Formation brute de capital fixe (FBCF) par branche

Data - Insee

Info

source dataset .html .RData
insee CNA-2014-CPEB 2025-01-07 2024-12-29
insee CNA-2014-FBCF-BRANCHE 2025-01-07 2025-01-07
insee CNA-2014-PIB 2025-01-07 2025-01-05

Données sur la macroéconomie en France

source dataset .html .RData
bdf CFT 2025-01-05 2024-12-09
insee CNA-2014-CONSO-SI 2025-01-07 2024-12-29
insee CNA-2014-CSI 2025-01-07 2024-12-29
insee CNA-2014-FBCF-BRANCHE 2025-01-07 2025-01-07
insee CNA-2014-FBCF-SI 2024-06-07 2025-01-05
insee CNA-2014-RDB 2025-01-07 2025-01-05
insee CNA-2020-CONSO-MEN 2025-01-07 2024-09-12
insee CNA-2020-PIB 2025-01-07 2024-09-11
insee CNT-2014-CB 2025-01-07 2025-01-05
insee CNT-2014-CSI 2025-01-07 2025-01-05
insee CNT-2014-OPERATIONS 2025-01-07 2025-01-05
insee CNT-2014-PIB-EQB-RF 2025-01-07 2025-01-05
insee CONSO-MENAGES-2020 2025-01-07 2025-01-05
insee conso-mensuelle 2024-06-07 2023-07-04
insee ICA-2015-IND-CONS 2025-01-07 2025-01-07
insee t_1101 2025-01-07 2022-01-02
insee t_1102 2025-01-07 2020-10-30
insee t_1105 2025-01-07 2020-10-30

LAST_UPDATE

Code
`CNA-2014-FBCF-BRANCHE` %>%
  group_by(LAST_UPDATE) %>%
  summarise(Nobs = n()) %>%
  arrange(desc(LAST_UPDATE)) %>%
  print_table_conditional()
LAST_UPDATE Nobs
2023-05-12 5984

LAST_COMPILE

LAST_COMPILE
2025-01-07

Last

Code
`CNA-2014-FBCF-BRANCHE` %>%
  group_by(TIME_PERIOD) %>%
  summarise(Nobs = n()) %>%
  arrange(desc(TIME_PERIOD)) %>%
  head(1) %>%
  print_table_conditional()
TIME_PERIOD Nobs
2021 136

CNA_ACTIVITE

Code
`CNA-2014-FBCF-BRANCHE` %>%
  left_join(CNA_ACTIVITE,  by = "CNA_ACTIVITE") %>%
  group_by(CNA_ACTIVITE, Cna_activite) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()

UNIT_MEASURE

Code
`CNA-2014-FBCF-BRANCHE` %>%
  group_by(UNIT_MEASURE) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()
UNIT_MEASURE Nobs
EUR2014 2992
EUROS_COURANTS 2992

TIME_PERIOD

Code
`CNA-2014-FBCF-BRANCHE` %>%
  group_by(TIME_PERIOD) %>%
  summarise(Nobs = n()) %>%
  arrange(desc(TIME_PERIOD)) %>%
  print_table_conditional()

Decomposition

A5

Code
`CNA-2014-FBCF-BRANCHE` %>%
  filter(grepl("A5", CNA_ACTIVITE),
         UNIT_MEASURE == "EUROS_COURANTS") %>%
  year_to_date %>%
  left_join(CNA_ACTIVITE,  by = "CNA_ACTIVITE") %>%
  select(date, CNA_ACTIVITE, Cna_activite, OBS_VALUE) %>%
  left_join(gdp, by = "date") %>%
  ggplot + geom_line(aes(x = date, y = OBS_VALUE/gdp, color = Cna_activite)) +
  theme_minimal() + xlab("") + ylab("") +
  theme(legend.title = element_blank(),
        legend.position = c(0.4, 0.5)) +
  scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
                     labels = scales::percent_format(accuracy = 1))

A5 moins services marchands

Code
`CNA-2014-FBCF-BRANCHE` %>%
  filter(CNA_ACTIVITE %in% c("A5-AZ", "A5-BE", "A5-FZ", "A5-OQ"),
         UNIT_MEASURE == "EUROS_COURANTS") %>%
  year_to_date %>%
  left_join(CNA_ACTIVITE,  by = "CNA_ACTIVITE") %>%
  select(date, CNA_ACTIVITE, Cna_activite, OBS_VALUE) %>%
  left_join(gdp, by = "date") %>%
  ggplot + geom_line(aes(x = date, y = OBS_VALUE/gdp, color = Cna_activite)) +
  theme_minimal() + xlab("") + ylab("") +
  theme(legend.title = element_blank(),
        legend.position = c(0.4, 0.5)) +
  scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(0, 100, .5),
                     labels = scales::percent_format(accuracy = .1))

GU, BE, JZ

Code
`CNA-2014-FBCF-BRANCHE` %>%
  filter(CNA_ACTIVITE %in% c("A5-GU", "A10-BE", "A17-JZ"),
         UNIT_MEASURE == "EUROS_COURANTS") %>%
  year_to_date %>%
  left_join(CNA_ACTIVITE,  by = "CNA_ACTIVITE") %>%
  select(date, CNA_ACTIVITE, Cna_activite, OBS_VALUE) %>%
  left_join(gdp, by = "date") %>%
  ggplot + geom_line(aes(x = date, y = OBS_VALUE/gdp, color = Cna_activite)) +
  theme_minimal() + xlab("") + ylab("") +
  theme(legend.title = element_blank(),
        legend.position = c(0.4, 0.5)) +
  scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
                     labels = scales::percent_format(accuracy = 1))