source | dataset | .html | .RData |
---|---|---|---|
2024-09-15 | 2024-09-18 |
GDP, PPP (current international D)
Data - WDI
Info
Data on macro
source | dataset | .html | .RData |
---|---|---|---|
2024-09-15 | 2024-09-15 | ||
2024-09-15 | 2024-09-18 | ||
2024-09-15 | 2024-09-15 | ||
2024-09-15 | 2024-09-15 | ||
2024-09-15 | 2024-09-18 | ||
2024-09-15 | 2024-09-15 | ||
2024-09-04 | 2024-09-15 | ||
2024-09-15 | 2024-09-15 | ||
2024-08-21 | 2024-09-15 | ||
2024-09-15 | 2024-09-15 | ||
2024-09-02 | 2024-09-02 | ||
2024-08-29 | 2024-09-18 | ||
2024-06-06 | 2024-06-30 | ||
2024-09-15 | 2024-06-30 | ||
2024-09-15 | 2024-06-30 | ||
2024-07-01 | 2024-04-11 | ||
2024-07-01 | 2024-06-30 | ||
2024-09-18 | 2024-09-18 | ||
2024-09-18 | 2024-09-18 | ||
2024-09-15 | 2024-09-18 | ||
2024-09-15 | 2024-09-18 | ||
2024-09-15 | 2024-09-18 | ||
2024-09-15 | 2024-09-18 | ||
2024-09-15 | 2024-09-18 |
LAST_COMPILE
LAST_COMPILE |
---|
2024-09-18 |
Nobs - Javascript
Code
%>%
NY.GDP.MKTP.PP.CD left_join(iso2c, by = "iso2c") %>%
group_by(iso2c, Iso2c) %>%
mutate(value = round(value/(10^9))) %>%
summarise(Nobs = n(),
`Year 1` = first(year),
`GDP 1 (Bn)` = first(value) %>% paste0("$ ", .),
`Year 2` = last(year),
`GDP 2 (Bn)` = last(value) %>% paste0("$ ", .)) %>%
arrange(-Nobs) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(Iso2c)),
Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
2018 GDP by Country
Code
%>%
NY.GDP.MKTP.PP.CD right_join(iso2c %>%
filter((region != "Aggregates") & (region != "NA")),
by = "iso2c") %>%
group_by(iso2c, Iso2c) %>%
mutate(value = round(value/(10^9))) %>%
summarise(`GDP (Bn)` = last(value)) %>%
arrange(-`GDP (Bn)`) %>%
mutate(`GDP (Bn)` = `GDP (Bn)` %>% paste0("$ ", ., " Bn")) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(Iso2c)),
Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
2018 GDP by Country and Aggregates
Code
%>%
NY.GDP.MKTP.PP.CD right_join(iso2c, by = "iso2c") %>%
group_by(iso2c, Iso2c) %>%
mutate(value = round(value/(10^9))) %>%
summarise(`GDP (Bn)` = last(value)) %>%
arrange(-`GDP (Bn)`) %>%
mutate(`GDP (Bn)` = `GDP (Bn)` %>% paste0("$ ", ., " Bn")) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
Euro Area vs. US
Base 100
Code
%>%
NY.GDP.MKTP.PP.CD left_join(iso2c, by = "iso2c") %>%
%>%
year_to_date filter(iso2c %in% c("XC", "US"),
>= as.Date("2008-01-01")) %>%
date group_by(iso2c) %>%
arrange(date) %>%
mutate(value = 100*value/value[1]) %>%
mutate(Iso2c = ifelse(iso2c == "XC", "Europe", Iso2c)) %>%
left_join(colors, by = c("Iso2c" = "country")) %>%
mutate(color = ifelse(iso2c == "US", color2, color)) %>%
ggplot(.) + theme_minimal() + scale_color_identity() +
geom_line(aes(x = date, y = value, color = color)) +
+
add_2flags scale_x_date(breaks = seq(1950, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(70, 300, 5)) +
xlab("") + ylab("PIB en $ (100 = 2008)")
Avec dollars
Code
%>%
NY.GDP.MKTP.PP.CD left_join(iso2c, by = "iso2c") %>%
%>%
year_to_date filter(iso2c %in% c("XC", "US"),
>= as.Date("2008-01-01")) %>%
date group_by(iso2c) %>%
arrange(date) %>%
mutate(Iso2c = ifelse(iso2c == "XC", "Europe", Iso2c)) %>%
left_join(colors, by = c("Iso2c" = "country")) %>%
mutate(color = ifelse(iso2c == "US", color2, color)) %>%
%>%
ungroup mutate(dollar = value/10^9,
value = 100*value/value[2]) %>%
ggplot(.) + theme_minimal() + scale_color_identity() +
geom_line(aes(x = date, y = value, color = color)) +
+
add_2flags scale_x_date(breaks = seq(1950, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(10, 300, 5)) +
xlab("") + ylab("PIB en $ (100 = Zone Euro, 2008)") +
geom_text_repel(data = . %>% filter(year(date) %in% seq(2008, 2022, 2)),
aes(x = date, y = value, label = paste0("$", round(dollar, digits = -2), " Md")))
China, E.U., U.S.
