source | dataset | .html | .RData |
---|---|---|---|
eurostat | nama_10_a10 | 2025-01-05 | 2024-10-08 |
Gross value added and income by A*10 industry breakdowns
Data - Eurostat
Info
Data on macro
source | dataset | .html | .RData |
---|---|---|---|
eurostat | nama_10_a10 | 2025-01-05 | 2024-10-08 |
eurostat | nama_10_a10_e | 2025-01-07 | 2025-01-07 |
eurostat | nama_10_gdp | 2025-01-07 | 2025-01-07 |
eurostat | nama_10_lp_ulc | 2025-01-05 | 2024-10-08 |
eurostat | namq_10_a10 | 2025-01-07 | 2025-01-07 |
eurostat | namq_10_a10_e | 2025-01-07 | 2025-01-07 |
eurostat | namq_10_gdp | 2025-01-07 | 2025-01-07 |
eurostat | namq_10_lp_ulc | 2025-01-05 | 2024-11-04 |
eurostat | namq_10_pc | 2025-01-05 | 2024-12-29 |
eurostat | nasa_10_nf_tr | 2025-01-05 | 2024-12-14 |
eurostat | nasq_10_nf_tr | 2025-01-05 | 2024-10-09 |
fred | gdp | 2025-01-07 | 2025-01-07 |
oecd | QNA | 2024-06-06 | 2025-01-07 |
oecd | SNA_TABLE1 | 2025-01-07 | 2025-01-07 |
oecd | SNA_TABLE14A | 2024-09-15 | 2024-06-30 |
oecd | SNA_TABLE2 | 2024-07-01 | 2024-04-11 |
oecd | SNA_TABLE6A | 2024-07-01 | 2024-06-30 |
wdi | NE.RSB.GNFS.ZS | 2024-09-18 | 2024-09-18 |
wdi | NY.GDP.MKTP.CD | 2024-09-18 | 2024-09-26 |
wdi | NY.GDP.MKTP.PP.CD | 2024-09-18 | 2024-09-18 |
wdi | NY.GDP.PCAP.CD | 2025-01-05 | 2025-01-07 |
wdi | NY.GDP.PCAP.KD | 2024-09-18 | 2024-09-18 |
wdi | NY.GDP.PCAP.PP.CD | 2025-01-07 | 2025-01-07 |
wdi | NY.GDP.PCAP.PP.KD | 2025-01-07 | 2025-01-07 |
LAST_COMPILE
LAST_COMPILE |
---|
2025-01-07 |
Last
Code
%>%
nama_10_a10 group_by(time) %>%
summarise(Nobs = n()) %>%
arrange(desc(time)) %>%
head(1) %>%
print_table_conditional()
time | Nobs |
---|---|
2023 | 22702 |
na_item
Code
%>%
nama_10_a10 left_join(na_item, by = "na_item") %>%
group_by(na_item, Na_item) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
na_item | Na_item | Nobs |
---|---|---|
B1G | Value added, gross | 433860 |
D1 | Compensation of employees | 102341 |
D11 | Wages and salaries | 98990 |
D12 | Employers' social contributions | 98990 |
nace_r2
Code
%>%
nama_10_a10 left_join(nace_r2, by = "nace_r2") %>%
group_by(nace_r2, Nace_r2) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
nace_r2 | Nace_r2 | Nobs |
---|---|---|
TOTAL | Total - all NACE activities | 62028 |
A | Agriculture, forestry and fishing | 61155 |
B-E | Industry (except construction) | 61155 |
C | Manufacturing | 61155 |
F | Construction | 61155 |
K | Financial and insurance activities | 61155 |
O-Q | Public administration, defence, education, human health and social work activities | 61155 |
R-U | Arts, entertainment and recreation; other service activities; activities of household and extra-territorial organizations and bodies | 61155 |
G-I | Wholesale and retail trade, transport, accommodation and food service activities | 61032 |
M_N | Professional, scientific and technical activities; administrative and support service activities | 61032 |
L | Real estate activities | 61028 |
J | Information and communication | 60976 |
geo
Code
%>%
nama_10_a10 left_join(geo, by = "geo") %>%
group_by(geo, Geo) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
unit
Code
%>%
nama_10_a10 left_join(unit, by = "unit") %>%
group_by(unit, Unit) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
unit | Unit | Nobs |
---|---|---|
CP_MEUR | Current prices, million euro | 60569 |
CP_MNAC | Current prices, million units of national currency | 60569 |
PC_GDP | Percentage of gross domestic product (GDP) | 60428 |
PC_TOT | Percentage of total | 60428 |
PC_EU27_2020_MEUR_CP | Percentage of EU27 (from 2020) total (based on million euro), current prices | 56626 |
CP_MPPS_EU27_2020 | Current prices, million purchasing power standards (PPS, EU27 from 2020) | 55463 |
PC_EU27_2020_MPPS_CP | Percentage of EU27 (from 2020) total (based on million purchasing power standards), current prices | 55463 |
CLV10_MEUR | Chain linked volumes (2010), million euro | 15694 |
