Prix au m^2 par arrondissement - arrdt
Data - Immobilier
Info
Données sur l’immobilier
source | dataset | .html | .RData |
---|---|---|---|
2024-06-19 | 2024-04-05 | ||
2024-06-23 | 2024-06-14 | ||
2024-06-23 | 2024-06-23 | ||
2024-06-23 | 2024-06-18 | ||
2024-06-23 | 2024-06-18 | ||
2024-06-23 | 2024-06-23 | ||
2024-06-23 | 2024-06-23 | ||
2024-06-23 | 2024-06-23 | ||
2024-06-24 | 2024-06-23 | ||
2024-06-24 | 2024-06-24 | ||
2024-06-24 | 2024-06-24 | ||
2024-06-24 | 2024-06-24 | ||
2024-06-24 | 2024-06-24 | ||
2024-06-24 | 2024-06-24 | ||
2024-06-24 | 2024-06-24 | ||
2024-06-24 | 2024-06-24 | ||
2024-06-24 | 2024-06-24 | ||
2024-06-24 | 2023-12-03 | ||
2024-06-24 | 2024-06-24 | ||
2024-06-24 | 2024-06-23 | ||
2024-06-20 | 2024-06-30 | ||
2024-06-20 | 2024-06-30 |
Data on housing
source | dataset | .html | .RData |
---|---|---|---|
2024-06-23 | 2024-06-23 | ||
2024-06-19 | 2024-05-10 | ||
2024-06-19 | 2024-05-10 | ||
2024-06-19 | 2024-06-07 | ||
2024-06-23 | 2024-06-18 | ||
2024-06-20 | 2024-06-18 | ||
2024-06-24 | 2024-06-23 | ||
2024-06-24 | 2024-06-08 | ||
2024-06-20 | 2024-06-07 | ||
2024-06-24 | 2024-06-24 | ||
2024-06-20 | 2020-01-18 | ||
2024-06-20 | 2023-10-19 |
LAST_COMPILE
LAST_COMPILE |
---|
2024-06-30 |
Last
Code
%>%
arrdt group_by(date) %>%
summarise(Nobs = n()) %>%
arrange(desc(date)) %>%
head(1) %>%
print_table_conditional()
date | Nobs |
---|---|
2024-01-01 | 21 |
Exemples
2008-
Code
%>%
arrdt filter(date %in% c(as.Date("2008-01-01"), max(date))) %>%
spread(date, value) %>%
#setNames(c("Arrondissement", "2021T3", "2023T2")) %>%
mutate(`Croissance (%)` = round(100*(.[[3]]/.[[2]]-1), 1),
`Croissance (€)` = round(.[[3]]-.[[2]])) %>%
arrange(-`Croissance (%)`) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
2009Q2-
Code
%>%
arrdt filter(date %in% c(as.Date("2009-04-01"), max(date))) %>%
mutate(date = paste0("Prix m2 ", date)) %>%
spread(date, value) %>%
#setNames(c("Arrondissement", "2021T3", "2023T2")) %>%
mutate(`Croissance (%)` = round(100*(.[[3]]/.[[2]]-1), 1),
`Croissance (€)` = round(.[[3]]-.[[2]])) %>%
arrange(-`Croissance (%)`) %>%
rename(arrdt = Location) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
2008-2020
Code
%>%
arrdt filter(date %in% c(as.Date("2008-01-01"), as.Date("2020-01-01"))) %>%
spread(date, value) %>%
#setNames(c("Arrondissement", "2021T3", "2023T2")) %>%
mutate(`Croissance (%)` = round(100*(.[[3]]/.[[2]]-1), 1),
`Croissance (€)` = round(.[[3]]-.[[2]])) %>%
arrange(-`Croissance (%)`) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
2022T2-2023T2
Code
%>%
arrdt filter(date %in% c(as.Date("2022-04-01"), as.Date("2023-04-01"))) %>%
spread(date, value) %>%
#setNames(c("Arrondissement", "2021T3", "2023T2")) %>%
mutate(`Croissance (%)` = round(100*(.[[3]]/.[[2]]-1), 1),
`Croissance (€)` = round(.[[3]]-.[[2]])) %>%
arrange(-`Croissance (%)`) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
2021T3-2023T2
Code
%>%
arrdt filter(date %in% c(as.Date("2021-07-01"), as.Date("2023-04-01"))) %>%
spread(date, value) %>%
#setNames(c("Arrondissement", "2021T3", "2023T2")) %>%
mutate(`Croissance (%)` = round(100*(.[[3]]/.[[2]]-1), 1),
`Croissance (€)` = round(.[[3]]-.[[2]])) %>%
arrange(-`Croissance (%)`) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
100 = 2008
Code
%>%
arrdt filter(Location %in% c("Centre", "6e", "10e")) %>%
group_by(Location) %>%
mutate(value = 100*value/value[date == as.Date("2008-01-01")]) %>%
+ geom_line(aes(x = date, y = value, color = Location)) +
ggplot
theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2050, 2), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Indice des prix au mètre carré (2008 = 100") +
scale_y_log10(breaks = seq(0, 7000, 10))
Carte arrondissements
Code
i_g("bib/france/arrondissements-paris-2.jpg")
Prix mètre carré
13ème, 14ème, 15ème arrondissement
All
Code
%>%
arrdt filter(Location %in% c("13e", "14e", "15e")) %>%
group_by(Location) %>%
+ geom_line(aes(x = date, y = value, color = gsub("e", "ème arrondissement", Location))) +
ggplot
theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2050, 2), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Prix au mètre carré") +
