Gross Domestic Product

Data - Fred

Info

LAST_COMPILE

LAST_COMPILE
2025-01-07

Last

date Nobs
2034-10-01 1

variable

variable Variable Nobs
DSPI Disposable Personal Income 791
PCE Personal Consumption Expenditures 791
PCEDG Personal Consumption Expenditures: Durable Goods 791
TCU Capacity Utilization: Total Index 695
GDPPOT Real Potential Gross Domestic Product 344
PCESV Personal Consumption Expenditures: Services 315
PCND Personal Consumption Expenditures: Nondurable Goods 315
A939RX0Q048SBEA Real gross domestic product per capita 311
GDI Gross Domestic Income 311
GDPC1 Real Gross Domestic Product 311
DHSGRC0 Personal Consumption Expenditures by Type of Product: Services: Household Consumption Expenditures: Housing 263
GDINOS Gross Domestic Income: Net Operating Surplus 263
USSTHPI All-Transactions House Price Index for the United States 199
MDSP Mortgage Debt Service Payments as a Percent of Disposable Personal Income 179
FYFSD Federal Surplus or Deficit [-] 124
DCAFRC1A027NBEA Personal consumption expenditures: Clothing, footwear, and related services 95
DOWNRC1A027NBEA Personal consumption expenditures: Services: Housing: Imputed rental of owner-occupied nonfarm housing 95
GDPA Gross Domestic Product 95
GDPCA Real Gross Domestic Product 95
HDTGPDUSQ163N Household Debt to GDP for United States 77
USPCEHLTHCARE Personal Consumption Expenditures: Services: Health Care for United States 27

Real GDP

Annual

Linear

Code
plot_linear <- gdp %>%
  filter(variable == "GDPCA") %>%
  ggplot + geom_line(aes(x = date, y = value)) +
  scale_y_continuous(breaks = seq(0, 100000, 2000),
                     labels = dollar_format()) +
  scale_x_date(breaks = seq(1900, 2100, 20) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme_minimal() + xlab("") + ylab("Real GDP")

plot_linear

Log

Code
plot_log <- plot_linear +
  scale_y_log10(breaks = seq(0, 100000, 2000),
                     labels = dollar_format(acc = 1))

plot_log

Linear, Log

Code
ggarrange(plot_linear + ggtitle("Linear Scale"), plot_log + ylab("") + ggtitle("Log Scale"))

Quarterly

Linear

Code
plot_linear <- gdp %>%
  filter(variable == "GDPC1") %>%
  ggplot + geom_line(aes(x = date, y = value)) +
  scale_y_continuous(breaks = seq(0, 100000, 2000),
                     labels = dollar_format()) +
  scale_x_date(breaks = seq(1950, 2100, 10) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme_minimal() + xlab("") + ylab("Real GDP")

plot_linear

Log

Code
plot_log <- plot_linear +
  scale_y_log10(breaks = seq(0, 100000, 2000),
                     labels = dollar_format(acc = 1))

plot_log

Linear, Log

Code
ggarrange(plot_linear, plot_log + ylab(""))

Real GDP per capita

Linear

Code
plot_linear <- gdp %>%
  filter(variable == "A939RX0Q048SBEA") %>%
  ggplot + geom_line(aes(x = date, y = value)) +
  scale_y_continuous(breaks = seq(0, 100000, 10000),
                     labels = dollar_format()) +
  scale_x_date(breaks = seq(1950, 2100, 10) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme_minimal() + xlab("") + ylab("Real GDP per capita")

plot_linear

Log

Code
plot_log <- plot_linear +
  scale_y_log10(breaks = seq(0, 100000, 10000),
                     labels = dollar_format(acc = 1))

plot_log

Linear, Log

Code
ggarrange(plot_linear, plot_log + ylab(""))

Output Gap (%)

1945-2020

Code
gdp %>%
  spread(variable, value) %>%
  mutate(output_gap = (GDPC1 - GDPPOT)/GDPPOT) %>%
  select(date, output_gap) %>%
  na.omit %>%
  ggplot(.) + xlab("") + ylab("Output Gap (% of Potential Output)") +
  theme_minimal() +
  geom_line(aes(x = date, y = output_gap)) +
  geom_rect(data = nber_recessions %>%
              filter(Peak > as.Date("1948-01-01")), 
            aes(xmin = Peak, xmax = Trough, ymin = -Inf, ymax = +Inf), 
            fill = 'grey', alpha = 0.5) +
  theme(legend.title = element_blank(),
        legend.position = c(0.4, 0.8)) +
  scale_x_date(breaks = as.Date(paste0(seq(1920, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
                     labels = scales::percent_format(accuracy = 1))