CLV10_MNAC | Chain linked volumes (2010), million units of national currency | 15694 |
CLV15_MEUR | Chain linked volumes (2015), million euro | 15694 |
CLV15_MNAC | Chain linked volumes (2015), million units of national currency | 15694 |
CLV_I10 | Chain linked volumes, index 2010=100 | 15694 |
CLV_I15 | Chain linked volumes, index 2015=100 | 15694 |
PD10_EUR | Price index (implicit deflator), 2010=100, euro | 15674 |
PD10_NAC | Price index (implicit deflator), 2010=100, national currency | 15674 |
PD15_EUR | Price index (implicit deflator), 2015=100, euro | 15674 |
PD15_NAC | Price index (implicit deflator), 2015=100, national currency | 15674 |
PYP_MNAC | Previous year prices, million units of national currency | 15462 |
PYP_MEUR | Previous year prices, million euro | 15450 |
CLV05_MEUR | Chain linked volumes (2005), million euro | 15286 |
CLV05_MNAC | Chain linked volumes (2005), million units of national currency | 15286 |
CLV_I05 | Chain linked volumes, index 2005=100 | 15286 |
PD05_EUR | Price index (implicit deflator), 2005=100, euro | 15266 |
PD05_NAC | Price index (implicit deflator), 2005=100, national currency | 15266 |
CLV_PCH_PRE | Chain linked volumes, percentage change on previous period | 15203 |
PD_PCH_PRE_NAC | Price index (implicit deflator), percentage change on previous period, national currency | 15182 |
PD_PCH_PRE_EUR | Price index (implicit deflator), percentage change on previous period, euro | 15170 |
CON_PPCH_PRE | Contribution to GDP growth, percentage point change on previous period | 14918 |
Gross Domestic Product
2019, Table
Code
%>%
nama_10_a10 filter(geo %in% c("FR", "DE", "IT"),
# B1GQ: Gross domestic product at market prices
== "B1G",
na_item == "TOTAL",
nace_r2 == "2019") %>%
time left_join(geo, by = "geo") %>%
select(-geo) %>%
left_join(unit, by = "unit") %>%
select_if(~ n_distinct(.) > 1) %>%
spread(Geo, values) %>%
print_table_conditional()
unit | Unit | France | Germany | Italy |
---|---|---|---|---|
CLV_I05 | Chain linked volumes, index 2005=100 | 118.651 | 123.997 | 100.902 |
CLV_I10 | Chain linked volumes, index 2010=100 | 112.791 | 116.516 | 102.149 |
CLV_I15 | Chain linked volumes, index 2015=100 | 106.511 | 107.258 | 104.991 |
CLV_PCH_PRE | Chain linked volumes, percentage change on previous period | 2.100 | 0.700 | 0.700 |
CLV05_MEUR | Chain linked volumes (2005), million euro | 1874285.400 | 2597952.400 | 1360524.100 |
CLV05_MNAC | Chain linked volumes (2005), million units of national currency | 1874285.400 | 2597952.400 | 1360524.100 |
CLV10_MEUR | Chain linked volumes (2010), million euro | 2021882.100 | 2728763.100 | 1480632.000 |
CLV10_MNAC | Chain linked volumes (2010), million units of national currency | 2021882.100 | 2728763.100 | 1480632.000 |
CLV15_MEUR | Chain linked volumes (2015), million euro | 2087958.100 | 2951672.100 | 1553556.200 |
CLV15_MNAC | Chain linked volumes (2015), million units of national currency | 2087958.100 | 2951672.100 | 1553556.200 |
CON_PPCH_PRE | Contribution to GDP growth, percentage point change on previous period | 1.860 | 0.630 | 0.630 |
CP_MEUR | Current prices, million euro | 2150690.000 | 3159273.000 | 1604269.800 |
CP_MNAC | Current prices, million units of national currency | 2150690.000 | 3159273.000 | 1604269.800 |
CP_MPPS_EU27_2020 | Current prices, million purchasing power standards (PPS, EU27 from 2020) | 1980961.200 | 2862127.000 | 1611560.500 |
PC_EU27_2020_MEUR_CP | Percentage of EU27 (from 2020) total (based on million euro), current prices | 17.100 | 25.100 | 12.800 |
PC_EU27_2020_MPPS_CP | Percentage of EU27 (from 2020) total (based on million purchasing power standards), current prices | 15.800 | 22.800 | 12.800 |
PC_GDP | Percentage of gross domestic product (GDP) | 88.400 | 89.400 | 88.900 |
PC_TOT | Percentage of total | 100.000 | 100.000 | 100.000 |
PD_PCH_PRE_EUR | Price index (implicit deflator), percentage change on previous period, euro | 1.200 | 2.300 | 0.700 |
