.5 0.5
CP11 Restaurants and hotels 7.2 8.1
CP12 Miscellaneous goods and services 12.4 12.4
Code
`table2-2digit` %>%
  gt::gt() %>%
  gt::gtsave(filename = "nama_10_co3_p3_files/figure-html/table2-2digit-1.png")

3 digit

Code
`table2-3digit` <- nama_10_co3_p3 %>%
  filter(unit == "PC_TOT",
         geo == "FR",
         nchar(coicop) == 5,
         time %in% c("2017", "2022"),
         coicop != "TOTAL") %>%
  left_join(coicop, by = "coicop") %>%
  select_if(~ n_distinct(.) > 1) %>%
  spread(time, values)

`table2-3digit` %>%
  print_table_conditional()
Code
`table2-3digit` %>%
  gt::gt() %>%
  gt::gtsave(filename = "nama_10_co3_p3_files/figure-html/table2-3digit-1.png")

PD15_EUR - Price index (implicit deflator), 2015=100, euro

Tables

All sectors - France, Germany, Italy, Netherlands

Code
nama_10_co3_p3 %>%
  filter(unit == "PD15_EUR",
         geo %in% c("FR", "DE", "IT", "NL"),
         time %in% c("1995", "2020")) %>%
  left_join(geo, by = "geo") %>%
  left_join(coicop, by = "coicop") %>%
  select_if(~ n_distinct(.) > 1) %>%
  spread(time, values) %>%
  mutate(`Croissance` = round(100*((`2020`/`1995`)^(1/25)-1), 2)) %>%
  select(- `2020`, - `1995`) %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  select(-geo) %>%
  spread(Geo, Croissance) %>%
  arrange(France) %>%
  print_table_conditional()

PD15_EUR

Code
nama_10_co3_p3 %>%
  filter(unit == "PD15_EUR",
         coicop == "TOTAL",
         time %in% c("1975", "1995", "2021")) %>%
  left_join(geo, by = "geo") %>%
  group_by(Geo) %>%
  select(-unit, -coicop) %>%
  spread(time, values) %>%
  mutate(`Croissance` = 100*((`2021`/`1995`)^(1/25)-1)) %>%
  arrange(Croissance) %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
         Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

PD15_NAC

Code
nama_10_co3_p3 %>%
  filter(unit == "PD15_NAC",
         coicop == "TOTAL",
         time %in% c("1975", "1995", "2021")) %>%
  left_join(geo, by = "geo") %>%
  group_by(Geo) %>%
  select(-unit, -coicop) %>%
  spread(time, values) %>%
  mutate(`Croissance` = 100*((`2021`/`1995`)^(1/25)-1)) %>%
  arrange(Croissance) %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
         Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

TOTAL - Euros (CP_MEUR)

Code
nama_10_co3_p3 %>%
  filter(unit == "CP_MEUR",
         coicop == "TOTAL",
         time %in% c("1975", "1995", "2021")) %>%
  left_join(geo, by = "geo") %>%
  group_by(Geo) %>%
  select(-unit, -coicop) %>%
  spread(time, values) %>%
  mutate(`Croissance` = 100*((`2021`/`1995`)^(1/25)-1)) %>%
  arrange(Croissance) %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
         Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

TOTAL - Euros (CP_MNAC)

Code
nama_10_co3_p3 %>%
  filter(unit == "CP_MNAC",
         coicop == "TOTAL",
         time %in% c("1975", "1995", "2021")) %>%
  left_join(geo, by = "geo") %>%
  group_by(Geo) %>%
  select(-unit, -coicop) %>%
  spread(time, values) %>%
  mutate(`Croissance` = 100*((`2021`/`1995`)^(1/25)-1)) %>%
  arrange(Croissance) %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
         Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

CP041 - Actual rentals for housing

Code
nama_10_co3_p3 %>%
  filter(unit == "PD15_EUR",
         coicop == "CP041",
         time %in% c("1975", "1990", "1995", "2020")) %>%
  left_join(geo, by = "geo") %>%
  group_by(Geo) %>%
  select(-unit, -coicop) %>%
  spread(time, values) %>%
  mutate(`Croissance` = 100*((`2020`/`1995`)^(1/25)-1)) %>%
  arrange(Croissance) %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
         Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

CP061 - Medical products, appliances and equipment

Code
nama_10_co3_p3 %>%
  filter(unit == "PD15_EUR",
         coicop == "CP061",
         time %in% c("1975", "1990", "1995", "2020")) %>%
  left_join(geo, by = "geo") %>%
  group_by(Geo) %>%
  select(-unit, -coicop) %>%
  spread(time, values) %>%
  mutate(`Croissance` = 100*((`2020`/`1995`)^(1/25)-1)) %>%
  arrange(Croissance) %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
         Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

CP053 - Household appliances

Code
nama_10_co3_p3 %>%
  filter(unit == "PD15_EUR",
         coicop == "CP053",
         time %in% c("1975", "1990", "1995", "2020")) %>%
  left_join(geo, by = "geo") %>%
  group_by(Geo) %>%
  select(-unit, -coicop) %>%
  spread(time, values) %>%
  mutate(`Croissance` = 100*((`2020`/`1995`)^(1/25)-1)) %>%
  arrange(Croissance) %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
         Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

CP03 - Clothing and footwear

Code
nama_10_co3_p3 %>%
  filter(unit == "PD15_EUR",
         coicop == "CP03",
         time %in% c("1975", "1990", "1995", "2020")) %>%
  left_join(geo, by = "geo") %>%
  group_by(Geo) %>%
  select(-unit, -coicop) %>%
  spread(time, values) %>%
  mutate(`Croissance` = 100*((`2020`/`1995`)^(1/25)-1)) %>%
  arrange(Croissance) %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
         Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

CP09 - Recreation and culture

Code
nama_10_co3_p3 %>%
  filter(unit == "PD15_EUR",
         coicop == "CP09",
         time %in% c("1975", "1990", "1995", "2020")) %>%
  left_join(geo, by = "geo") %>%
  group_by(Geo) %>%
  select(-unit, -coicop) %>%
  spread(time, values) %>%
  mutate(`Croissance` = 100*((`2020`/`1995`)^(1/25)-1)) %>%
  arrange(Croissance) %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
         Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

CP091 - Audio-visual, photographic and information processing equipment

Code
nama_10_co3_p3 %>%
  filter(unit == "PD15_EUR",
         coicop == "CP091",
         time %in% c("1975", "1990", "1995", "2020")) %>%
  left_join(geo, by = "geo") %>%
  group_by(Geo) %>%
  select(-unit, -coicop) %>%
  spread(time, values) %>%
  mutate(`Croissance` = 100*((`2020`/`1995`)^(1/25)-1)) %>%
  arrange(Croissance) %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
         Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

