source | dataset | .html | .RData |
---|---|---|---|
eurostat | nama_10_gdp | 2024-11-01 | 2024-10-08 |
eurostat | namq_10_gdp | 2024-11-01 | 2024-10-08 |
GDP and main components (output, expenditure and income)
Data - Eurostat
Info
Data on macro
source | dataset | .html | .RData |
---|---|---|---|
eurostat | nama_10_a10 | 2024-11-05 | 2024-10-08 |
eurostat | nama_10_a10_e | 2024-11-05 | 2024-11-05 |
eurostat | nama_10_gdp | 2024-11-01 | 2024-10-08 |
eurostat | nama_10_lp_ulc | 2024-11-01 | 2024-10-08 |
eurostat | namq_10_a10 | 2024-11-01 | 2024-11-05 |
eurostat | namq_10_a10_e | 2024-11-01 | 2024-10-08 |
eurostat | namq_10_gdp | 2024-11-01 | 2024-10-08 |
eurostat | namq_10_lp_ulc | 2024-11-04 | 2024-11-04 |
eurostat | namq_10_pc | 2024-11-01 | 2024-10-08 |
eurostat | nasa_10_nf_tr | 2024-11-01 | 2024-10-08 |
eurostat | nasq_10_nf_tr | 2024-11-01 | 2024-10-09 |
fred | gdp | 2024-11-01 | 2024-11-01 |
oecd | QNA | 2024-06-06 | 2024-06-30 |
oecd | SNA_TABLE1 | 2024-09-15 | 2024-06-30 |
oecd | SNA_TABLE14A | 2024-09-15 | 2024-06-30 |
oecd | SNA_TABLE2 | 2024-07-01 | 2024-04-11 |
oecd | SNA_TABLE6A | 2024-07-01 | 2024-06-30 |
wdi | NE.RSB.GNFS.ZS | 2024-09-18 | 2024-09-18 |
wdi | NY.GDP.MKTP.CD | 2024-09-18 | 2024-09-26 |
wdi | NY.GDP.MKTP.PP.CD | 2024-09-18 | 2024-09-18 |
wdi | NY.GDP.PCAP.CD | 2024-10-15 | 2024-10-15 |
wdi | NY.GDP.PCAP.KD | 2024-09-18 | 2024-09-18 |
wdi | NY.GDP.PCAP.PP.CD | 2024-10-15 | 2024-10-15 |
wdi | NY.GDP.PCAP.PP.KD | 2024-09-18 | 2024-09-18 |
Last
Code
%>%
nama_10_gdp group_by(time) %>%
summarise(Nobs = n()) %>%
arrange(desc(time)) %>%
head(2) %>%
print_table_conditional()
time | Nobs |
---|---|
2023 | 27460 |
2022 | 27599 |
na_item
Code
%>%
nama_10_gdp left_join(na_item, by = "na_item") %>%
group_by(na_item, Na_item) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
geo
Code
%>%
nama_10_gdp left_join(geo, by = "geo") %>%
group_by(geo, Geo) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
unit
Code
%>%
nama_10_gdp left_join(unit, by = "unit") %>%
group_by(unit, Unit) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional
unit | Unit | Nobs |
---|---|---|
CP_MEUR | Current prices, million euro | 49458 |
CP_MNAC | Current prices, million units of national currency | 49458 |
PC_GDP | Percentage of gross domestic product (GDP) | 45321 |
PYP_MNAC | Previous year prices, million units of national currency | 37928 |
PYP_MEUR | Previous year prices, million euro | 37926 |
CP_MPPS_EU27_2020 | Current prices, million purchasing power standards (PPS, EU27 from 2020) | 35711 |
PC_EU27_2020_MEUR_CP | Percentage of EU27 (from 2020) total (based on million euro), current prices | 35681 |
PC_EU27_2020_MPPS_CP | Percentage of EU27 (from 2020) total (based on million purchasing power standards), current prices | 33598 |
CLV10_MEUR | Chain linked volumes (2010), million euro | 29927 |
CLV10_MNAC | Chain linked volumes (2010), million units of national currency | 29927 |
CLV15_MEUR | Chain linked volumes (2015), million euro | 29927 |
CLV15_MNAC | Chain linked volumes (2015), million units of national currency | 29927 |
CLV_I10 | Chain linked volumes, index 2010=100 | 29927 |
CLV_I15 | Chain linked volumes, index 2015=100 | 29927 |
PD10_EUR | Price index (implicit deflator), 2010=100, euro | 29858 |
PD10_NAC | Price index (implicit deflator), 2010=100, national currency | 29858 |
PD15_EUR | Price index (implicit deflator), 2015=100, euro | 29858 |
PD15_NAC | Price index (implicit deflator), 2015=100, national currency | 29858 |
CLV05_MEUR | Chain linked volumes (2005), million euro | 29167 |
CLV05_MNAC | Chain linked volumes (2005), million units of national currency | 29167 |