PD_PCH_PRE_NAC | Price index (implicit deflator), percentage change on previous period, national currency | 1.200 | 2.300 | 0.700 |
PD05_EUR | Price index (implicit deflator), 2005=100, euro | 114.747 | 121.606 | 117.916 |
PD05_NAC | Price index (implicit deflator), 2005=100, national currency | 114.747 | 121.606 | 117.916 |
PD10_EUR | Price index (implicit deflator), 2010=100, euro | 106.371 | 115.777 | 108.350 |
PD10_NAC | Price index (implicit deflator), 2010=100, national currency | 106.371 | 115.777 | 108.350 |
PD15_EUR | Price index (implicit deflator), 2015=100, euro | 103.004 | 107.033 | 103.264 |
PD15_NAC | Price index (implicit deflator), 2015=100, national currency | 103.004 | 107.033 | 103.264 |
PYP_MEUR | Previous year prices, million euro | 2125823.000 | 3087923.000 | 1593573.000 |
PYP_MNAC | Previous year prices, million units of national currency | 2125823.000 | 3087923.000 | 1593573.000 |
Euros
Code
%>%
nama_10_a10 filter(geo %in% c("FR", "DE", "IT"),
# B1GQ: Gross domestic product at market prices
== "B1G",
na_item == "TOTAL",
nace_r2 == "CLV10_MEUR") %>%
unit left_join(geo, by = "geo") %>%
%>%
year_to_date left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/1000) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot scale_color_identity() + theme_minimal() + add_3flags + xlab("") + ylab("") +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 3000, 100),
labels = dollar_format(suffix = " Bn€", prefix = "", accuracy = 1))
Manufacturing Compensation
Table
Code
%>%
nama_10_a10 filter(geo %in% c("FR", "DE", "IT"),
# B1GQ: Gross domestic product at market prices
== "D1",
na_item == "2020",
time == "C") %>%
nace_r2 left_join(unit, by = "unit") %>%
left_join(geo, by = "geo") %>%
select(-geo) %>%
select_if(~ n_distinct(.) > 1) %>%
mutate(Geo = gsub(" ", "-", str_to_lower(Geo)),
Geo = paste0('<img src="../../bib/flags/vsmall/', Geo, '.png" alt="Flag">')) %>%
spread(Geo, values) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
Nominal
Code
%>%
nama_10_a10 filter(geo %in% c("FR", "DE", "IT"),
# B1GQ: Gross domestic product at market prices
== "D1",
na_item == "C",
nace_r2 == "CP_MEUR") %>%
unit left_join(geo, by = "geo") %>%
%>%
year_to_date left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/1000) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot scale_color_identity() + theme_minimal() + add_3flags + xlab("") + ylab("") +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 3000, 100),
labels = dollar_format(suffix = " Bn€", prefix = "", accuracy = 1))
Manufacturing Value Added
Table
Code
%>%
nama_10_a10 filter(geo %in% c("FR", "DE", "IT"),
# B1GQ: Gross domestic product at market prices
== "B1G",
na_item == "2020",
time == "C") %>%
nace_r2 left_join(unit, by = "unit") %>%
left_join(geo, by = "geo") %>%
select(-geo) %>%
select_if(~ n_distinct(.) > 1) %>%
mutate(Geo = gsub(" ", "-", str_to_lower(Geo)),
Geo = paste0('<img src="../../bib/flags/vsmall/', Geo, '.png" alt="Flag">')) %>%
spread(Geo, values) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
Real
Code
%>%
nama_10_a10 filter(geo %in% c("FR", "DE", "IT"),
# B1GQ: Gross domestic product at market prices
== "B1G",
na_item == "C",
nace_r2 == "CLV10_MEUR") %>%
unit left_join(geo, by = "geo") %>%
%>%
year_to_date left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/1000) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot scale_color_identity() + theme_minimal() + add_3flags + xlab("") + ylab("") +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 3000, 100),
labels = dollar_format(suffix = " Bn€", prefix = "", accuracy = 1))
Nominal
Code
%>%
nama_10_a10 filter(geo %in% c("FR", "DE", "IT"),
# B1GQ: Gross domestic product at market prices
== "B1G",
na_item == "C",
nace_r2 == "CP_MNAC") %>%
unit left_join(geo, by = "geo") %>%
%>%