CP092 - Other major durables for recreation and culture

Code
nama_10_co3_p3 %>%
  filter(unit == "PD15_EUR",
         coicop == "CP092",
         time %in% c("1975", "1990", "1995", "2020")) %>%
  left_join(geo, by = "geo") %>%
  group_by(Geo) %>%
  select(-unit, -coicop) %>%
  spread(time, values) %>%
  mutate(`Croissance` = 100*((`2020`/`1995`)^(1/25)-1)) %>%
  arrange(Croissance) %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
         Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

CP093 - Other recreational items and equipment, gardens and pets

Code
nama_10_co3_p3 %>%
  filter(unit == "PD15_EUR",
         coicop == "CP093",
         time %in% c("1975", "1990", "1995", "2020")) %>%
  left_join(geo, by = "geo") %>%
  group_by(Geo) %>%
  select(-unit, -coicop) %>%
  spread(time, values) %>%
  mutate(`Croissance` = 100*((`2020`/`1995`)^(1/25)-1)) %>%
  arrange(Croissance) %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
         Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

CP08 - Communications

Code
nama_10_co3_p3 %>%
  filter(unit == "PD15_EUR",
         coicop == "CP08",
         time %in% c("1975", "1990", "1995", "2020")) %>%
  left_join(geo, by = "geo") %>%
  group_by(Geo) %>%
  select(-unit, -coicop) %>%
  spread(time, values) %>%
  mutate(`Croissance` = 100*((`2020`/`1995`)^(1/25)-1)) %>%
  arrange(Croissance) %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
         Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

CP081 - Postal Services

Code
nama_10_co3_p3 %>%
  filter(unit == "PD15_EUR",
         coicop == "CP081",
         time %in% c("1975", "1990", "1995", "2020")) %>%
  left_join(geo, by = "geo") %>%
  group_by(Geo) %>%
  select(-unit, -coicop) %>%
  spread(time, values) %>%
  mutate(`Croissance` = 100*((`2020`/`1995`)^(1/25)-1)) %>%
  arrange(Croissance) %>%
  print_table_conditional()

CP082 - Telephone and telefax equipment

Code
nama_10_co3_p3 %>%
  filter(unit == "PD15_EUR",
         coicop == "CP082",
         time %in% c("1975", "1990", "1995", "2020")) %>%
  left_join(geo, by = "geo") %>%
  group_by(Geo) %>%
  select(-unit, -coicop) %>%
  spread(time, values) %>%
  mutate(`Croissance` = 100*((`2020`/`1995`)^(1/25)-1)) %>%
  arrange(Croissance) %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
         Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

CP083 - Telephone and telefax services

Code
nama_10_co3_p3 %>%
  filter(unit == "PD15_EUR",
         coicop == "CP083",
         time %in% c("1975", "1990", "1995", "2020")) %>%
  left_join(geo, by = "geo") %>%
  group_by(Geo) %>%
  select(-unit, -coicop) %>%
  spread(time, values) %>%
  mutate(`Croissance` = 100*((`2020`/`1995`)^(1/25)-1)) %>%
  arrange(Croissance) %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
         Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

CP126 - Financial services

Code
nama_10_co3_p3 %>%
  filter(unit == "PD15_EUR",
         coicop == "CP126",
         time %in% c("1975", "1990", "1995", "2020")) %>%
  left_join(geo, by = "geo") %>%
  group_by(Geo) %>%
  select(-unit, -coicop) %>%
  spread(time, values) %>%
  mutate(`Croissance` = 100*((`2020`/`1995`)^(1/25)-1)) %>%
  arrange(Croissance) %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
         Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

France, Germany, Italy, Netherlands, Spain

All

1995-

Code
nama_10_co3_p3 %>%
  filter(unit == "PD15_EUR",
         geo %in% c("FR", "NL", "IT", "DE", "ES"),
         coicop == "TOTAL") %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  group_by(Geo) %>%
  mutate(values = 100*values/values[date == as.Date("1995-01-01")]) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(100, 300, 10))

1996-

Code
nama_10_co3_p3 %>%
  filter(unit == "PD15_EUR",
         geo %in% c("FR", "NL", "IT", "DE", "ES"),
         coicop == "TOTAL") %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1996-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  group_by(Geo) %>%
  mutate(values = 100*values/values[date == as.Date("1996-01-01")]) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(100, 300, 10))

1999-

Code
nama_10_co3_p3 %>%
  filter(unit == "PD15_EUR",
         geo %in% c("FR", "EA20", "IT", "DE", "ES"),
         coicop == "TOTAL") %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1999-01-01")) %>%
  mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  group_by(Geo) %>%
  mutate(values = 100*values/values[date == as.Date("1999-01-01")]) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("") +
  scale_x_date(breaks = as.Date(paste0(seq(1999, 2030, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(100, 300, 10))

CP081 - Services postaux

1995-

Code
nama_10_co3_p3 %>%
  filter(unit == "PD15_EUR",
         geo %in% c("FR", "UK", "IT", "DE", "ES"),
         coicop == "CP081") %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  group_by(Geo) %>%
  mutate(values = 100*values/values[date == as.Date("1995-01-01")]) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("Services postaux (081)") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(10, 300, 10))

1996-

Code
nama_10_co3_p3 %>%
  filter(unit == "PD15_EUR",
         geo %in% c("FR", "UK", "IT", "DE", "ES"),
         coicop == "CP081") %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1996-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  group_by(Geo) %>%
  mutate(values = 100*values/values[date == as.Date("1996-01-01")]) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("Services postaux (081)") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(10, 300, 10))

CP09 - Loisirs et culture

1995-

Code
nama_10_co3_p3 %>%
  filter(unit == "PD15_EUR",
         geo %in% c("FR", "NL", "IT", "DE", "ES"),
         coicop == "CP09") %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  group_by(Geo) %>%
  mutate(values = 100*values/values[date == as.Date("1995-01-01")]) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("Loisirs et culture") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(10, 300, 10))

1996-

Code
nama_10_co3_p3 %>%
  filter(unit == "PD15_EUR",
         geo %in% c("FR", "NL", "IT", "DE", "ES"),
         coicop == "CP09") %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1996-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  group_by(Geo) %>%
  mutate(values = 100*values/values[date == as.Date("1996-01-01")]) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("Loisirs et culture (CP09)") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(10, 300, 10))

CP08 - Communications

1995-

Code
nama_10_co3_p3 %>%
  filter(unit == "PD15_EUR",
         geo %in% c("FR", "NL", "IT", "DE", "ES"),
         coicop == "CP08") %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01"),
         date <= as.Date("2023-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  group_by(Geo) %>%
  mutate(values = 100*values/values[date == as.Date("1995-01-01")]) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("Communications (08)") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(10, 300, 10))

1996-

Code
nama_10_co3_p3 %>%
  filter(unit == "PD15_EUR",
         geo %in% c("FR", "NL", "IT", "DE", "ES"),
         coicop == "CP08") %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1996-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  group_by(Geo) %>%
  mutate(values = 100*values/values[date == as.Date("1996-01-01")]) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("Communications (08)") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(10, 300, 10))