1965-2020

Code
gdp %>%
  filter(date >= as.Date("1965-01-01")) %>%
  spread(variable, value) %>%
  mutate(output_gap = (GDPC1 - GDPPOT)/GDPPOT) %>%
  select(date, output_gap) %>%
  na.omit %>%
  ggplot(.) + xlab("") + ylab("Output Gap (% of Potential Output)") +
  theme_minimal() +
  geom_line(aes(x = date, y = output_gap)) +
  geom_rect(data = nber_recessions %>%
              filter(Peak > as.Date("1965-01-01")), 
            aes(xmin = Peak, xmax = Trough, ymin = -Inf, ymax = +Inf), 
            fill = 'grey', alpha = 0.5) +
  theme(legend.title = element_blank(),
        legend.position = c(0.4, 0.8)) +
  scale_x_date(breaks = as.Date(paste0(seq(1920, 2025, 5), "-01-01")),
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-20, 20, 1),
                     labels = scales::percent_format(accuracy = 1))

Deficits

All

(ref:surplus-gdp-1929-2019) Budget Surplus, 1929-2019 (% of GDP).

Code
US_presidents_extract <- US_presidents %>%
  filter(start >= as.Date("1929-01-01"))
gdp %>%
  filter(variable %in% c("FYFSD", "GDPA")) %>%
  mutate(date = date %>% year,
         date = as.Date(paste0(date, "-12-31"))) %>%
  spread(variable, value) %>%
  mutate(value = FYFSD / (GDPA*1000)) %>%
  filter(date >= as.Date("1929-01-01")) %>%
  ggplot(.) + 
  geom_line(aes(x = date, y = value)) + theme_minimal() +
  theme(legend.title = element_blank(),
        legend.position = c(0.3, 0.8)) +
  scale_x_date(breaks = as.Date(US_presidents_extract$start),
               labels = date_format("%Y")) +
  geom_vline(aes(xintercept = as.numeric(start)), 
             data = US_presidents_extract,
             colour = "grey50", alpha = 0.5) +
  geom_rect(aes(xmin = start, xmax = end, fill = party),
         ymin = -Inf, ymax = Inf, alpha = 0.1, data = US_presidents_extract) +
  geom_text(aes(x = start, y = new, label = name), 
            data = US_presidents_extract %>% mutate(new = -0.27 + 0.01 * (1:n() %% 2)),
            size = 2.5, vjust = 0, hjust = 0, nudge_x = 50) +
  # scale_fill_manual(values = viridis(3)[2:1]) +
  scale_fill_manual(values = c("white", "grey")) +
  xlab("") + ylab("Budget Surplus (% of GDP)") +
  guides(color = guide_legend("party"), fill = FALSE) +
  scale_y_continuous(breaks = 0.01*seq(-30, 6, 2),
                     labels = scales::percent_format(accuracy = 1),
                     limits = c(-0.27, 0.05)) + 
  geom_hline(yintercept = 0, linetype = "dashed",  color = viridis(3)[2])

(ref:surplus-gdp-1929-2019)

1945-2021

Code
gdp %>%
  filter(variable %in% c("FYFSD", "GDPA")) %>%
  mutate(date = date %>% year,
         date = as.Date(paste0(date, "-12-31"))) %>%
  spread(variable, value) %>%
  mutate(value = FYFSD / (GDPA*1000)) %>%
  ggplot(.) + 
  geom_line(aes(x = date, y = value)) + theme_minimal() +
  theme(legend.title = element_blank(),
        legend.position = c(0.3, 0.8)) +
  scale_x_date(breaks = as.Date(US_presidents$start),
               labels = date_format("%Y"),
               limits = c(as.Date("1929-01-01"), as.Date("2023-04-01"))) +
  geom_vline(aes(xintercept = as.numeric(start)), 
             data = US_presidents,
             colour = "grey50", alpha = 0.5) +
  geom_rect(aes(xmin = start, xmax = end, fill = party),
         ymin = -Inf, ymax = Inf, alpha = 0.1, data = US_presidents) +
  geom_text(aes(x = start, y = new, label = name), 
            data = US_presidents %>% mutate(new = -0.27 + 0.01 * (1:n() %% 2)),
            size = 2.5, vjust = 0, hjust = 0, nudge_x = 50) +
  # scale_fill_manual(values = viridis(3)[2:1]) +
  scale_fill_manual(values = c("white", "grey")) +
  xlab("") + ylab("Budget Surplus (% of GDP)") +
  guides(color = guide_legend("party"), fill = FALSE) +
  scale_y_continuous(breaks = 0.01*seq(-30, 6, 2),
                     labels = scales::percent_format(accuracy = 1),
                     limits = c(-0.27, 0.05)) + 
  geom_hline(yintercept = 0, linetype = "dashed",  color = viridis(3)[2])