year_to_date left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/1000) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot scale_color_identity() + theme_minimal() + add_3flags + xlab("") + ylab("") +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 3000, 100),
labels = dollar_format(suffix = " Bn€", prefix = "", accuracy = 1))
Manufacturing Value Added (% of GDP)
2019 France, Germany, Italy
Code
%>%
nama_10_a10 filter(geo %in% c("FR", "DE", "IT"),
== "CP_MNAC",
unit == "B1G",
na_item == "2019") %>%
time left_join(nace_r2, by = "nace_r2") %>%
select(geo, nace_r2, Nace_r2, values) %>%
group_by(geo) %>%
mutate(values = round(100*values /values[nace_r2 =="TOTAL"], 1)) %>%
spread(geo, values) %>%
filter(nace_r2 != "TOTAL") %>%
arrange(-FR) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
France: 2019, 1999, 1979
Code
%>%
nama_10_a10 filter(geo %in% c("FR"),
== "CP_MNAC",
unit == "B1G",
na_item %in% c("2019", "1999", 1979)) %>%
time left_join(nace_r2, by = "nace_r2") %>%
select(time, nace_r2, Nace_r2, values) %>%
group_by(time) %>%
mutate(values = round(100*values /values[nace_r2 =="TOTAL"], 1)) %>%
spread(time, values) %>%
filter(nace_r2 != "TOTAL") %>%
arrange(-`2019`) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
France, Germany, United Kingdom
Code
%>%
nama_10_a10 filter(na_item == "B1G",
%in% c("C", "TOTAL"),
nace_r2 %in% c("FR", "DE", "UK"),
geo == "CP_MNAC") %>%
unit year_to_date() %>%
left_join(geo, by = "geo") %>%
select(geo, Geo, nace_r2, date, values) %>%
spread(nace_r2, values) %>%
mutate(values = `C`/TOTAL) %>%
left_join(colors, by = c("Geo" = "country")) %>%
ggplot(.) + geom_line(aes(x = date, y =values, color = color)) +
theme_minimal() + xlab("") + ylab("Manufacturing Value added (% of GDP)") +
scale_color_identity() +
scale_x_date(breaks = seq(1960, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
+
add_3flags theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(-500, 200, 1),
labels = percent_format(accuracy = 1))
France, Germany, Greece, Italy, Portugal, Spain
All
Code
%>%
nama_10_a10 filter(na_item == "B1G",
%in% c("C", "TOTAL"),
nace_r2 %in% c("FR", "DE", "EL", "ES", "IT", "PT"),
geo == "CP_MNAC") %>%
unit year_to_date() %>%
filter(date >= as.Date("1995-01-01")) %>%
left_join(geo, by = "geo") %>%
select(geo, Geo, nace_r2, date, values) %>%
spread(nace_r2, values) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = C/TOTAL) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("Manufacturing Value added (% of GDP)") +
scale_color_identity() +
scale_x_date(breaks = seq(1960, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
+
add_6flags theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(-500, 200, 1),
labels = percent_format(accuracy = 1))
1995-
Code
%>%
nama_10_a10 filter(na_item == "B1G",
%in% c("C", "TOTAL"),
nace_r2 %in% c("FR", "DE", "EL", "ES", "IT", "PT"),
geo == "CP_MNAC") %>%
unit year_to_date() %>%
filter(date >= as.Date("1995-01-01")) %>%
left_join(geo, by = "geo") %>%
select(geo, Geo, nace_r2, date, values) %>%
spread(nace_r2, values) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = C/TOTAL) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("Manufacturing Value added (% of GDP)") +
scale_color_identity() +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
+
add_6flags theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(-500, 200, 1),
labels = percent_format(accuracy = 1))
France, Luxembourg, Cyprus
1995-
Code
%>%
nama_10_a10 filter(na_item == "B1G",
%in% c("C", "TOTAL"),
nace_r2 %in% c("FR", "ME", "LU", "CY", "MT", "EL"),
geo == "CP_MNAC") %>%
unit year_to_date() %>%
filter(date >= as.Date("1995-01-01")) %>%
left_join(geo, by = "geo") %>%
select(geo, Geo, nace_r2, date, values) %>%
spread(nace_r2, values) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = C/TOTAL) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("Manufacturing Value added (% of GDP)") +
scale_color_identity() +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
+