CP091 - Matériel audiovisuel, photographique et de traitement de l’information

1995-

Code
nama_10_co3_p3 %>%
  filter(unit == "PD15_EUR",
         geo %in% c("FR", "NL", "IT", "DE", "ES"),
         coicop == "CP091") %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  group_by(Geo) %>%
  mutate(values = 100*values/values[date == as.Date("1995-01-01")]) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(10, 300, 10))

1996-

Code
nama_10_co3_p3 %>%
  filter(unit == "PD15_EUR",
         geo %in% c("FR", "NL", "IT", "DE", "ES"),
         coicop == "CP091") %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1996-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  group_by(Geo) %>%
  mutate(values = 100*values/values[date == as.Date("1996-01-01")]) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_log10(breaks = c(10, 12, 15, 18, 20, seq(10, 300, 10)))

CP082 - Telephone and telefax equipment

1995-

Code
nama_10_co3_p3 %>%
  filter(unit == "PD15_EUR",
         geo %in% c("FR", "UK", "IT", "DE", "ES"),
         coicop == "CP082") %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  group_by(Geo) %>%
  mutate(values = 100*values/values[date == as.Date("1995-01-01")]) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("Matériel de téléphonie et de télécopie (CP082)") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(10, 300, 10))

1996-

Code
nama_10_co3_p3 %>%
  filter(unit == "PD15_EUR",
         geo %in% c("FR", "NL", "IT", "DE", "ES"),
         coicop == "CP082") %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1996-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  group_by(Geo) %>%
  mutate(values = 100*values/values[date == as.Date("1996-01-01")]) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("Matériel de téléphonie et de télécopie (CP082)") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_log10(breaks = c(seq(10, 300, 10), 2, 3, 5, 8))

CP083 - Telephone and telefax services

1995-

Code
nama_10_co3_p3 %>%
  filter(unit == "PD15_EUR",
         geo %in% c("FR", "NL", "IT", "DE", "ES"),
         coicop == "CP083") %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  group_by(Geo) %>%
  mutate(values = 100*values/values[date == as.Date("1995-01-01")]) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("Telephone and telefax services (083)") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(10, 300, 10))

1996-

Code
nama_10_co3_p3 %>%
  filter(unit == "PD15_EUR",
         geo %in% c("FR", "NL", "IT", "DE", "ES"),
         coicop == "CP083") %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1996-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  group_by(Geo) %>%
  mutate(values = 100*values/values[date == as.Date("1996-01-01")]) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("Services de téléphonie et de télécopie (083)") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_log10(breaks = c(seq(10, 300, 10), 35))

CP056 - Goods and services for routine household maintenance

1995-

Code
nama_10_co3_p3 %>%
  filter(unit == "PD15_EUR",
         geo %in% c("FR", "NL", "IT", "DE", "ES"),
         coicop == "CP056") %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  group_by(Geo) %>%
  mutate(values = 100*values/values[date == as.Date("1995-01-01")]) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("CP053") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(10, 300, 10))

1996-

Code
nama_10_co3_p3 %>%
  filter(unit == "PD15_EUR",
         geo %in% c("FR", "NL", "IT", "DE", "ES"),
         coicop == "CP056") %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1996-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  group_by(Geo) %>%
  mutate(values = 100*values/values[date == as.Date("1996-01-01")]) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("CP056") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_log10(breaks = c(seq(10, 300, 10), 35))

CP053 - Household appliances

1995-

Code
nama_10_co3_p3 %>%
  filter(unit == "PD15_EUR",
         geo %in% c("FR", "NL", "IT", "DE", "ES"),
         coicop == "CP053") %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  group_by(Geo) %>%
  mutate(values = 100*values/values[date == as.Date("1995-01-01")]) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("CP053") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(10, 300, 10))

1996-

Code
nama_10_co3_p3 %>%
  filter(unit == "PD15_EUR",
         geo %in% c("FR", "NL", "IT", "DE", "ES"),
         coicop == "CP053") %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1996-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  group_by(Geo) %>%
  mutate(values = 100*values/values[date == as.Date("1996-01-01")]) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("CP053") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_log10(breaks = c(seq(10, 300, 10), 35))

CP126 - Financial services

1995-

Code
nama_10_co3_p3 %>%
  filter(unit == "PD15_EUR",
         geo %in% c("FR", "NL", "IT", "DE", "ES"),
         coicop == "CP126") %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  group_by(Geo) %>%
  mutate(values = 100*values/values[date == as.Date("1995-01-01")]) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(10, 300, 10))

1996-

Code
nama_10_co3_p3 %>%
  filter(unit == "PD15_EUR",
         geo %in% c("FR", "NL", "IT", "DE", "ES"),
         coicop == "CP126") %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1996-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  group_by(Geo) %>%
  mutate(values = 100*values/values[date == as.Date("1996-01-01")]) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(10, 300, 10))

CP061 - Medical products, appliances and equipment

1995-

Code
nama_10_co3_p3 %>%
  filter(unit == "PD15_EUR",
         geo %in% c("FR", "NL", "IT", "DE", "ES"),
         coicop == "CP061") %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  group_by(Geo) %>%
  mutate(values = 100*values/values[date == as.Date("1995-01-01")]) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(10, 300, 10))

1996-

Code
nama_10_co3_p3 %>%
  filter(unit == "PD15_EUR",
         geo %in% c("FR", "NL", "IT", "DE", "ES"),
         coicop == "CP061") %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  group_by(Geo) %>%
  mutate(values = 100*values/values[date == as.Date("1996-01-01")]) %>%
  filter(date >= as.Date("1996-01-01")) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("Loyers fictifs") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(10, 300, 10))

CP042 - Imputed rentals for housing

1995-

Code
nama_10_co3_p3 %>%
  filter(unit == "PD15_EUR",
         geo %in% c("FR", "NL", "IT", "DE", "ES"),
         coicop == "CP042") %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  group_by(Geo) %>%
  mutate(values = 100*values/values[date == as.Date("1995-01-01")]) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(10, 300, 10))

1996-

Code
nama_10_co3_p3 %>%
  filter(unit == "PD15_EUR",
         geo %in% c("FR", "NL", "IT", "DE", "ES"),
         coicop == "CP042") %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  group_by(Geo) %>%
  mutate(values = 100*values/values[date == as.Date("1996-01-01")]) %>%
  filter(date >= as.Date("1996-01-01")) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("Loyers fictifs") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(10, 300, 10))

CP041 - Actual rentals for housing

1995-

Code
nama_10_co3_p3 %>%
  filter(unit == "PD15_EUR",
         geo %in% c("FR", "NL", "IT", "DE", "ES"),
         coicop == "CP041") %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  group_by(Geo) %>%
  mutate(values = 100*values/values[date == as.Date("1995-01-01")]) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(10, 300, 10))

1996-

Code
nama_10_co3_p3 %>%
  filter(unit == "PD15_EUR",
         geo %in% c("FR", "NL", "IT", "DE", "ES"),
         coicop == "CP041") %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1996-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  group_by(Geo) %>%
  mutate(values = 100*values/values[date == as.Date("1996-01-01")]) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(10, 300, 10))

