source | dataset | .html | .RData |
---|---|---|---|
insee | CNA-2014-CSI | 2025-01-05 | 2024-12-29 |
Comptes des secteurs institutionnels
Data - Insee
Info
Données sur la macroéconomie en France
source | dataset | .html | .RData |
---|---|---|---|
bdf | CFT | 2025-01-05 | 2024-12-09 |
insee | CNA-2014-CONSO-SI | 2025-01-07 | 2024-12-29 |
insee | CNA-2014-CSI | 2025-01-05 | 2024-12-29 |
insee | CNA-2014-FBCF-BRANCHE | 2025-01-05 | 2025-01-05 |
insee | CNA-2014-FBCF-SI | 2024-06-07 | 2025-01-05 |
insee | CNA-2014-RDB | 2025-01-05 | 2025-01-05 |
insee | CNA-2020-CONSO-MEN | 2025-01-05 | 2024-09-12 |
insee | CNA-2020-PIB | 2025-01-05 | 2024-09-11 |
insee | CNT-2014-CB | 2025-01-05 | 2025-01-05 |
insee | CNT-2014-CSI | 2025-01-05 | 2025-01-05 |
insee | CNT-2014-OPERATIONS | 2025-01-05 | 2025-01-05 |
insee | CNT-2014-PIB-EQB-RF | 2025-01-05 | 2025-01-05 |
insee | CONSO-MENAGES-2020 | 2025-01-05 | 2025-01-05 |
insee | conso-mensuelle | 2024-06-07 | 2023-07-04 |
insee | ICA-2015-IND-CONS | 2025-01-05 | 2025-01-05 |
insee | t_1101 | 2025-01-05 | 2022-01-02 |
insee | t_1102 | 2025-01-05 | 2020-10-30 |
insee | t_1105 | 2025-01-05 | 2020-10-30 |
Data on macro
source | dataset | .html | .RData |
---|---|---|---|
eurostat | nama_10_a10 | 2025-01-05 | 2024-10-08 |
eurostat | nama_10_a10_e | 2025-01-05 | 2025-01-05 |
eurostat | nama_10_gdp | 2025-01-05 | 2025-01-05 |
eurostat | nama_10_lp_ulc | 2025-01-05 | 2024-10-08 |
eurostat | namq_10_a10 | 2025-01-05 | 2025-01-05 |
eurostat | namq_10_a10_e | 2025-01-05 | 2025-01-05 |
eurostat | namq_10_gdp | 2025-01-05 | 2025-01-05 |
eurostat | namq_10_lp_ulc | 2025-01-05 | 2024-11-04 |
eurostat | namq_10_pc | 2025-01-05 | 2024-12-29 |
eurostat | nasa_10_nf_tr | 2025-01-05 | 2024-12-14 |
eurostat | nasq_10_nf_tr | 2025-01-05 | 2024-10-09 |
fred | gdp | 2025-01-05 | 2025-01-05 |
oecd | QNA | 2024-06-06 | 2025-01-05 |
oecd | SNA_TABLE1 | 2025-01-05 | 2025-01-05 |
oecd | SNA_TABLE14A | 2024-09-15 | 2024-06-30 |
oecd | SNA_TABLE2 | 2024-07-01 | 2024-04-11 |
oecd | SNA_TABLE6A | 2024-07-01 | 2024-06-30 |
wdi | NE.RSB.GNFS.ZS | 2024-09-18 | 2024-09-18 |
wdi | NY.GDP.MKTP.CD | 2024-09-18 | 2024-09-26 |
wdi | NY.GDP.MKTP.PP.CD | 2024-09-18 | 2024-09-18 |
wdi | NY.GDP.PCAP.CD | 2025-01-05 | 2025-01-05 |
wdi | NY.GDP.PCAP.KD | 2024-09-18 | 2024-09-18 |
wdi | NY.GDP.PCAP.PP.CD | 2025-01-05 | 2025-01-05 |
wdi | NY.GDP.PCAP.PP.KD | 2025-01-05 | 2025-01-05 |
LAST_UPDATE
Code
`CNA-2014-CSI` %>%
group_by(LAST_UPDATE) %>%
summarise(Nobs = n()) %>%
arrange(desc(LAST_UPDATE)) %>%
print_table_conditional()
LAST_UPDATE | Nobs |
---|---|
2023-05-31 | 370 |
2022-11-04 | 82025 |
2022-09-30 | 803 |
2019-06-14 | 928 |
2018-12-11 | 920 |
LAST_COMPILE
LAST_COMPILE |
---|
2025-01-07 |
Last
Code
`CNA-2014-CSI` %>%
group_by(TIME_PERIOD) %>%
summarise(Nobs = n()) %>%
arrange(desc(TIME_PERIOD)) %>%
head(1) %>%
print_table_conditional()
TIME_PERIOD | Nobs |
---|---|
2022 | 5 |
Compte d’exploitation
Code
i_g("bib/insee/compte-d-exploitation.png")
Données reliées
- 2.101 – Revenu disponible brut des ménages et évolution du pouvoir d’achat par personne, par ménage et par unité de consommation (En milliards d’euros et %) - t_2101. html
- 2.104 – Compte des ménages simplifié et ratios d’épargne (En milliards d’euros et %) - t_2104. html
- 2.104 – Compte des ménages simplifié et ratios d’épargne (En milliards d’euros et %) - t_2104_2018. html
- 7.401 – Compte des ménages (S14) (En milliards d’euros) - t_7401. html
- Comptes des secteurs institutionnels - CNA-2014-CSI. html
OPERATION
Code
`CNA-2014-CSI` %>%
left_join(OPERATION, by = "OPERATION") %>%
group_by(OPERATION, Operation) %>%