CLV_I05 | Chain linked volumes, index 2005=100 | 29167 |
PD05_EUR | Price index (implicit deflator), 2005=100, euro | 29098 |
PD05_NAC | Price index (implicit deflator), 2005=100, national currency | 29098 |
CLV_PCH_PRE | Chain linked volumes, percentage change on previous period | 28987 |
PD_PCH_PRE_NAC | Price index (implicit deflator), percentage change on previous period, national currency | 28923 |
PD_PCH_PRE_EUR | Price index (implicit deflator), percentage change on previous period, euro | 28900 |
CON_PPCH_PRE | Contribution to GDP growth, percentage point change on previous period | 27534 |
time
Code
%>%
nama_10_gdp group_by(time) %>%
summarise(Nobs = n()) %>%
arrange(desc(time)) %>%
print_table_conditional
Latest GDP Numbers
2019, 2020 Values
Code
%>%
nama_10_gdp filter(unit == "CP_MEUR",
== "B1GQ",
na_item %in% c("2019", "2020")) %>%
time left_join(geo, by = "geo") %>%
select(time, geo, Geo, values) %>%
spread(time, values) %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
2019, 2020 % increase
Code
%>%
nama_10_gdp filter(unit == "CLV_PCH_PRE",
== "B1GQ",
na_item %in% c("2019", "2020")) %>%
time left_join(geo, by = "geo") %>%
select(time, geo, Geo, values) %>%
spread(time, values) %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
arrange(`2020`) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
2019, 2020 All Units
Code
%>%
nama_10_gdp filter(na_item == "B1GQ",
%in% c("2020")) %>%
time left_join(geo, by = "geo") %>%
select(unit, geo, Geo, values) %>%
spread(unit, values) %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
France, Germany, Italy, UK
Billions
Code
%>%
nama_10_gdp filter(unit == "CP_MEUR",
== "2019",
time %in% c("FR", "DE", "IT", "UK")) %>%
geo select(na_item, geo, values) %>%
left_join(na_item, by = "na_item") %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
select(-geo) %>%
mutate(Geo = gsub(" ", "-", str_to_lower(Geo)),
Geo = paste0('<img src="../../bib/flags/vsmall/', Geo, '.png" alt="Flag">')) %>%
spread(Geo, values) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
% of GDP
Code
%>%
nama_10_gdp filter(unit == "PC_GDP",
== "2019",
time %in% c("FR", "DE", "IT", "UK")) %>%
geo select(na_item, geo, values) %>%
left_join(na_item, by = "na_item") %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
select(-geo) %>%
mutate(Geo = gsub(" ", "-", str_to_lower(Geo)),
Geo = paste0('<img src="../../bib/flags/vsmall/', Geo, '.png" alt="Flag">')) %>%
spread(Geo, values) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
Operating Surplus and Mixed Income / GDP (B1G)
Table
Code
%>%
nama_10_gdp filter(na_item %in% c("B2A3G"),
== "PC_GDP",
unit %in% c("1989", "1999", "2009", "2019")) %>%
time select(time, geo, values) %>%
left_join(geo, by = "geo") %>%
spread(time, values) %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
Net Exports
Table
Code
%>%
nama_10_gdp filter(na_item %in% c("P6", "P7"),
== "PC_GDP",
unit %in% c("1989", "1999", "2009", "2019")) %>%
time select(time, na_item, geo, values) %>%
left_join(geo, by = "geo") %>%
spread(na_item, values) %>%
mutate(NX = P6 - P7) %>%
select(-P6, -P7) %>%
mutate(NX = round(as.numeric(NX), 1)) %>%
spread(time, NX) %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
Greece, Portugal, Spain
Code
%>%
nama_10_gdp filter(na_item %in% c("P6", "P7"),
== "PC_GDP",
unit %in% c("EL", "ES", "PT")) %>%
geo select(time, na_item, geo, values) %>%
%>%
year_to_date left_join(geo, by = "geo") %>%
mutate(Geo= ifelse(geo == "EA20", "Europe", Geo)) %>%
spread(na_item, values) %>%
mutate(values = (P6 - P7)/100) %>%
left_join(colors, by = c("Geo" = "country")) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot scale_color_identity() + theme_minimal() + add_3flags +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