Financial Crisis Macroeconomic Aggregates

Household Debt to GDP (% of GDP)

(ref:HDTGPDUSQ163N) Mortgage Debt Service Payments, in Billions (2000-2012)

Code
gdp %>%
  filter(variable == "HDTGPDUSQ163N") %>%
  spread(variable, value) %>%
  na.omit %>%
  mutate(value = HDTGPDUSQ163N / 100) %>% 
  select(date, value) %>%
  filter(date >= as.Date("2000-01-01"), 
         date <= as.Date("2012-01-01")) %>%
  ggplot(.) + geom_line(aes(x = date, y = value)) + theme_minimal() +
  scale_x_date(breaks = seq(1870, 2020, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) + 
  scale_y_continuous(breaks = 0.01* seq(10, 120, 1),
                     labels = percent_format(accuracy = 1)) + 
  xlab("") + ylab("Household Debt (% of GDP)") + 
  geom_vline(xintercept = as.Date("2008-09-15"), linetype = "dashed", color = viridis(3)[2]) + 
    geom_rect(data = data_frame(start = as.Date("2004-06-01"), 
                                end = as.Date("2007-08-01")), 
              aes(xmin = start, xmax = end, ymin = -Inf, ymax = +Inf), 
              fill = viridis(4)[4], alpha = 0.2) +
    geom_vline(xintercept = as.Date("2004-06-01"), linetype = "dashed", color = viridis(4)[4]) + 
    geom_vline(xintercept = as.Date("2007-08-01"), linetype = "dashed", color = viridis(4)[4])

(ref:HDTGPDUSQ163N)

Mortgage Debt Service Payments (in Billion Dollars)

(ref:MDSP-DSPI) Mortgage Debt Service Payments, in Billions (2000-2012)

Code
gdp %>%
  filter(variable %in% c("DSPI", "MDSP")) %>%
  spread(variable, value) %>%
  na.omit %>%
  mutate(value = MDSP * DSPI / 100) %>% 
  select(date, value) %>%
  filter(date >= as.Date("2000-01-01"), 
         date <= as.Date("2012-01-01")) %>%
  ggplot(.) + geom_line(aes(x = date, y = value)) + theme_minimal() +
  scale_x_date(breaks = seq(1870, 2020, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) + 
  scale_y_continuous(breaks = seq(100, 16000, 50),
                     labels = dollar_format(suffix = "Bn", prefix = "$")) + 
  xlab("") + ylab("Mortgage Debt Service Payments") + 
  geom_vline(xintercept = as.Date("2008-09-15"), linetype = "dashed", color = viridis(3)[2]) + 
    geom_rect(data = data_frame(start = as.Date("2004-06-01"), 
                                end = as.Date("2007-08-01")), 
              aes(xmin = start, xmax = end, ymin = -Inf, ymax = +Inf), 
              fill = viridis(4)[4], alpha = 0.2) +
    geom_vline(xintercept = as.Date("2004-06-01"), linetype = "dashed", color = viridis(4)[4]) + 
    geom_vline(xintercept = as.Date("2007-08-01"), linetype = "dashed", color = viridis(4)[4])

(ref:MDSP-DSPI)

Mortgage Debt Service Payments (% Disposable Personal Income)

(ref:MDSP) Mortgage Debt Service Payments (2000-2019)

Code
gdp %>%
  filter(variable %in% c("MDSP")) %>%
  filter(date >= as.Date("2000-01-01"), 
         date <= as.Date("2012-01-01")) %>%
  mutate(value = value / 100) %>%
  ggplot(.) + geom_line(aes(x = date, y = value)) + theme_minimal() +
  scale_x_date(breaks = seq(1870, 2020, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) + 
  scale_y_continuous(breaks = 0.01*seq(0, 15, 0.2),
                     labels = scales::percent_format(accuracy = 0.1)) + 
  xlab("") + ylab("% of Disposable Income") + 
  geom_vline(xintercept = as.Date("2008-09-15"), linetype = "dashed", color = viridis(3)[2]) + 
    geom_rect(data = data_frame(start = as.Date("2004-06-01"), 
                                end = as.Date("2007-08-01")), 
              aes(xmin = start, xmax = end, ymin = -Inf, ymax = +Inf), 
              fill = viridis(4)[4], alpha = 0.2) +
    geom_vline(xintercept = as.Date("2004-06-01"), linetype = "dashed", color = viridis(4)[4]) + 
    geom_vline(xintercept = as.Date("2007-08-01"), linetype = "dashed", color = viridis(4)[4])