Housing

% of GDP

Code
nama_10_co3_p3 %>%
  filter(unit == "CLV10_MEUR",
         time == "2017",
         grepl("CP04", coicop)) %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CLV10_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  mutate(values = round(100*values/gdp, 2)) %>%
  left_join(geo, by = "geo") %>%
  select(geo, Geo, coicop, values, coicop) %>%
  spread(coicop, values) %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
         Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

% of GDP

Code
nama_10_co3_p3 %>%
  filter(unit == "CLV10_MEUR",
         time == "2017",
         grepl("CP04", coicop)) %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CLV10_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  left_join(tibble(coicop = c("CP04", "CP041", "CP042", 
                              "CP043", "CP044", "CP045"),
                   Coicop = c("Housing", "Actual rents", "Imputed rents", 
                              "Maintainance", "Electricity", "Water")), 
            by = "coicop") %>%
  mutate(values = round(100*values/gdp, 2)) %>%
  select(geo, Geo, Coicop, values) %>%
  spread(Coicop, values) %>%
  transmute(geo, Geo, Housing, `Actual rents`, `Imputed rents`,
            `Other` = `Maintainance` + `Water` + Electricity) %>%
  arrange(-`Imputed rents`) %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
         Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

% of Aggregate Consumption

Code
nama_10_co3_p3 %>%
  filter(unit == "CLV10_MEUR",
         time == "2017",
         grepl("CP04", coicop)) %>%
  left_join(nama_10_co3_p3 %>%
              filter(coicop == "TOTAL",
                     unit == "CLV10_MEUR") %>%
              select(geo, time, aggregate_c = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  left_join(tibble(coicop = c("CP04", "CP041", "CP042", 
                              "CP043", "CP044", "CP045"),
                   Coicop = c("Housing", "Actual rents", "Imputed rents", 
                              "Maintainance", "Electricity", "Water")), 
            by = "coicop") %>%
  mutate(values = round(100*values/aggregate_c, 2)) %>%
  select(geo, Geo, Coicop, values) %>%
  spread(Coicop, values) %>%
  transmute(geo, Geo, `All rents` = `Actual rents` + `Imputed rents`, 
            `Actual rents`, `Imputed rents`,
            `Other` = `Maintainance` + `Water` + Electricity) %>%
  arrange(-`All rents`) %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
         Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

% of Aggregate Consumption

png

Code
library(gt)
library(gtExtras)
table1 <- nama_10_co3_p3 %>%
  filter(unit == "CP_MEUR",
         time == "2020",
         grepl("CP04", coicop),
         !(geo %in% c("EU27_2020", "EU28", "EA12", "EA", "EA19", "EU15"))) %>%
  filter(geo %in% c("BE", "DE", "EE", "IE", "GR", "ES", "FR", "IT", "CY",
                    "LV", "LT", "LU", "MT", "NL", "AT", "PT", "SI", "SK", "FI")) %>%
  left_join(nama_10_co3_p3 %>%
              filter(coicop == "TOTAL",
                     unit == "CP_MEUR") %>%
              select(geo, time, aggregate_c = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  left_join(tibble(coicop = c("CP04", "CP041", "CP042", "CP043", "CP044", "CP045"),
                   Coicop = c("Housing", "Actual rents", "Imputed rents", "Maintainance", "Electricity", "Water")), 
            by = "coicop") %>%
  mutate(values = round(100*values/aggregate_c, 1),
         Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  select(geo, Geo, Coicop, values) %>%
  spread(Coicop, values) %>%
  transmute(geo, Geo, Housing, `Actual rents`, `Imputed rents`,
            `All rents` = `Actual rents` + `Imputed rents`,
            `Other` = `Maintainance` + `Water` + Electricity) %>%
  arrange(-`Housing`) %>%
  mutate(geo = ifelse(geo == "EL", "GR", geo),
         geo = ifelse(geo == "UK", "GB", geo)) %>%
  gt() %>%
  fmt_number(columns = 3:7 , locale = "fr", decimals = 1, pattern = "{x}%") |>
  cols_align(align = "center", columns = 3:7) |> 
  fmt_flag(columns = geo, height = "1.5em") %>%
  cols_width(3:7 ~ px(50)) |> 
  gt_theme_538()


gtsave(table1, filename = "nama_10_co3_p3_files/figure-html/table1.png")
i_g("data/eurostat/nama_10_co3_p3_files/figure-html/table1.png")

Code
include_graphics3b("bib/eurostat/nama_10_co3_p3_ex1-0.png")

Code
include_graphics3b("bib/eurostat/nama_10_co3_p3_ex1-1.png")

Javascript

Code
nama_10_co3_p3 %>%
  filter(unit == "CLV10_MEUR",
         time == "2018",
         grepl("CP04", coicop)) %>%
  left_join(nama_10_co3_p3 %>%
              filter(coicop == "TOTAL",
                     unit == "CLV10_MEUR") %>%
              select(geo, time, aggregate_c = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  left_join(tibble(coicop = c("CP04", "CP041", "CP042", 
                              "CP043", "CP044", "CP045"),
                   Coicop = c("Housing", "Actual rents", "Imputed rents", 
                              "Maintainance", "Electricity", "Water")), 
            by = "coicop") %>%
  mutate(values = round(100*values/aggregate_c, 1)) %>%
  select(geo, Geo, Coicop, values) %>%
  spread(Coicop, values) %>%
  transmute(geo, Geo, Housing, `All rents` = `Actual rents` + `Imputed rents`, 
            `Actual rents`, `Imputed rents`,
            `Other` = `Maintainance` + `Water` + Electricity) %>%
  arrange(-`All rents`) %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
         Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

Table

62 Items

Code
nama_10_co3_p3 %>%
  filter(unit == "CLV10_MEUR",
         time == "2017",
         geo %in% c("FR", "UK", "ES", "IT")) %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CLV10_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  mutate(values = round(100*values/gdp, 2)) %>%
  left_join(geo, by = "geo") %>%
  select(Geo, values, coicop) %>%
  left_join(coicop, by = "coicop") %>%
  spread(Geo, values) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

2 Digit - 12 Items

Code
nama_10_co3_p3 %>%
  filter(unit == "CLV10_MEUR",
         time == "2017",
         geo %in% c("FR", "UK", "ES", "IT"),
         nchar(coicop) == 4) %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CLV10_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  mutate(values = round(100*values/gdp, 2)) %>%
  left_join(geo, by = "geo") %>%
  select(Geo, values, coicop) %>%
  left_join(coicop, by = "coicop") %>%
  spread(Geo, values) %>%
  arrange(-`France`) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