xlab("") + ylab("Net Exports (% of GDP)") +
scale_y_continuous(breaks = 0.01*seq(-30, 30, 1),
labels = percent_format(a = 1)) +
geom_hline(yintercept = 0, linetype = "dashed", color = "black")
Germany, France, Eurozone
Code
%>%
nama_10_gdp filter(na_item %in% c("P6", "P7"),
== "PC_GDP",
unit %in% c("FR", "DE", "EA20")) %>%
geo select(time, na_item, geo, values) %>%
%>%
year_to_date left_join(geo, by = "geo") %>%
mutate(Geo= ifelse(geo == "EA20", "Europe", Geo)) %>%
spread(na_item, values) %>%
mutate(values = (P6 - P7)/100) %>%
left_join(colors, by = c("Geo" = "country")) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot scale_color_identity() + theme_minimal() + add_3flags +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
xlab("") + ylab("Net Exports (% of GDP)") +
scale_y_continuous(breaks = 0.01*seq(-30, 30, 1),
labels = percent_format(a = 1)) +
geom_hline(yintercept = 0, linetype = "dashed", color = "black")
Germany, France, Italy, Eurozone
Code
%>%
nama_10_gdp filter(na_item %in% c("P6", "P7"),
== "PC_GDP",
unit %in% c("FR", "DE", "IT", "EA20")) %>%
geo select(time, na_item, geo, values) %>%
%>%
year_to_date left_join(geo, by = "geo") %>%
mutate(Geo= ifelse(geo == "EA20", "Europe", Geo)) %>%
spread(na_item, values) %>%
mutate(values = (P6 - P7)/100) %>%
left_join(colors, by = c("Geo" = "country")) %>%
filter(date >= as.Date("1995-01-01")) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot scale_color_identity() + theme_minimal() + add_4flags +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
xlab("") + ylab("Net Exports (% of GDP)") +
scale_y_continuous(breaks = 0.01*seq(-30, 30, 1),
labels = percent_format(a = 1)) +
geom_hline(yintercept = 0, linetype = "dashed", color = "black")
Germany, France, Eurozone, Netherlands
All
Code
%>%
nama_10_gdp filter(na_item %in% c("P6", "P7"),
== "PC_GDP",
unit %in% c("FR", "DE", "EA20", "NL")) %>%
geo select(time, na_item, geo, values) %>%
%>%
year_to_date left_join(geo, by = "geo") %>%
mutate(Geo= ifelse(geo == "EA20", "Europe", Geo)) %>%
spread(na_item, values) %>%
mutate(values = (P6 - P7)/100) %>%
left_join(colors, by = c("Geo" = "country")) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot scale_color_identity() + theme_minimal() + add_4flags +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
xlab("") + ylab("Net Exports (% of GDP)") +
scale_y_continuous(breaks = 0.01*seq(-30, 30, 1),
labels = percent_format(a = 1)) +
geom_hline(yintercept = 0, linetype = "dashed", color = "black")
1995-
Code
%>%
nama_10_gdp filter(na_item %in% c("P6", "P7"),
== "PC_GDP",
unit %in% c("FR", "DE", "EA20", "NL")) %>%
geo select(time, na_item, geo, values) %>%
%>%
year_to_date filter(date >= as.Date("1995-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo= ifelse(geo == "EA20", "Europe", Geo)) %>%
spread(na_item, values) %>%
mutate(values = (P6 - P7)/100) %>%
left_join(colors, by = c("Geo" = "country")) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot scale_color_identity() + theme_minimal() + add_4flags +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
xlab("") + ylab("Net Exports (% of GDP)") +
scale_y_continuous(breaks = 0.01*seq(-30, 30, 1),
labels = percent_format(a = 1)) +
geom_hline(yintercept = 0, linetype = "dashed", color = "black")
Germany, France, Italy
Code
%>%
nama_10_gdp filter(na_item %in% c("P6", "P7"),
== "PC_GDP",
unit %in% c("FR", "DE", "IT")) %>%
geo select(time, na_item, geo, values) %>%
%>%
year_to_date left_join(geo, by = "geo") %>%
spread(na_item, values) %>%
mutate(values = (P6 - P7)/100) %>%