(ref:MDSP)

House Prices

(ref:USSTHPI) House Prices (Index)

Code
gdp %>%
  filter(variable %in% c("USSTHPI")) %>%
  filter(date >= as.Date("2000-01-01"), 
         date <= as.Date("2010-01-01")) %>%
  ggplot(.) + geom_line(aes(x = date, y = value)) + theme_minimal() +
  scale_x_date(breaks = seq(1870, 2020, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) + 
  scale_y_continuous(breaks = seq(0, 600, 10)) + 
  xlab("") + ylab("House Price Index") + 
  geom_vline(xintercept = as.Date("2008-09-15"), linetype = "dashed", color = viridis(3)[2]) + 
    geom_rect(data = data_frame(start = as.Date("2004-06-01"), 
                                end = as.Date("2007-08-01")), 
              aes(xmin = start, xmax = end, ymin = -Inf, ymax = +Inf), 
              fill = viridis(4)[4], alpha = 0.2) +
    geom_vline(xintercept = as.Date("2004-06-01"), linetype = "dashed", color = viridis(4)[4]) + 
    geom_vline(xintercept = as.Date("2007-08-01"), linetype = "dashed", color = viridis(4)[4])

(ref:USSTHPI)

Disposable Income

(ref:DSPI-3) Disposable Income (2000-2019)

Code
gdp %>%
  filter(variable %in% c("DSPI")) %>%
  filter(date >= as.Date("2004-01-01"), 
         date <= as.Date("2010-01-01")) %>%
  ggplot(.) + geom_line(aes(x = date, y = value)) + theme_minimal() +
  scale_x_date(breaks = seq(1870, 2020, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) + 
  scale_y_continuous(breaks = seq(6000, 16000, 500),
                     labels = dollar_format(suffix = "Bn", prefix = "$")) + 
  xlab("") + ylab("Disposable Income") + 
  geom_vline(xintercept = as.Date("2008-09-15"), linetype = "dashed", color = viridis(3)[2]) + 
    geom_rect(data = data_frame(start = as.Date("2004-06-01"), 
                                end = as.Date("2007-08-01")), 
              aes(xmin = start, xmax = end, ymin = -Inf, ymax = +Inf), 
              fill = viridis(4)[4], alpha = 0.2) +
    geom_vline(xintercept = as.Date("2004-06-01"), linetype = "dashed", color = viridis(4)[4]) + 
    geom_vline(xintercept = as.Date("2007-08-01"), linetype = "dashed", color = viridis(4)[4])

(ref:DSPI-3)

Consumption

Code
gdp %>%
  filter(variable %in% c("PCE")) %>%
  filter(date >= as.Date("2006-01-01"), 
         date <= as.Date("2020-01-01")) %>%
  ggplot(.) + geom_line(aes(x = date, y = value)) + theme_minimal() +
  scale_x_date(breaks = seq(1870, 2020, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) + 
  scale_y_continuous(breaks = seq(8000, 20000, 500),
                     labels = dollar_format(suffix = "Bn", prefix = "$")) + 
  xlab("") + ylab("Consumption") + 
  geom_vline(xintercept = as.Date("2008-09-15"), linetype = "dashed", color = viridis(3)[2])

Durable, Non-Durable, Services

(ref:PCND-06-20) Non-durable Expenditures

Code
gdp %>%
  filter(variable %in% c("PCND")) %>%
  filter(date >= as.Date("2006-01-01"), 
         date <= as.Date("2020-01-01")) %>%
  ggplot(.) + geom_line(aes(x = date, y = value)) + theme_minimal() +
  scale_x_date(breaks = seq(1870, 2020, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) + 
  scale_y_continuous(breaks = seq(0, 20000, 100),
                     labels = dollar_format(suffix = "Bn", prefix = "$")) + 
  xlab("") + ylab("Non-durable Expenditures") + 
  geom_vline(xintercept = as.Date("2008-09-15"), linetype = "dashed", color = viridis(3)[2])

(ref:PCND)