add_6flags theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(-500, 200, 1),
labels = percent_format(accuracy = 1))
France, Italie, Allemagne, EA20
1995-
Code
load_data("eurostat/geo.RData")
%>%
nama_10_a10 filter(na_item == "B1G",
%in% c("C", "TOTAL"),
nace_r2 %in% c("FR", "EA20", "IT", "DE"),
geo == "CP_MNAC") %>%
unit year_to_date() %>%
filter(date >= as.Date("1995-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
select(geo, Geo, nace_r2, date, values) %>%
spread(nace_r2, values) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = C/TOTAL) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("Manufacturing Value added (% of GDP)") +
scale_color_identity() +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
+
add_4flags theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(-500, 200, 1),
labels = percent_format(accuracy = 1))
France, Greece, EA20
1995-
Code
%>%
nama_10_a10 filter(na_item == "B1G",
%in% c("C", "TOTAL"),
nace_r2 %in% c("FR", "EA20", "EL"),
geo == "CP_MNAC") %>%
unit year_to_date() %>%
filter(date >= as.Date("1995-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
select(geo, Geo, nace_r2, date, values) %>%
spread(nace_r2, values) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = C/TOTAL) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("Manufacturing Value added (% of GDP)") +
scale_color_identity() +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
+
add_3flags theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(-500, 200, 1),
labels = percent_format(accuracy = 1))
Greece, Portugal, Spain
Code
%>%
nama_10_a10 filter(na_item == "B1G",
%in% c("C", "TOTAL"),
nace_r2 %in% c("EL", "PT", "ES"),
geo == "CP_MNAC") %>%
unit year_to_date() %>%
left_join(geo, by = "geo") %>%
select(Geo, nace_r2, date, values) %>%
spread(nace_r2, values) %>%
ggplot(.) + geom_line(aes(x = date, y = C/TOTAL, color = Geo)) +
theme_minimal() + xlab("") + ylab("Manufacturing Value added (% of GDP)") +
scale_color_manual(values = c("#0D5EAF", "#006600", "#C60B1E")) +
scale_x_date(breaks = seq(1960, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
geom_image(data = . %>%
filter(date == as.Date("2016-01-01")) %>%
mutate(date = as.Date("2016-01-01"),
image = paste0("../../icon/flag/", str_to_lower(Geo), ".png")),
aes(x = date, y = C/TOTAL, image = image), asp = 1.5) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(-500, 200, 1),
labels = percent_format(accuracy = 1))
1995-2018
Code
%>%
nama_10_a10 filter(na_item == "B1G",
%in% c("C", "TOTAL"),
nace_r2 %in% c("EA", "FR", "DE", "IT", "ES", "NL", "AT", "FI"),
geo == "CP_MNAC") %>%
unit year_to_date() %>%
filter(date >= as.Date("1995-01-01"),
<= as.Date("2019-01-01")) %>%
date left_join(geo, by = "geo") %>%
select(geo, Geo, nace_r2, date, values) %>%
spread(nace_r2, values) %>%
mutate(values = C/TOTAL) %>%
group_by(date) %>%
mutate(values = values /values[geo == "EA"]) %>%
filter(geo != "EA") %>%
group_by(geo) %>%
mutate(values = 100*values / values[date == as.Date("1995-01-01")]) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(color = ifelse(geo == "FR", color2, color)) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("Valeur ajoutée manuf. par rapport à la Zone €") +
scale_color_identity() + add_7flags +
theme(legend.position = "none") +
scale_x_date(breaks = seq(1995, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 200, 5)) +
theme(legend.position = "none") +
geom_hline(yintercept = 100, linetype = "dashed")
1995-
Code
%>%
nama_10_a10 filter(na_item == "B1G",
%in% c("C", "TOTAL"),
nace_r2 %in% c("EA", "FR", "DE", "IT", "ES", "NL", "AT", "PL", "CZ"),
geo == "CP_MNAC") %>%
unit year_to_date() %>%
filter(date >= as.Date("1995-01-01"),
<= as.Date("2019-01-01")) %>%
date left_join(geo, by = "geo") %>%
select(geo, Geo, nace_r2, date, values) %>%
spread(nace_r2, values) %>%
mutate(values = C/TOTAL) %>%
group_by(date) %>%
mutate(values = values /values[geo == "EA"]) %>%
filter(geo != "EA") %>%