left_join(colors, by = c("Geo" = "country")) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot scale_color_identity() + theme_minimal() + add_3flags +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
xlab("") + ylab("Net Exports (% of GDP)") +
scale_y_continuous(breaks = 0.01*seq(-30, 30, 1),
labels = percent_format(a = 1)) +
geom_hline(yintercept = 0, linetype = "dashed", color = "black")
Poland, France, Italy
Code
%>%
nama_10_gdp filter(na_item %in% c("P6", "P7"),
== "PC_GDP",
unit %in% c("PL", "DE", "IT")) %>%
geo select(time, na_item, geo, values) %>%
%>%
year_to_date left_join(geo, by = "geo") %>%
spread(na_item, values) %>%
mutate(values = (P6 - P7)/100) %>%
left_join(colors, by = c("Geo" = "country")) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot scale_color_identity() + theme_minimal() + add_3flags +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
xlab("") + ylab("Net Exports (% of GDP)") +
scale_y_continuous(breaks = 0.01*seq(-30, 30, 1),
labels = percent_format(a = 1)) +
geom_hline(yintercept = 0, linetype = "dashed", color = "black")
Pologne, Hongrie, Slovénie
Code
%>%
nama_10_gdp filter(na_item %in% c("P6", "P7"),
== "PC_GDP",
unit %in% c("PL", "HU", "SI")) %>%
geo select(time, na_item, geo, values) %>%
%>%
year_to_date left_join(geo, by = "geo") %>%
spread(na_item, values) %>%
mutate(values = (P6 - P7)/100) %>%
left_join(colors, by = c("Geo" = "country")) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot scale_color_identity() + theme_minimal() + add_3flags +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
xlab("") + ylab("Net Exports (% of GDP)") +
scale_y_continuous(breaks = 0.01*seq(-30, 30, 1),
labels = percent_format(a = 1)) +
geom_hline(yintercept = 0, linetype = "dashed", color = "black")
Poland, Austria, Germany, Tchequia, Hungary, Slovakia
All
Code
%>%
nama_10_gdp filter(na_item %in% c("P6", "P7"),
== "PC_GDP",
unit %in% c("PL", "DE", "SK", "CZ", "HU", "AT")) %>%
geo select(time, na_item, geo, values) %>%
%>%
year_to_date left_join(geo, by = "geo") %>%
spread(na_item, values) %>%
mutate(values = (P6 - P7)/100) %>%
left_join(colors, by = c("Geo" = "country")) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot scale_color_identity() + theme_minimal() + add_6flags +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
xlab("") + ylab("Net Exports (% of GDP)") +
scale_y_continuous(breaks = 0.01*seq(-30, 30, 1),
labels = percent_format(a = 1)) +
geom_hline(yintercept = 0, linetype = "dashed", color = "black")
2000-
Code
%>%
nama_10_gdp filter(na_item %in% c("P6", "P7"),
== "PC_GDP",
unit %in% c("PL", "DE", "SK", "CZ", "HU", "AT")) %>%
geo select(time, na_item, geo, values) %>%
%>%
year_to_date filter(date >= as.Date("2000-01-01")) %>%
left_join(geo, by = "geo") %>%
spread(na_item, values) %>%
mutate(values = (P6 - P7)/100) %>%
left_join(colors, by = c("Geo" = "country")) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot scale_color_identity() + theme_minimal() + add_6flags +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
xlab("") + ylab("Net Exports (% of GDP)") +
scale_y_continuous(breaks = 0.01*seq(-30, 30, 1),
labels = percent_format(a = 1)) +
geom_hline(yintercept = 0, linetype = "dashed", color = "black")
United Kingdom, Portugal, Finland, Romania, France, Greece, Sweden
Code
%>%
nama_10_gdp filter(na_item %in% c("P6", "P7"),
== "PC_GDP",
unit %in% c("UK", "PT", "FI", "RO", "FR", "EL", "SE")) %>%
geo select(time, na_item, geo, values) %>%
%>%
year_to_date filter(date >= as.Date("2000-01-01")) %>%
left_join(geo, by = "geo") %>%
spread(na_item, values) %>%
mutate(values = (P6 - P7)/100) %>%