3 Digit - 48 Items

Code
nama_10_co3_p3 %>%
  filter(unit == "CLV10_MEUR",
         time == "2017",
         geo %in% c("FR", "UK", "ES", "IT"),
         nchar(coicop) == 5) %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CLV10_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  mutate(values = round(100*values/gdp, 2)) %>%
  left_join(geo, by = "geo") %>%
  select(Geo, values, coicop) %>%
  left_join(coicop, by = "coicop") %>%
  spread(Geo, values) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

France, Italy, United Kingdom, Spain, Germany

TOTAL consumption

Real

Code
nama_10_co3_p3 %>%
  filter(unit == "CLV10_MEUR",
         geo %in% c("FR", "NL", "IT", "ES", "DE"),
         coicop == "TOTAL") %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CLV10_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/gdp) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("% of GDP") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 200, 1),
                     labels = scales::percent_format(accuracy = 1))

Nominal

Code
nama_10_co3_p3 %>%
  filter(unit == "CP_MEUR",
         geo %in% c("FR", "UK", "IT", "ES", "DE"),
         coicop == "TOTAL") %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CP_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/gdp) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("% of GDP") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 200, 1),
                     labels = scales::percent_format(accuracy = 1))

CP041

Nominal

Code
nama_10_co3_p3 %>%
  filter(unit == "CP_MEUR",
         geo %in% c("FR", "UK", "IT", "ES", "DE"),
         coicop == "CP041") %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CP_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/gdp) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("% of GDP") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 200, .1),
                     labels = scales::percent_format(accuracy = .1))

CP042

Nominal

Code
nama_10_co3_p3 %>%
  filter(unit == "CP_MEUR",
         geo %in% c("FR", "UK", "IT", "ES", "DE"),
         coicop == "CP042") %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CP_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/gdp) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("% of GDP") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 200, 1),
                     labels = scales::percent_format(accuracy = 1))

CP091

Real

Code
nama_10_co3_p3 %>%
  filter(unit == "CLV10_MEUR",
         geo %in% c("FR", "NL", "IT", "ES", "DE"),
         coicop == "CP091") %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CLV10_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/gdp) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("% of GDP") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 200, .1),
                     labels = scales::percent_format(accuracy = .1))

Nominal

Code
nama_10_co3_p3 %>%
  filter(unit == "CP_MEUR",
         geo %in% c("FR", "UK", "IT", "ES", "DE"),
         coicop == "CP091") %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CP_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/gdp) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("% of GDP") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 200, .1),
                     labels = scales::percent_format(accuracy = .1))

CP081 - Postal Services

Real

Code
nama_10_co3_p3 %>%
  filter(unit == "CLV10_MEUR",
         geo %in% c("FR", "UK", "IT", "ES", "DE"),
         coicop == "CP081") %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CLV10_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/gdp) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("% of GDP") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 200, .05),
                     labels = scales::percent_format(accuracy = .01))

Nominal

Code
nama_10_co3_p3 %>%
  filter(unit == "CP_MEUR",
         geo %in% c("FR", "UK", "IT", "ES", "DE"),
         coicop == "CP081") %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CP_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/gdp) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("% of GDP") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 200, .05),
                     labels = scales::percent_format(accuracy = .01))

CP082 - Telephone and telefax equipment

Real

Code
nama_10_co3_p3 %>%
  filter(unit == "CLV10_MEUR",
         geo %in% c("FR", "NL", "IT", "ES", "DE"),
         coicop == "CP082") %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CLV10_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/gdp) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("% of GDP") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 200, .1),
                     labels = scales::percent_format(accuracy = .1))

Nominal

Code
nama_10_co3_p3 %>%
  filter(unit == "CP_MEUR",
         geo %in% c("FR", "UK", "IT", "ES", "DE"),
         coicop == "CP082") %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CP_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/gdp) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("% of GDP") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 200, .1),
                     labels = scales::percent_format(accuracy = .1))

CP083 - Telephone and telefax services

Real (% of GDP)

1995-

Code
nama_10_co3_p3 %>%
  filter(unit == "CLV10_MEUR",
         geo %in% c("FR", "NL", "IT", "ES", "DE"),
         coicop == "CP083") %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CLV10_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/gdp) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("% of GDP") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 200, .1),
                     labels = scales::percent_format(accuracy = .1))

Real (% of Consumption)

Code
nama_10_co3_p3 %>%
  filter(unit == "CLV10_MEUR",
         geo %in% c("FR", "UK", "IT", "ES", "DE"),
         coicop == "CP083") %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "P31_S14",
                     unit == "CLV10_MEUR") %>%
              select(geo, time, cons = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/cons) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("Telephone and telefax services (% of Cons.)") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 200, .2),
                     labels = scales::percent_format(accuracy = .1))

Nominal

Code
nama_10_co3_p3 %>%
  filter(unit == "CP_MEUR",
         geo %in% c("FR", "UK", "IT", "ES", "DE"),
         coicop == "CP083") %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CP_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/gdp) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("% of GDP") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 200, .1),
                     labels = scales::percent_format(accuracy = .1))

CP08 - Communications

Real

Code
nama_10_co3_p3 %>%
  filter(unit == "CLV10_MEUR",
         geo %in% c("FR", "UK", "IT", "ES", "DE"),
         coicop == "CP08") %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CLV10_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/gdp) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("% of GDP") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 200, .1),
                     labels = scales::percent_format(accuracy = .1))

Nominal

Code
nama_10_co3_p3 %>%
  filter(unit == "CP_MEUR",
         geo %in% c("FR", "UK", "IT", "ES", "DE"),
         coicop == "CP08") %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CP_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/gdp) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("% of GDP") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 200, .1),
                     labels = scales::percent_format(accuracy = .1))

CP09 - Recreation and Culture

Real

Code
nama_10_co3_p3 %>%
  filter(unit == "CLV10_MEUR",
         geo %in% c("FR", "UK", "IT", "ES", "DE"),
         coicop == "CP09") %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CLV10_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/gdp) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("% of GDP") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 200, .1),
                     labels = scales::percent_format(accuracy = .1))

Nominal

Code
nama_10_co3_p3 %>%
  filter(unit == "CP_MEUR",
         geo %in% c("FR", "UK", "IT", "ES", "DE"),
         coicop == "CP09") %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CP_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/gdp) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("% of GDP") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 200, .1),
                     labels = scales::percent_format(accuracy = .1))

CP126 - Financial Services

Real

Code
nama_10_co3_p3 %>%
  filter(unit == "CLV10_MEUR",
         geo %in% c("FR", "UK", "IT", "ES", "DE"),
         coicop == "CP126") %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CLV10_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/gdp) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("% of GDP") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 200, .1),
                     labels = scales::percent_format(accuracy = .1))

Nominal

Code
nama_10_co3_p3 %>%
  filter(unit == "CP_MEUR",
         geo %in% c("FR", "UK", "IT", "ES", "DE"),
         coicop == "CP126") %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CP_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/gdp) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("% of GDP") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 200, .1),
                     labels = scales::percent_format(accuracy = .1))

Aggregate Consumption (Nominal)