group_by(geo) %>%
mutate(values = 100*values / values[date == as.Date("1995-01-01")]) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(color = ifelse(geo == "FR", color2, color)) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("Valeur ajoutée manuf. par rapport à la Zone €") +
scale_color_identity() +
+
add_8flags theme(legend.position = "none") +
scale_x_date(breaks = seq(1995, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 200, 5)) +
theme(legend.position = "none") +
geom_hline(yintercept = 100, linetype = "dashed")
2000-2018
Code
%>%
nama_10_a10 filter(na_item == "B1G",
%in% c("C", "TOTAL"),
nace_r2 %in% c("EA", "FR", "DE", "IT", "ES", "NL", "AT", "FI"),
geo == "CP_MNAC") %>%
unit year_to_date() %>%
filter(date >= as.Date("2000-01-01"),
<= as.Date("2019-01-01")) %>%
date left_join(geo, by = "geo") %>%
select(geo, Geo, nace_r2, date, values) %>%
spread(nace_r2, values) %>%
mutate(values = C/TOTAL) %>%
group_by(date) %>%
mutate(values = values /values[geo == "EA"]) %>%
filter(geo != "EA") %>%
group_by(geo) %>%
mutate(values = 100*values / values[date == as.Date("2000-01-01")]) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(color = ifelse(geo == "FR", color2, color)) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("Valeur ajoutée manuf. par rapport à la Zone €") +
scale_color_identity() + add_7flags +
scale_x_date(breaks = seq(1960, 2020, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 200, 5)) +
theme(legend.position = "none") +
geom_hline(yintercept = 100, linetype = "dashed")
Industry Value Added (% of GDP)
2019 France, Germany, Italy
Code
%>%
nama_10_a10 filter(geo %in% c("FR", "DE", "IT"),
== "CP_MNAC",
unit == "B1G",
na_item == "2019") %>%
time left_join(nace_r2, by = "nace_r2") %>%
select(geo, nace_r2, Nace_r2, values) %>%
group_by(geo) %>%
mutate(values = round(100*values /values[nace_r2 =="TOTAL"], 1)) %>%
spread(geo, values) %>%
filter(nace_r2 != "TOTAL") %>%
arrange(-FR) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
France: 2019, 1999, 1979
Code
%>%
nama_10_a10 filter(geo %in% c("FR"),
== "CP_MNAC",
unit == "B1G",
na_item %in% c("2019", "1999", 1979)) %>%
time left_join(nace_r2, by = "nace_r2") %>%
select(time, nace_r2, Nace_r2, values) %>%
group_by(time) %>%
mutate(values = round(100*values /values[nace_r2 =="TOTAL"], 1)) %>%
spread(time, values) %>%
filter(nace_r2 != "TOTAL") %>%
arrange(-`2019`) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
France, Germany, United Kingdom
Code
%>%
nama_10_a10 filter(na_item == "B1G",
%in% c("B-E", "TOTAL"),
nace_r2 %in% c("FR", "DE", "UK"),
geo == "CP_MNAC") %>%
unit year_to_date() %>%
left_join(geo, by = "geo") %>%
select(geo, Geo, nace_r2, date, values) %>%
spread(nace_r2, values) %>%
mutate(values = `B-E`/TOTAL) %>%
left_join(colors, by = c("Geo" = "country")) %>%
ggplot(.) + geom_line(aes(x = date, y =values, color = color)) +
theme_minimal() + xlab("") + ylab("Industry Value added (% of GDP)") +
scale_color_identity() +
scale_x_date(breaks = seq(1960, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
+
add_3flags theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(-500, 200, 1),
labels = percent_format(accuracy = 1))
France, Greece, EA20
1995-
Code
%>%
nama_10_a10 filter(na_item == "B1G",
%in% c("B-E", "TOTAL"),
nace_r2 %in% c("FR", "EA20", "EL"),
geo == "CP_MNAC") %>%
unit year_to_date() %>%
filter(date >= as.Date("1995-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
select(geo, Geo, nace_r2, date, values) %>%
spread(nace_r2, values) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = `B-E`/TOTAL) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("Industry Value added (% of GDP)") +
scale_color_identity() +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
+
add_3flags theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(-500, 200, 1),
labels = percent_format(accuracy = 1))
France, Greece, EA20
1995-
Code
%>%