left_join(colors, by = c("Geo" = "country")) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot scale_color_identity() + theme_minimal() + add_7flags +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
xlab("") + ylab("Net Exports (% of GDP)") +
scale_y_continuous(breaks = 0.01*seq(-30, 30, 1),
labels = percent_format(a = 1)) +
geom_hline(yintercept = 0, linetype = "dashed", color = "black")
Gross Domestic Product
Table
Code
%>%
nama_10_gdp filter(time %in% c("2020", "2019", "2000"),
# B1GQ: Gross domestic product at market prices
== "B1GQ",
na_item == "CLV10_MEUR") %>%
unit left_join(geo, by = "geo") %>%
select(geo, Geo, time, values) %>%
spread(time, values) %>%
print_table_conditional()
France, Germany, Italy
All
Code
%>%
nama_10_gdp filter(geo %in% c("FR", "DE", "IT"),
# B1GQ: Gross domestic product at market prices
== "B1GQ",
na_item == "CLV10_MEUR") %>%
unit left_join(geo, by = "geo") %>%
%>%
year_to_date mutate(values = values/1000) %>%
left_join(colors, by = c("Geo" = "country")) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot scale_color_identity() + add_3flags + theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
xlab("") + ylab("") +
scale_y_log10(breaks = seq(0, 3000, 100),
labels = dollar_format(suffix = " Bn€", prefix = "", accuracy = 1))
1995-
Code
%>%
nama_10_gdp filter(geo %in% c("FR", "DE", "IT"),
# B1GQ: Gross domestic product at market prices
== "B1GQ",
na_item == "CLV10_MEUR") %>%
unit left_join(geo, by = "geo") %>%
%>%
year_to_date mutate(values = values/1000) %>%
filter(date >= as.Date("1995-01-01")) %>%
left_join(colors, by = c("Geo" = "country")) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot scale_color_identity() + add_3flags + theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
xlab("") + ylab("") +
scale_y_log10(breaks = seq(0, 3000, 100),
labels = dollar_format(suffix = " Bn€", prefix = "", accuracy = 1))
France, Germany, Eurozone, Italy, Spain
Code
%>%
nama_10_gdp filter(geo %in% c("FR", "DE", "EA20", "IT", "ES"),
# B1GQ: Gross domestic product at market prices
== "B1GQ",
na_item == "CLV10_MEUR") %>%
unit left_join(geo, by = "geo") %>%
%>%
year_to_date mutate(values = values/1000) %>%
filter(date >= as.Date("1995-01-01")) %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot scale_color_identity() + add_5flags + theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
xlab("") + ylab("") +
scale_y_log10(breaks = seq(1000, 15000, 1000),
labels = dollar_format(suffix = " Bn€", prefix = "", accuracy = 1))
Germany, France, Italy, Spain, Netherlands, Belgium
Code
%>%
nama_10_gdp filter(geo %in% c("FR", "DE", "IT", "ES", "NL", "BE"),
# B1GQ: Gross domestic product at market prices
== "B1GQ",
na_item == "CLV10_MEUR") %>%
unit left_join(geo, by = "geo") %>%
%>%
year_to_date mutate(values = values/1000) %>%
filter(date >= as.Date("1995-01-01")) %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot scale_color_identity() + add_6flags + theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
xlab("") + ylab("") +
scale_y_log10(breaks = c(seq(100, 1000, 100), 1500, seq(1000, 15000, 1000)),
labels = dollar_format(suffix = " Bn€", prefix = "", accuracy = 1))
Investment Rates
France, Germany, Italy
Code
%>%
nama_10_gdp filter(geo %in% c("FR", "DE", "IT"),
%in% c("B1GQ", "P51G"),
na_item == "CLV10_MEUR") %>%
unit select(-unit) %>%
spread(na_item, values) %>%
mutate(values = P51G / B1GQ) %>%
left_join(geo, by = "geo") %>%
%>%
year_to_date left_join(colors, by = c("Geo" = "country")) %>%
+ theme_minimal() + xlab("") + ylab("") +
ggplot geom_line(aes(x = date, y = values, color = color)) +
+ scale_color_identity() +
add_3flags scale_x_date(breaks = as.Date(paste0(seq(1960, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 500, 1),