Table - Nominal - CP_MEUR

Code
nama_10_co3_p3 %>%
  filter(unit == "CP_MEUR",
         time %in% c("1995", "2005", "2019"),
         coicop == "TOTAL") %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CP_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  transmute(time, geo, Geo, values = 100*values/gdp) %>%
  spread(time, values) %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
         Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  arrange(`2019`) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

Table - Real - CLV15_MEUR

Code
nama_10_co3_p3 %>%
  filter(unit == "CLV15_MEUR",
         time %in% c("1995", "2005", "2019"),
         coicop == "TOTAL") %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CLV15_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  transmute(time, geo, Geo, values = 100*values/gdp) %>%
  spread(time, values) %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
         Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  arrange(`2019`) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

Denmark, Portugal, Sweden

All

Code
nama_10_co3_p3 %>%
  filter(unit == "CLV10_MEUR",
         geo %in% c("DK", "PT", "SE"),
         coicop == "TOTAL") %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CLV10_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/gdp) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_3flags +
  scale_color_identity() + xlab("") + ylab("% of GDP") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 200, 1),
                     labels = scales::percent_format(accuracy = 1))

1995-

Code
nama_10_co3_p3 %>%
  filter(unit == "CLV10_MEUR",
         geo %in% c("DK", "PT", "SE"),
         coicop == "TOTAL") %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CLV10_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/gdp) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_3flags +
  scale_color_identity() + xlab("") + ylab("% of GDP") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 200, 1),
                     labels = scales::percent_format(accuracy = 1))

France - 2 digit

Housing, Transport, Food

% of GDP Volume

Code
nama_10_co3_p3 %>%
  filter(unit == "CLV10_MEUR",
         geo %in% c("FR"),
         coicop %in% c("CP04", "CP07", "CP01")) %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ") %>%
              select(geo, time, unit, gdp = values), 
            by = c("geo", "time", "unit")) %>%
  left_join(coicop, by = "coicop") %>%
  year_to_date %>%
  ggplot + geom_line() + theme_minimal()  +
  aes(x = date, y = values/gdp, color = Coicop) +
  
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.3, 0.55),
        legend.title = element_blank()) +
  xlab("") + ylab("% of GDP") +
  scale_y_continuous(breaks = 0.01*seq(0, 200, 1),
                     labels = scales::percent_format(accuracy = 1))

% of GDP Value

Code
nama_10_co3_p3 %>%
  filter(unit == "CP_MEUR",
         geo %in% c("FR"),
         coicop %in% c("CP04", "CP07", "CP01")) %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ") %>%
              select(geo, time, unit, gdp = values), 
            by = c("geo", "time", "unit")) %>%
  left_join(coicop, by = "coicop") %>%
  year_to_date %>%
  ggplot + geom_line() + theme_minimal()  +
  aes(x = date, y = values/gdp, color = Coicop) +
  
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.3, 0.55),
        legend.title = element_blank()) +
  xlab("") + ylab("% of GDP") +
  scale_y_continuous(breaks = 0.01*seq(0, 200, 1),
                     labels = scales::percent_format(accuracy = 1))

% of TOT

Code
nama_10_co3_p3 %>%
  filter(unit == "PC_TOT",
         geo %in% c("FR"),
         coicop %in% c("CP04", "CP07", "CP01")) %>%
  left_join(coicop, by = "coicop") %>%
  year_to_date %>%
  ggplot + geom_line() + theme_minimal()  +
  aes(x = date, y = values/100, color = Coicop) +
  
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.3, 0.85),
        legend.title = element_blank()) +
  xlab("") + ylab("% of GDP") +
  scale_y_continuous(breaks = 0.01*seq(0, 200, 1),
                     labels = scales::percent_format(accuracy = 1))

Misc, Recreation, Restaurants

Code
nama_10_co3_p3 %>%
  filter(unit == "CLV10_MEUR",
         geo %in% c("FR"),
         coicop %in% c("CP12", "CP09", "CP11")) %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ") %>%
              select(geo, time, unit, gdp = values), 
            by = c("geo", "time", "unit")) %>%
  left_join(coicop, by = "coicop") %>%
  year_to_date %>%
  ggplot + geom_line() + theme_minimal()  +
  aes(x = date, y = values/gdp, color = Coicop) +
  
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.3, 0.9),
        legend.title = element_blank()) +
  xlab("") + ylab("% of GDP") +
  scale_y_continuous(breaks = 0.01*seq(0, 200, 0.5),
                     labels = scales::percent_format(accuracy = 0.1),
                     limits = c(0.02, 0.07))

Furnishings, Health, Communication

Code
nama_10_co3_p3 %>%
  filter(unit == "CLV10_MEUR",
         geo %in% c("FR"),
         coicop %in% c("CP05", "CP06", "CP08")) %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ") %>%
              select(geo, time, unit, gdp = values), 
            by = c("geo", "time", "unit")) %>%
  left_join(coicop, by = "coicop") %>%
  year_to_date %>%
  ggplot + geom_line() + theme_minimal()  +
  aes(x = date, y = values/gdp, color = Coicop) +
  
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.35, 0.6),
        legend.title = element_blank()) +
  xlab("") + ylab("% of GDP") +
  scale_y_continuous(breaks = 0.01*seq(0, 200, 0.5),
                     labels = scales::percent_format(accuracy = 0.1))

Clothing, Alcohol, Education

Code
nama_10_co3_p3 %>%
  filter(unit == "CLV10_MEUR",
         geo %in% c("FR"),
         coicop %in% c("CP03", "CP02", "CP10")) %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ") %>%
              select(geo, time, unit, gdp = values), 
            by = c("geo", "time", "unit")) %>%
  left_join(coicop, by = "coicop") %>%
  year_to_date %>%
  ggplot + geom_line() + theme_minimal()  +
  aes(x = date, y = values/gdp, color = Coicop) +
  
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.75, 0.9),
        legend.title = element_blank()) +
  xlab("") + ylab("% of GDP") +
  scale_y_continuous(breaks = 0.01*seq(0, 200, 0.5),
                     labels = scales::percent_format(accuracy = 0.1))

France - 2 digit (in French)

Housing, Transport, Food

Code
load_data("eurostat/coicop_fr.RData")
nama_10_co3_p3 %>%
  filter(unit == "CLV10_MEUR",
         geo %in% c("FR"),
         coicop %in% c("CP04", "CP07", "CP01")) %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ") %>%
              select(geo, time, unit, gdp = values), 
            by = c("geo", "time", "unit")) %>%
  left_join(coicop, by = "coicop") %>%
  year_to_date %>%
  ggplot + geom_line() + theme_minimal()  +
  aes(x = date, y = values/gdp, color = Coicop) +
  
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.3, 0.55),
        legend.title = element_blank()) +
  xlab("") + ylab("% du PIB") +
  scale_y_continuous(breaks = 0.01*seq(0, 200, 1),
                     labels = scales::percent_format(accuracy = 1))