nama_10_a10 filter(na_item == "B1G",
%in% c("B-E", "TOTAL"),
nace_r2 %in% c("FR", "EA20", "EL", "DE", "IT"),
geo == "CP_MNAC") %>%
unit year_to_date() %>%
filter(date >= as.Date("1995-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
select(geo, Geo, nace_r2, date, values) %>%
spread(nace_r2, values) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = `B-E`/TOTAL) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("Industry Value added (% of GDP)") +
scale_color_identity() +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
+
add_5flags theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(-500, 200, 1),
labels = percent_format(accuracy = 1))
France, Germany, Greece, Italy, Portugal, Spain
All
Code
%>%
nama_10_a10 filter(na_item == "B1G",
%in% c("B-E", "TOTAL"),
nace_r2 %in% c("FR", "DE", "EL", "ES", "IT", "PT"),
geo == "CP_MNAC") %>%
unit year_to_date() %>%
filter(date >= as.Date("1995-01-01")) %>%
left_join(geo, by = "geo") %>%
select(geo, Geo, nace_r2, date, values) %>%
spread(nace_r2, values) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = `B-E`/TOTAL) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("Industry Value added (% of GDP)") +
scale_color_identity() +
scale_x_date(breaks = seq(1960, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
+
add_6flags theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(-500, 200, 1),
labels = percent_format(accuracy = 1))
1995-
Code
%>%
nama_10_a10 filter(na_item == "B1G",
%in% c("B-E", "TOTAL"),
nace_r2 %in% c("FR", "DE", "EL", "ES", "IT", "PT"),
geo == "CP_MNAC") %>%
unit year_to_date() %>%
filter(date >= as.Date("1995-01-01")) %>%
left_join(geo, by = "geo") %>%
select(geo, Geo, nace_r2, date, values) %>%
spread(nace_r2, values) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = `B-E`/TOTAL) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("Industry Value added (% of GDP)") +
scale_color_identity() +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
+
add_6flags theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(-500, 200, 1),
labels = percent_format(accuracy = 1))
France, Luxembourg, Cyprus
1995-
Code
%>%
nama_10_a10 filter(na_item == "B1G",
%in% c("B-E", "TOTAL"),
nace_r2 %in% c("FR", "ME", "LU", "CY", "MT", "EL"),
geo == "CP_MNAC") %>%
unit year_to_date() %>%
filter(date >= as.Date("1995-01-01")) %>%
left_join(geo, by = "geo") %>%
select(geo, Geo, nace_r2, date, values) %>%
spread(nace_r2, values) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = `B-E`/TOTAL) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("Industry Value added (% of GDP)") +
scale_color_identity() +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
+
add_6flags theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(-500, 200, 1),
labels = percent_format(accuracy = 1))
Greece, Portugal, Spain
Code
%>%
nama_10_a10 filter(na_item == "B1G",
%in% c("B-E", "TOTAL"),
nace_r2 %in% c("EL", "PT", "ES"),
geo == "CP_MNAC") %>%
unit year_to_date() %>%
left_join(geo, by = "geo") %>%
select(Geo, nace_r2, date, values) %>%
spread(nace_r2, values) %>%
ggplot(.) + geom_line(aes(x = date, y = `B-E`/TOTAL, color = Geo)) +
theme_minimal() + xlab("") + ylab("Manufacturing Value added (% of GDP)") +
scale_color_manual(values = c("#0D5EAF", "#006600", "#C60B1E")) +
scale_x_date(breaks = seq(1960, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
geom_image(data = . %>%
filter(date == as.Date("2016-01-01")) %>%
mutate(date = as.Date("2016-01-01"),
image = paste0("../../icon/flag/", str_to_lower(Geo), ".png")),
aes(x = date, y = `B-E`/TOTAL, image = image), asp = 1.5) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(-500, 200, 1),
labels = percent_format(accuracy = 1))
1995-2018
Code
%>%
nama_10_a10 filter(na_item == "B1G",
%in% c("B-E", "TOTAL"),
nace_r2 %in% c("EA", "FR", "DE", "IT", "ES", "NL", "AT", "FI"),
geo == "CP_MNAC") %>%
unit year_to_date() %>%
filter(date >= as.Date("1995-01-01"),