labels = percent_format(accuracy = 1))
Deflator Index
France
Code
%>%
nama_10_gdp filter(geo == "FR",
%in% c("2019", "1995"),
time == "PD15_EUR") %>%
unit left_join(na_item, by = "na_item") %>%
select_if(~ n_distinct(.) > 1) %>%
spread(time, values) %>%
mutate(`Change` = round(100*((`2019`/`1995`)^(1/24)-1),2)) %>%
arrange(Change) %>%
print_table_conditional
na_item | Na_item | 1995 | 2019 | Change |
---|---|---|---|---|
D31 | Subsidies on products | 176.145 | 111.942 | -1.87 |
P71 | Imports of goods | 94.770 | 101.683 | 0.29 |
P61 | Exports of goods | 93.106 | 100.960 | 0.34 |
P7 | Imports of goods and services | 91.610 | 102.167 | 0.46 |
P6 | Exports of goods and services | 90.640 | 101.529 | 0.47 |
P62 | Exports of services | 84.247 | 102.786 | 0.83 |
P72 | Imports of services | 82.422 | 103.384 | 0.95 |
P3_P6 | Final consumption expenditure, gross capital formation and exports of goods and services | 80.227 | 103.156 | 1.05 |
P31_S14 | Final consumption expenditure of households | 80.411 | 103.728 | 1.07 |
P31_S14_S15 | Household and NPISH final consumption expenditure | 80.202 | 103.749 | 1.08 |
B1G | Value added, gross | 78.283 | 103.004 | 1.15 |
P41 | Actual individual consumption | 78.465 | 103.437 | 1.16 |
P3 | Final consumption expenditure | 77.903 | 103.418 | 1.19 |
B1GQ | Gross domestic product at market prices | 77.394 | 103.471 | 1.22 |
P3_P5 | Final consumption expenditure and gross capital formation | 77.519 | 103.680 | 1.22 |
P5G | Gross capital formation | 76.310 | 104.596 | 1.32 |
P51G | Gross fixed capital formation | 75.303 | 104.908 | 1.39 |
P31_S15 | Final consumption expenditure of NPISH | 74.630 | 104.261 | 1.40 |
P32_S13 | Collective consumption expenditure of general government | 73.677 | 103.265 | 1.42 |
P3_S13 | Final consumption expenditure of general government | 72.723 | 102.668 | 1.45 |
P31_S13 | Individual consumption expenditure of general government | 72.035 | 102.340 | 1.47 |
D21 | Taxes on products | 74.556 | 107.356 | 1.53 |
D21X31 | Taxes less subsidies on products | 70.169 | 107.162 | 1.78 |
P71 - Imports of goods
Code
%>%
nama_10_gdp filter(na_item == "P71",
== "PD15_EUR",
unit %in% c("FR", "DE", "IT", "ES")) %>%
geo year_to_date() %>%
filter(date >= as.Date("1995-01-01")) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
group_by(Geo) %>%
arrange(date) %>%
mutate(values = values/ values[1]) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("Price Deflator (P71)") +
scale_color_identity() + add_4flags +
scale_x_date(breaks = seq(1960, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-500, 200, 10))
P61
Code
%>%
nama_10_gdp filter(na_item == "P61",
== "PD15_EUR",
unit %in% c("FR", "DE", "IT", "ES")) %>%
geo year_to_date() %>%
filter(date >= as.Date("1995-01-01")) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
group_by(Geo) %>%
arrange(date) %>%
mutate(values = values/ values[1]) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("Price Deflator (P61)") +
scale_color_identity() + add_4flags +
scale_x_date(breaks = seq(1960, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-500, 200, 10))
P5G
Code
%>%
nama_10_gdp filter(na_item == "P5G",
== "PD15_EUR",
unit %in% c("FR", "DE", "IT", "ES")) %>%
geo year_to_date() %>%
filter(date >= as.Date("1995-01-01")) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
group_by(Geo) %>%
arrange(date) %>%
mutate(values = values/ values[1]) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("Price Deflator (P5G)") +
scale_color_identity() + add_4flags +
scale_x_date(breaks = seq(1960, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-500, 200, 10))
P3
Code
%>%