Misc, Recreation, Restaurants

Code
nama_10_co3_p3 %>%
  filter(unit == "CLV10_MEUR",
         geo %in% c("FR"),
         coicop %in% c("CP12", "CP09", "CP11")) %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ") %>%
              select(geo, time, unit, gdp = values), 
            by = c("geo", "time", "unit")) %>%
  left_join(coicop, by = "coicop") %>%
  year_to_date %>%
  ggplot + geom_line() + theme_minimal()  +
  aes(x = date, y = values/gdp, color = Coicop) +
  
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.3, 0.9),
        legend.title = element_blank()) +
  xlab("") + ylab("% du PIB") +
  scale_y_continuous(breaks = 0.01*seq(0, 200, 0.5),
                     labels = scales::percent_format(accuracy = 0.1),
                     limits = c(0.02, 0.07))

Furnishings, Health, Communication

Code
nama_10_co3_p3 %>%
  filter(unit == "CLV10_MEUR",
         geo %in% c("FR"),
         coicop %in% c("CP05", "CP06", "CP08")) %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ") %>%
              select(geo, time, unit, gdp = values), 
            by = c("geo", "time", "unit")) %>%
  left_join(coicop, by = "coicop") %>%
  year_to_date %>%
  ggplot + geom_line() + theme_minimal()  +
  aes(x = date, y = values/gdp, color = Coicop) +
  
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.35, 0.6),
        legend.title = element_blank()) +
  xlab("") + ylab("% du GDP") +
  scale_y_continuous(breaks = 0.01*seq(0, 200, 0.5),
                     labels = scales::percent_format(accuracy = 0.1))

Clothing, Alcohol, Education

Code
nama_10_co3_p3 %>%
  filter(unit == "CLV10_MEUR",
         geo %in% c("FR"),
         coicop %in% c("CP03", "CP02", "CP10")) %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ") %>%
              select(geo, time, unit, gdp = values), 
            by = c("geo", "time", "unit")) %>%
  left_join(coicop, by = "coicop") %>%
  year_to_date %>%
  ggplot + geom_line() + theme_minimal()  +
  aes(x = date, y = values/gdp, color = Coicop) +
  
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.75, 0.9),
        legend.title = element_blank()) +
  xlab("") + ylab("% du PIB") +
  scale_y_continuous(breaks = 0.01*seq(0, 200, 0.5),
                     labels = scales::percent_format(accuracy = 0.1))

France - 3 digit

Food, non alcoholic

Code
load_data("eurostat/coicop.RData")
nama_10_co3_p3 %>%
  filter(unit == "CLV10_MEUR",
         geo %in% c("FR"),
         coicop %in% c("CP011", "CP012")) %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ") %>%
              select(geo, time, unit, gdp = values), 
            by = c("geo", "time", "unit")) %>%
  left_join(coicop, by = "coicop") %>%
  year_to_date %>%
  ggplot + geom_line() + theme_minimal()  +
  aes(x = date, y = values/gdp, color = Coicop) +
  
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.3, 0.55),
        legend.title = element_blank()) +
  xlab("") + ylab("% of GDP") +
  scale_y_continuous(breaks = 0.01*seq(0, 200, 1),
                     labels = scales::percent_format(accuracy = 1))

Alcohol, Tobacco, Narcotics

Code
nama_10_co3_p3 %>%
  filter(unit == "CLV10_MEUR",
         geo %in% c("FR"),
         coicop %in% c("CP021", "CP022", "CP023")) %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ") %>%
              select(geo, time, unit, gdp = values), 
            by = c("geo", "time", "unit")) %>%
  left_join(coicop, by = "coicop") %>%
  year_to_date %>%
  ggplot + geom_line() + theme_minimal()  +
  aes(x = date, y = values/gdp, color = Coicop) +
  
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.8, 0.85),
        legend.title = element_blank()) +
  xlab("") + ylab("% of GDP") +
  scale_y_continuous(breaks = 0.01*seq(0, 200, 0.2),
                     labels = scales::percent_format(accuracy = 0.1))

Clothing, Footware

Code
nama_10_co3_p3 %>%
  filter(unit == "CLV10_MEUR",
         geo %in% c("FR"),
         coicop %in% c("CP031", "CP032")) %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ") %>%
              select(geo, time, unit, gdp = values), 
            by = c("geo", "time", "unit")) %>%
  left_join(coicop, by = "coicop") %>%
  year_to_date %>%
  ggplot + geom_line() + theme_minimal()  +
  aes(x = date, y = values/gdp, color = Coicop) +
  
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.9, 0.85),
        legend.title = element_blank()) +
  xlab("") + ylab("% of GDP") +
  scale_y_continuous(breaks = 0.01*seq(0, 200, 0.5),
                     labels = scales::percent_format(accuracy = 1))

Housing 1/2

Code
nama_10_co3_p3 %>%
  filter(unit == "CLV10_MEUR",
         geo %in% c("FR"),
         coicop %in% c("CP041", "CP042", "CP043")) %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ") %>%
              select(geo, time, unit, gdp = values), 
            by = c("geo", "time", "unit")) %>%
  left_join(coicop, by = "coicop") %>%
  year_to_date %>%
  ggplot + geom_line() + theme_minimal()  +
  aes(x = date, y = values/gdp, color = Coicop) +
  
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.7, 0.55),
        legend.title = element_blank()) +
  xlab("") + ylab("% of GDP") +
  scale_y_continuous(breaks = 0.01*seq(0, 200, 1),
                     labels = scales::percent_format(accuracy = 1))

Housing 2/2

Code
nama_10_co3_p3 %>%
  filter(unit == "CLV10_MEUR",
         geo %in% c("FR"),
         coicop %in% c("CP044", "CP045", "CP046")) %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ") %>%
              select(geo, time, unit, gdp = values), 
            by = c("geo", "time", "unit")) %>%
  left_join(coicop, by = "coicop") %>%
  year_to_date %>%
  ggplot + geom_line() + theme_minimal()  +
  aes(x = date, y = values/gdp, color = Coicop) +
  
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.4, 0.55),
        legend.title = element_blank()) +
  xlab("") + ylab("% of GDP") +
  scale_y_continuous(breaks = 0.01*seq(0, 200, .2),
                     labels = scales::percent_format(accuracy = .1))

Furniture 1/2

Code
nama_10_co3_p3 %>%
  filter(unit == "CLV10_MEUR",
         geo %in% c("FR"),
         coicop %in% c("CP051", "CP052", "CP053")) %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ") %>%
              select(geo, time, unit, gdp = values), 
            by = c("geo", "time", "unit")) %>%
  left_join(coicop, by = "coicop") %>%
  year_to_date %>%
  ggplot + geom_line() + theme_minimal()  +
  aes(x = date, y = values/gdp, color = Coicop) +
  
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.7, 0.85),
        legend.title = element_blank()) +
  xlab("") + ylab("% of GDP") +
  scale_y_continuous(breaks = 0.01*seq(0, 200, 0.1),
                     labels = scales::percent_format(accuracy = .1))