summarise(Nobs = n()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
COMPTE
Code
`CNA-2014-CSI` %>%
left_join(COMPTE, by = "COMPTE") %>%
group_by(COMPTE, Compte) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
SECT-INST
Code
`CNA-2014-CSI` %>%
left_join(`SECT-INST`, by = "SECT-INST") %>%
group_by(`SECT-INST`, `Sect-Inst`) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
INDICATEUR
Code
`CNA-2014-CSI` %>%
left_join(INDICATEUR, by = "INDICATEUR") %>%
group_by(INDICATEUR, Indicateur) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
INDICATEUR | Indicateur | Nobs |
---|---|---|
CNA_COMPTES_SI_EA | Comptes de secteurs institutionnels - Emplois ou Actifs | 46311 |
CNA_COMPTES_SI_RP | Comptes de secteurs institutionnels - Ressources ou Passifs | 38735 |
NATURE
Code
`CNA-2014-CSI` %>%
left_join(NATURE, by = "NATURE") %>%
group_by(NATURE, Nature) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
NATURE | Nature | Nobs |
---|---|---|
SO | Sans objet | 80193 |
VALEUR_ABSOLUE | Valeur absolue | 3680 |
PROPORTION_POURCENTAGE | Proportion en % | 1173 |
UNIT_MEASURE
Code
`CNA-2014-CSI` %>%
group_by(UNIT_MEASURE) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
UNIT_MEASURE | Nobs |
---|---|
EUROS_COURANTS | 82617 |
EUROS | 1256 |
POURCENT | 1173 |
TITLE_FR
Code
`CNA-2014-CSI` %>%
group_by(IDBANK, TITLE_FR) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
Revenu des ménages
D1, D4
Code
`CNA-2014-CSI` %>%
filter(`SECT-INST` == "S14",
== "EUROS_COURANTS",
UNIT_MEASURE %in% c("D1", "D4")) %>%
OPERATION select_if(~ n_distinct(.) > 1) %>%
left_join(OPERATION, by = "OPERATION") %>%
left_join(COMPTE, by = "COMPTE") %>%
%>%
year_to_date left_join(gdp, by = "date") %>%
+ geom_line(aes(x = date, y = OBS_VALUE/gdp, color = paste0(Operation, " - ", Compte))) +
ggplot theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.6, 0.6),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 2000, 5),
labels = percent_format(acc = 1))
D63, D631_2010 - Transferts sociaux
All
Code
`CNA-2014-CSI` %>%
filter(`SECT-INST` == "S14",
== "EUROS_COURANTS",
UNIT_MEASURE %in% c("D63", "D631_2010")) %>%
OPERATION left_join(OPERATION, by = "OPERATION") %>%
left_join(COMPTE, by = "COMPTE") %>%
%>%
year_to_date left_join(gdp, by = "date") %>%
+ geom_line(aes(x = date, y = OBS_VALUE/gdp, color = Operation)) +
ggplot theme_minimal() + xlab("") + ylab("") +
scale_color_manual(values = viridis(3)[1:2]) +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.35, 0.9),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 2000, 1),
labels = percent_format(acc = 1))
1995-
Code
`CNA-2014-CSI` %>%
filter(`SECT-INST` == "S14",
== "EUROS_COURANTS",
UNIT_MEASURE %in% c("D63", "D631_2010")) %>%
OPERATION left_join(OPERATION, by = "OPERATION") %>%
left_join(COMPTE, by = "COMPTE") %>%
%>%
year_to_date filter(date >= as.Date("1995-01-01")) %>%
left_join(gdp, by = "date") %>%
+ geom_line(aes(x = date, y = OBS_VALUE/gdp, color = Operation)) +
ggplot theme_minimal() + xlab("") + ylab("") +
scale_color_manual(values = viridis(3)[1:2]) +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 2000, 1),
labels = percent_format(acc = 1))
D5, D4
Code
`CNA-2014-CSI` %>%
filter(`SECT-INST` == "S14",
== "EUROS_COURANTS",
UNIT_MEASURE %in% c("D5")) %>%
OPERATION left_join(OPERATION, by = "OPERATION") %>%
left_join(COMPTE, by = "COMPTE") %>%
%>%
year_to_date left_join(gdp, by = "date") %>%
+ geom_line(aes(x = date, y = OBS_VALUE/gdp, color = paste0(Operation, " - ", Compte))) +
ggplot theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.6, 0.6),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 2000, 1),
labels = percent_format(acc = 1))
B6G, B6N, B7G, B7N
All
Code
`CNA-2014-CSI` %>%