scale_y_log10(breaks = seq(0, 17000, 1000),
labels = dollar_format(p = "", su = "€", a = 1))
2014-
Code
%>%
arrdt filter(Location %in% c("13e", "14e", "15e")) %>%
group_by(Location) %>%
filter(date >= as.Date("2014-01-01")) %>%
+ geom_line(aes(x = date, y = value, color = gsub("e", "ème arrondissement", Location))) +
ggplot
theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2050, 1), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Prix au mètre carré") +
scale_y_log10(breaks = seq(0, 17000, 1000),
labels = dollar_format(p = "", su = "€", a = 1))
2018-
Code
%>%
arrdt filter(Location %in% c("13e", "14e", "15e")) %>%
group_by(Location) %>%
filter(date >= as.Date("2018-01-01")) %>%
+ geom_line(aes(x = date, y = value, color = gsub("e", "ème arrondissement", Location))) +
ggplot
theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2050, 1), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.15, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Prix au mètre carré") +
scale_y_log10(breaks = seq(0, 17000, 200),
labels = dollar_format(p = "", su = "€", a = 1))
16ème, 6ème, 7ème arrondissement
Value
Code
%>%
arrdt filter(Location %in% c("16e", "6e", "7e")) %>%
group_by(Location) %>%
+ geom_line(aes(x = date, y = value, color = gsub("e", "ème arrondissement", Location))) +
ggplot
theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2050, 2), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Prix au mètre carré") +
scale_y_log10(breaks = seq(0, 17000, 1000),
labels = dollar_format(p = "", su = "€", a = 1))
100 = 2008
Code
%>%
arrdt filter(Location %in% c("16e", "6e", "7e")) %>%
group_by(Location) %>%
mutate(value = 100*value/value[date == as.Date("2008-01-01")]) %>%
+ geom_line(aes(x = date, y = value, color = gsub("e", "ème arrondissement", Location))) +
ggplot
theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2050, 2), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Indice des prix au mètre carré (2008 = 100)") +
scale_y_log10(breaks = seq(0, 7000, 10))
6ème, 5ème, 14ème arrondissement
Value
Code
%>%
arrdt filter(Location %in% c("6e", "5e", "14e")) %>%
group_by(Location) %>%
+ geom_line(aes(x = date, y = value, color = gsub("e", "ème arrondissement", Location))) +
ggplot
theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2050, 2), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Prix au mètre carré") +
scale_y_log10(breaks = seq(0, 17000, 1000),
labels = dollar_format(p = "", su = "€", a = 1))
100 = 2008
Code
%>%
arrdt filter(Location %in% c("6e", "5e", "14e")) %>%
group_by(Location) %>%
mutate(value = 100*value/value[date == as.Date("2008-01-01")]) %>%
+ geom_line(aes(x = date, y = value, color = gsub("e", "ème arrondissement", Location))) +
ggplot
theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2050, 2), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Indice des prix au mètre carré (2008 = 100)") +
scale_y_log10(breaks = seq(0, 7000, 10))
1er, 2ème, 3ème arrondissement
Value
Code
%>%
arrdt filter(Location %in% c("1er", "2e", "3e")) %>%
mutate(Location = case_when(Location == "1er" ~ "1er arrondissement",
== "2e" ~ "2ème arrondissement",
Location == "3e" ~ "3ème arrondissement")) %>%
Location group_by(Location) %>%
+ geom_line(aes(x = date, y = value, color = Location)) +
ggplot
theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2050, 2), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Prix au mètre carré") +
scale_y_log10(breaks = seq(0, 17000, 1000),
labels = dollar_format(p = "", su = "€", a = 1))
100 = 2008
Code
%>%
arrdt filter(Location %in% c("1er", "2e", "3e")) %>%
mutate(Location = case_when(Location == "1er" ~ "1er arrondissement",
== "2e" ~ "2ème arrondissement",
Location == "3e" ~ "3ème arrondissement")) %>%
Location group_by(Location) %>%
mutate(value = 100*value/value[date == as.Date("2008-01-01")]) %>%
+ geom_line(aes(x = date, y = value, color = Location)) +
ggplot
theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2050, 2), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Indice des prix au mètre carré (2008 = 100)") +
scale_y_log10(breaks = seq(0, 7000, 10))