Furniture 1/2

Code
nama_10_co3_p3 %>%
  filter(unit == "CLV10_MEUR",
         geo %in% c("FR"),
         coicop %in% c("CP054", "CP055", "CP056")) %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ") %>%
              select(geo, time, unit, gdp = values), 
            by = c("geo", "time", "unit")) %>%
  left_join(coicop, by = "coicop") %>%
  year_to_date %>%
  ggplot + geom_line() + theme_minimal()  +
  aes(x = date, y = values/gdp, color = Coicop) +
  
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.7, 0.9),
        legend.title = element_blank()) +
  xlab("") + ylab("% of GDP") +
  scale_y_continuous(breaks = 0.01*seq(0, 200, 0.1),
                     labels = scales::percent_format(accuracy = .1))

Medical

Code
nama_10_co3_p3 %>%
  filter(unit == "CLV10_MEUR",
         geo %in% c("FR"),
         coicop %in% c("CP061", "CP062", "CP063")) %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ") %>%
              select(geo, time, unit, gdp = values), 
            by = c("geo", "time", "unit")) %>%
  left_join(coicop, by = "coicop") %>%
  year_to_date %>%
  ggplot + geom_line() + theme_minimal()  +
  aes(x = date, y = values/gdp, color = Coicop) +
  
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.3, 0.85),
        legend.title = element_blank()) +
  xlab("") + ylab("% of GDP") +
  scale_y_continuous(breaks = 0.01*seq(0, 200, 0.1),
                     labels = scales::percent_format(accuracy = .1))

Operation, Vehicles, Transport

Code
nama_10_co3_p3 %>%
  filter(unit == "CLV10_MEUR",
         geo %in% c("FR"),
         coicop %in% c("CP071", "CP072", "CP073")) %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ") %>%
              select(geo, time, unit, gdp = values), 
            by = c("geo", "time", "unit")) %>%
  left_join(coicop, by = "coicop") %>%
  year_to_date %>%
  ggplot + geom_line() + theme_minimal()  +
  aes(x = date, y = values/gdp, color = Coicop) +
  
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.8, 0.85),
        legend.title = element_blank()) +
  xlab("") + ylab("% of GDP") +
  scale_y_continuous(breaks = 0.01*seq(0, 200, 0.5),
                     labels = scales::percent_format(accuracy = .1))

Postal, Telephone

Code
nama_10_co3_p3 %>%
  filter(unit == "CLV10_MEUR",
         geo %in% c("FR"),
         coicop %in% c("CP081", "CP082", "CP083")) %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ") %>%
              select(geo, time, unit, gdp = values), 
            by = c("geo", "time", "unit")) %>%
  left_join(coicop, by = "coicop") %>%
  year_to_date %>%
  ggplot + geom_line() + theme_minimal()  +
  aes(x = date, y = values/gdp, color = Coicop) +
  
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.3, 0.85),
        legend.title = element_blank()) +
  xlab("") + ylab("% of GDP") +
  scale_y_continuous(breaks = 0.01*seq(0, 200, 0.2),
                     labels = scales::percent_format(accuracy = .1))

Audio-visual, other durables

Code
nama_10_co3_p3 %>%
  filter(unit == "CLV10_MEUR",
         geo %in% c("FR"),
         coicop %in% c("CP091", "CP092", "CP093")) %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ") %>%
              select(geo, time, unit, gdp = values), 
            by = c("geo", "time", "unit")) %>%
  left_join(coicop, by = "coicop") %>%
  year_to_date %>%
  ggplot + geom_line() + theme_minimal()  +
  aes(x = date, y = values/gdp, color = Coicop) +
  
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.3, 0.85),
        legend.title = element_blank()) +
  xlab("") + ylab("% of GDP") +
  scale_y_continuous(breaks = 0.01*seq(0, 200, 0.2),
                     labels = scales::percent_format(accuracy = .1))

Newspapers, Package holidays

Code
nama_10_co3_p3 %>%
  filter(unit == "CLV10_MEUR",
         geo %in% c("FR"),
         coicop %in% c("CP094", "CP095", "CP096")) %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ") %>%
              select(geo, time, unit, gdp = values), 
            by = c("geo", "time", "unit")) %>%
  left_join(coicop, by = "coicop") %>%
  year_to_date %>%
  ggplot + geom_line() + theme_minimal()  +
  aes(x = date, y = values/gdp, color = Coicop) +
  
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.45),
        legend.title = element_blank()) +
  xlab("") + ylab("% of GDP") +
  scale_y_continuous(breaks = 0.01*seq(0, 200, 0.2),
                     labels = scales::percent_format(accuracy = .1))

Education

Code
nama_10_co3_p3 %>%
  filter(unit == "CLV10_MEUR",
         geo %in% c("FR"),
         coicop %in% c("CP101", "CP102", "CP104", "CP105")) %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ") %>%
              select(geo, time, unit, gdp = values), 
            by = c("geo", "time", "unit")) %>%
  left_join(coicop, by = "coicop") %>%
  year_to_date %>%
  ggplot + geom_line() + theme_minimal()  +
  aes(x = date, y = values/gdp, color = Coicop) +
  
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.8, 0.85),
        legend.title = element_blank()) +
  xlab("") + ylab("% of GDP") +
  scale_y_continuous(breaks = 0.01*seq(0, 200, 0.01),
                     labels = scales::percent_format(accuracy = .01))

Accommodation, catering

Code
nama_10_co3_p3 %>%
  filter(unit == "CLV10_MEUR",
         geo %in% c("FR"),
         coicop %in% c("CP111", "CP112")) %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ") %>%
              select(geo, time, unit, gdp = values), 
            by = c("geo", "time", "unit")) %>%
  left_join(coicop, by = "coicop") %>%
  year_to_date %>%
  ggplot + geom_line() + theme_minimal()  +
  aes(x = date, y = values/gdp, color = Coicop) +
  
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.8, 0.85),
        legend.title = element_blank()) +
  xlab("") + ylab("% of GDP") +
  scale_y_continuous(breaks = 0.01*seq(0, 200, 0.5),
                     labels = scales::percent_format(accuracy = .1))

Finance, Insurance

Code
nama_10_co3_p3 %>%
  filter(unit == "CLV10_MEUR",
         geo %in% c("FR"),
         coicop %in% c("CP121", "CP124", "CP125", "CP126")) %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ") %>%
              select(geo, time, unit, gdp = values), 
            by = c("geo", "time", "unit")) %>%
  left_join(coicop, by = "coicop") %>%
  year_to_date %>%
  ggplot + geom_line() + theme_minimal()  +
  aes(x = date, y = values/gdp, color = Coicop) +
  
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  xlab("") + ylab("% of GDP") +
  scale_y_continuous(breaks = 0.01*seq(0, 200, 0.2),
                     labels = scales::percent_format(accuracy = .1))