nama_10_gdp filter(na_item == "P3",
== "PD15_EUR",
unit %in% c("FR", "DE", "IT", "ES")) %>%
geo year_to_date() %>%
filter(date >= as.Date("1995-01-01")) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
group_by(Geo) %>%
arrange(date) %>%
mutate(values = values/ values[1]) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("Price Deflator (P31_S14)") +
scale_color_identity() + add_4flags +
scale_x_date(breaks = seq(1960, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-500, 200, 10))
P31_S14 - Final consumption expenditure of households
Code
%>%
nama_10_gdp filter(na_item == "P31_S14",
== "PD15_EUR",
unit %in% c("FR", "DE", "IT", "ES")) %>%
geo year_to_date() %>%
filter(date >= as.Date("1995-01-01")) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
group_by(Geo) %>%
arrange(date) %>%
mutate(values = values/ values[1]) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("Price Deflator (P31_S14)") +
scale_color_identity() + add_4flags +
scale_x_date(breaks = seq(1960, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-500, 200, 10))
P31_S15
Code
%>%
nama_10_gdp filter(na_item == "P31_S15",
== "PD15_EUR",
unit %in% c("FR", "DE", "IT", "ES")) %>%
geo year_to_date() %>%
filter(date >= as.Date("1995-01-01")) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
group_by(Geo) %>%
arrange(date) %>%
mutate(values = values/ values[1]) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("Price Deflator (P31_S15)") +
scale_color_identity() + add_4flags +
scale_x_date(breaks = seq(1960, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-500, 200, 10))
P31_S14_S15
Code
%>%
nama_10_gdp filter(na_item == "P31_S14_S15",
== "PD15_EUR",
unit %in% c("FR", "DE", "IT", "ES")) %>%
geo year_to_date() %>%
filter(date >= as.Date("1995-01-01")) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
group_by(Geo) %>%
arrange(date) %>%
mutate(values = values/ values[1]) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("Price Deflator (P31_S14_S15)") +
scale_color_identity() + add_4flags +
scale_x_date(breaks = seq(1960, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-500, 200, 10))
B1G
Code
%>%
nama_10_gdp filter(na_item == "B1G",
== "PD15_EUR",
unit %in% c("FR", "DE", "IT", "ES")) %>%
geo year_to_date() %>%
filter(date >= as.Date("1995-01-01")) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
group_by(Geo) %>%
arrange(date) %>%
mutate(values = values/ values[1]) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("Price Deflator (B1G)") +
scale_color_identity() + add_4flags +
scale_x_date(breaks = seq(1960, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-500, 200, 10))
B1GQ
Code
%>%
nama_10_gdp filter(na_item == "B1GQ",
== "PD15_EUR",
unit %in% c("FR", "DE", "IT", "ES")) %>%
geo year_to_date() %>%
filter(date >= as.Date("1995-01-01")) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
group_by(Geo) %>%
arrange(date) %>%
mutate(values = values/ values[1]) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("Price Deflator (B1GQ)") +
scale_color_identity() + add_4flags +
scale_x_date(breaks = seq(1960, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-500, 200, 10))
P41
Code
%>%
nama_10_gdp filter(na_item == "P41",
== "PD15_EUR",
unit %in% c("FR", "DE", "IT", "ES")) %>%
geo year_to_date() %>%
filter(date >= as.Date("1995-01-01")) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
group_by(Geo) %>%
arrange(date) %>%
mutate(values = values/ values[1]) %>%
ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
theme_minimal() + xlab("") + ylab("Price Deflator (P41)") +
scale_color_identity() + add_4flags +
scale_x_date(breaks = seq(1960, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-500, 200, 10))