Durable Expenditures

(ref:PCEDG-06-20) Durable Expenditures

Code
gdp %>%
  filter(variable %in% c("PCEDG")) %>%
  filter(date >= as.Date("2001-01-01"), 
         date <= as.Date("2015-01-01")) %>%
  ggplot(.) + geom_line(aes(x = date, y = value)) + theme_minimal() +
  scale_x_date(breaks = seq(1870, 2020, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) + 
  scale_y_continuous(breaks = seq(0, 20000, 50),
                     labels = dollar_format(suffix = "Bn", prefix = "$")) + 
  xlab("") + ylab("Durable Expenditures") + 
  geom_vline(xintercept = as.Date("2008-09-15"), linetype = "dashed", color = viridis(3)[2])

(ref:PCEDG-06-20)

Service Expenditures

(ref:PCESV-06-20) Service Expenditures

Code
gdp %>%
  filter(variable %in% c("PCESV")) %>%
  filter(date >= as.Date("2006-01-01"), 
         date <= as.Date("2020-01-01")) %>%
  ggplot(.) + geom_line(aes(x = date, y = value)) + theme_minimal() +
  scale_x_date(breaks = seq(1870, 2020, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) + 
  scale_y_continuous(breaks = 1000*seq(0, 20, 0.5),
                     labels = dollar_format(suffix = "Bn", prefix = "$")) + 
  xlab("") + ylab("Service Expenditures") + 
  geom_vline(xintercept = as.Date("2008-09-15"), linetype = "dashed", color = viridis(3)[2])

(ref:PCESV-06-20)

Imputed rental

(ref:DOWNRC1A027NBEA) Imputed rental

Code
gdp %>%
  filter(variable %in% c("DOWNRC1A027NBEA")) %>%
  filter(date >= as.Date("2006-01-01"), 
         date <= as.Date("2020-01-01")) %>%
  ggplot(.) + geom_line(aes(x = date, y = value)) + theme_minimal() +
  scale_x_date(breaks = seq(1870, 2020, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) + 
  scale_y_continuous(breaks = seq(0, 20000, 100),
                     labels = dollar_format(suffix = "Bn", prefix = "$")) + 
  xlab("") + ylab("Imputed rental") + 
  geom_vline(xintercept = as.Date("2008-09-15"), linetype = "dashed", color = viridis(3)[2])

(ref:DOWNRC1A027NBEA)

Health Care

(ref:USPCEHLTHCARE) Health Care

Code
gdp %>%
  filter(variable %in% c("USPCEHLTHCARE")) %>%
  filter(date >= as.Date("2006-01-01"), 
         date <= as.Date("2020-01-01")) %>%
  mutate(value = value / 10^3) %>%
  ggplot(.) + geom_line(aes(x = date, y = value)) + theme_minimal() +
  scale_x_date(breaks = seq(1870, 2020, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) + 
  scale_y_continuous(breaks = seq(0, 20000, 100),
                     labels = dollar_format(suffix = "Bn", prefix = "$")) + 
  xlab("") + ylab("Imputed rental") + 
  geom_vline(xintercept = as.Date("2008-09-15"), linetype = "dashed", color = viridis(3)[2])

(ref:USPCEHLTHCARE)

Housing

(ref:DHSGRC0-06-20) Housing

Code
gdp %>%
  filter(variable %in% c("DHSGRC0")) %>%
  filter(date >= as.Date("2006-01-01"), 
         date <= as.Date("2020-01-01")) %>%
  mutate(value = value / 10^3) %>%
  ggplot(.) + geom_line(aes(x = date, y = value)) + theme_minimal() +
  scale_x_date(breaks = seq(1870, 2020, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) + 
  scale_y_continuous(breaks = seq(0, 20000, 100),
                     labels = dollar_format(suffix = "Bn", prefix = "$")) + 
  xlab("") + ylab("Housing") + 
  geom_vline(xintercept = as.Date("2008-09-15"), linetype = "dashed", color = viridis(3)[2])

(ref:DHSGRC0)

Clothing

(ref:DCAFRC1A027NBEA-06-20) Clothing

Code
gdp %>%
  filter(variable %in% c("DCAFRC1A027NBEA")) %>%
  filter(date >= as.Date("2006-01-01"), 
         date <= as.Date("2020-01-01")) %>%
  mutate(value = value) %>%
  ggplot(.) + geom_line(aes(x = date, y = value)) + theme_minimal() +
  scale_x_date(breaks = seq(1870, 2020, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) + 
  scale_y_continuous(breaks = seq(0, 600, 10),
                     labels = dollar_format(suffix = "Bn", prefix = "$")) + 
  xlab("") + ylab("Clothing, footware, and related services") + 
  geom_vline(xintercept = as.Date("2008-09-15"), linetype = "dashed", color = viridis(3)[2])

(ref:DCAFRC1A027NBEA)