<= as.Date("2019-01-01")) %>%
date left_join(geo, by = "geo") %>%
select(geo, Geo, nace_r2, date, values) %>%
spread(nace_r2, values) %>%
mutate(values = `B-E`/TOTAL) %>%
group_by(date) %>%
mutate(values = values /values[geo == "EA"]) %>%
filter(geo != "EA") %>%
group_by(geo) %>%
mutate(values = 100*values / values[date == as.Date("1995-01-01")]) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(color = ifelse(geo == "FR", color2, color)) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("Valeur ajoutée manuf. par rapport à la Zone €") +
scale_color_identity() + add_7flags +
theme(legend.position = "none") +
scale_x_date(breaks = seq(1995, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 200, 5)) +
theme(legend.position = "none") +
geom_hline(yintercept = 100, linetype = "dashed")
1995-
Code
%>%
nama_10_a10 filter(na_item == "B1G",
%in% c("B-E", "TOTAL"),
nace_r2 %in% c("EA", "FR", "DE", "IT", "ES", "NL", "AT", "PL", "CZ"),
geo == "CP_MNAC") %>%
unit year_to_date() %>%
filter(date >= as.Date("1995-01-01"),
<= as.Date("2019-01-01")) %>%
date left_join(geo, by = "geo") %>%
select(geo, Geo, nace_r2, date, values) %>%
spread(nace_r2, values) %>%
mutate(values = `B-E`/TOTAL) %>%
group_by(date) %>%
mutate(values = values /values[geo == "EA"]) %>%
filter(geo != "EA") %>%
group_by(geo) %>%
mutate(values = 100*values / values[date == as.Date("1995-01-01")]) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(color = ifelse(geo == "FR", color2, color)) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("Valeur ajoutée manuf. par rapport à la Zone €") +
scale_color_identity() +
+
add_8flags theme(legend.position = "none") +
scale_x_date(breaks = seq(1995, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 200, 5)) +
theme(legend.position = "none") +
geom_hline(yintercept = 100, linetype = "dashed")
2000-2018
Code
%>%
nama_10_a10 filter(na_item == "B1G",
%in% c("B-E", "TOTAL"),
nace_r2 %in% c("EA", "FR", "DE", "IT", "ES", "NL", "AT", "FI"),
geo == "CP_MNAC") %>%
unit year_to_date() %>%
filter(date >= as.Date("2000-01-01"),
<= as.Date("2019-01-01")) %>%
date left_join(geo, by = "geo") %>%
select(geo, Geo, nace_r2, date, values) %>%
spread(nace_r2, values) %>%
mutate(values = `B-E`/TOTAL) %>%
group_by(date) %>%
mutate(values = values /values[geo == "EA"]) %>%
filter(geo != "EA") %>%
group_by(geo) %>%
mutate(values = 100*values / values[date == as.Date("2000-01-01")]) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(color = ifelse(geo == "FR", color2, color)) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("Valeur ajoutée manuf. par rapport à la Zone €") +
scale_color_identity() + add_7flags +
scale_x_date(breaks = seq(1960, 2020, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 200, 5)) +
theme(legend.position = "none") +
geom_hline(yintercept = 100, linetype = "dashed")
Industry
1995-2018
Code
%>%
nama_10_a10 filter(na_item == "B1G",
== "B-E",
nace_r2 %in% c("EA", "FR", "DE", "IT", "ES", "NL", "AT", "FI"),
geo == "CP_MNAC") %>%
unit year_to_date() %>%
filter(date >= as.Date("1995-01-01"),
<= as.Date("2019-01-01")) %>%
date left_join(geo, by = "geo") %>%
group_by(date) %>%
mutate(values = values /values[geo == "EA"]) %>%
filter(geo != "EA") %>%
group_by(geo) %>%
mutate(values = 100*values/values[date == as.Date("1995-01-01")]) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = Geo)) +
theme_minimal() + xlab("") + ylab("Valeur ajoutée manuf. par rapport à la Zone €") +
scale_color_manual(values = c("#ED2939", "#003580", "#002395", "#000000",
"#009246", "#AE1C28", "#FFC400")) +
scale_x_date(breaks = seq(1960, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
geom_image(data = . %>%
filter(date == as.Date("2008-01-01")) %>%
mutate(image = paste0("../../icon/flag/", str_to_lower(Geo), ".png")),
aes(x = date, y = values, image = image), asp = 1.5) +
scale_y_continuous(breaks = seq(0, 200, 5)) +
theme(legend.position = "none")