filter(`SECT-INST` == "S14",
== "EUROS_COURANTS",
UNIT_MEASURE %in% c("B6G", "B6N", "B7G", "B7N"),
OPERATION == "EA") %>%
COMPTE left_join(OPERATION, by = "OPERATION") %>%
left_join(COMPTE, by = "COMPTE") %>%
%>%
year_to_date left_join(gdp, by = "date") %>%
+ geom_line(aes(x = date, y = OBS_VALUE/gdp, color = paste0(Operation, " - ", Compte))) +
ggplot theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.5),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 2000, 5),
labels = percent_format(acc = 1))
1995-
Code
`CNA-2014-CSI` %>%
filter(`SECT-INST` == "S14",
== "EUROS_COURANTS",
UNIT_MEASURE %in% c("B6G", "B6N", "B7G", "B7N"),
OPERATION == "EA") %>%
COMPTE left_join(OPERATION, by = "OPERATION") %>%
left_join(COMPTE, by = "COMPTE") %>%
%>%
year_to_date filter(date >= as.Date("1995-01-01")) %>%
left_join(gdp, by = "date") %>%
+ geom_line(aes(x = date, y = OBS_VALUE/gdp, color = paste0(Operation, " - ", Compte))) +
ggplot theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.6, 0.5),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 2000, 5),
labels = percent_format(acc = 1))
Valeur ajoutée brute
Mds €
Code
`CNA-2014-CSI` %>%
left_join(`SECT-INST`, by = "SECT-INST") %>%
filter(`SECT-INST` %in% c("S11", "S12", "S14", "S13"),
%in% c("B1G")) %>%
OPERATION year_to_date() %>%
select(date, `SECT-INST`, `Sect-Inst`, OBS_VALUE, UNIT_MEASURE) %>%
+ geom_line(aes(x = date, y = OBS_VALUE/1000, color = `Sect-Inst`)) +
ggplot theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.35, 0.9),
legend.title = element_blank()) +
scale_y_continuous(breaks = seq(0, 2000, 100),
labels = dollar_format(suffix = " Mds€", prefix = "", accuracy = 1))
% du PIB
Code
`CNA-2014-CSI` %>%
left_join(`SECT-INST`, by = "SECT-INST") %>%
filter(`SECT-INST` %in% c("S11", "S12", "S14", "S13"),
%in% c("B1G")) %>%
OPERATION year_to_date() %>%
left_join(gdp, by = "date") %>%
+ geom_line(aes(x = date, y = OBS_VALUE/gdp, color = `Sect-Inst`)) +
ggplot theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.75, 0.6),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 2000, 5),
labels = percent_format(acc = 1))
Revenus de la propriété
Mds€
Code
`CNA-2014-CSI` %>%
left_join(`SECT-INST`, by = "SECT-INST") %>%
left_join(OPERATION, by = "OPERATION") %>%
filter(`SECT-INST` %in% c("S0"),
%in% c("D41", "D42", "D43", "D44")) %>%
OPERATION year_to_date() %>%
+ geom_line(aes(x = date, y = OBS_VALUE/1000, color = Operation)) +
ggplot theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.35, 0.9),
legend.title = element_blank()) +
scale_y_continuous(breaks = seq(0, 2000, 100),
labels = dollar_format(suffix = " Mds€", prefix = "", accuracy = 1))
% du PIB
Code
`CNA-2014-CSI` %>%
left_join(`SECT-INST`, by = "SECT-INST") %>%
left_join(OPERATION, by = "OPERATION") %>%
filter(`SECT-INST` %in% c("S0"),
%in% c("D41", "D42", "D43", "D44")) %>%
OPERATION year_to_date() %>%
left_join(gdp, by = "date") %>%
+ geom_line(aes(x = date, y = OBS_VALUE/gdp, color = Operation)) +
ggplot theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.35, 0.9),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 2000, 5),
labels = percent_format(acc = 1))
S11 - Sociétés non financières
D1/B1G - Rémunération des salariés
Code
`CNA-2014-CSI` %>%
filter(`SECT-INST` == "S11",
%in% c("D1", "B1G"),
OPERATION == "SO",
NATURE == "CNA_COMPTES_SI_EA") %>%
INDICATEUR year_to_date() %>%
select(date, OBS_VALUE, OPERATION) %>%
spread(OPERATION, OBS_VALUE) %>%
+ geom_line(aes(x = date, y = D1/B1G)) +
ggplot theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.35, 0.9),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-2, 90, 1),
labels = scales::percent_format(accuracy = 1))