Linear
Code
%>%
NY.GDP.MKTP.PP.CD right_join(iso2c, by = "iso2c") %>%
filter(iso2c %in% c("1W", "US", "CN", "EU")) %>%
group_by(year) %>%
mutate(value = value/value[iso2c == "1W"]) %>%
%>%
year_to_date filter(!(iso2c == "1W")) %>%
mutate(Iso2c = ifelse(iso2c == "EU", "Europe", Iso2c)) %>%
left_join(colors, by = c("Iso2c" = "country")) %>%
mutate(color = ifelse(iso2c == "US", color2, color)) %>%
ggplot(.) + theme_minimal() + scale_color_identity() +
geom_line(aes(x = date, y = value, color = color)) +
+
add_3flags scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 70, 2),
labels = scales::percent_format(accuracy = 1),
limits = c(0, 0.23)) +
xlab("") + ylab("% du PIB mondial en Parité de Pouvoir d'Achat")
Log
Code
%>%
NY.GDP.MKTP.PP.CD right_join(iso2c, by = "iso2c") %>%
filter(iso2c %in% c("1W", "US", "CN", "EU")) %>%
group_by(year) %>%
mutate(value = value/value[iso2c == "1W"]) %>%
%>%
year_to_date filter(!(iso2c == "1W")) %>%
mutate(Iso2c = ifelse(iso2c == "EU", "Europe", Iso2c)) %>%
left_join(colors, by = c("Iso2c" = "country")) %>%
mutate(color = ifelse(iso2c == "US", color2, color)) %>%
ggplot(.) + theme_minimal() + scale_color_identity() +
geom_line(aes(x = date, y = value, color = color)) +
+
add_3flags scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = 0.01*seq(0, 70, 5),
labels = scales::percent_format(accuracy = 1)) +
xlab("") + ylab("% du PIB mondial en Parité de Pouvoir d'Achat")
PPP vs current
EU27
Code
<- NY.GDP.MKTP.CD %>%
plot1 right_join(iso2c, by = "iso2c") %>%
filter(iso2c %in% c("1W", "US", "CN", "EU")) %>%
group_by(year) %>%
filter(n() > 3) %>%
mutate(value = value/value[iso2c == "1W"]) %>%
%>%
year_to_date filter(!(iso2c == "1W")) %>%
mutate(Iso2c = ifelse(iso2c == "XC", "Europe", Iso2c)) %>%
filter(date >= as.Date("1990-01-01")) %>%
left_join(colors, by = c("Iso2c" = "country")) %>%
mutate(color = ifelse(iso2c != "US", color2, color)) %>%
ggplot(.) + theme_minimal() + scale_color_identity() +
geom_line(aes(x = date, y = value, color = color)) +
+
add_3flags theme(legend.title = element_blank(),
legend.position = c(0.85, 0.85)) +
scale_x_date(breaks = seq(1950, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 70, 5),
labels = scales::percent_format(accuracy = 1),
limits = 0.01*c(0, 35)) +
xlab("") + ylab("% du PIB mondial") +
ggtitle("En $ Courants")
<- NY.GDP.MKTP.PP.CD %>%
plot2 right_join(iso2c, by = "iso2c") %>%
filter(iso2c %in% c("1W", "US", "CN", "EU")) %>%
group_by(year) %>%
filter(n() > 3) %>%
mutate(value = value/value[iso2c == "1W"]) %>%
%>%
year_to_date filter(!(iso2c == "1W")) %>%
mutate(Iso2c = ifelse(iso2c == "XC", "Europe", Iso2c)) %>%
filter(date >= as.Date("1990-01-01")) %>%
left_join(colors, by = c("Iso2c" = "country")) %>%
mutate(color = ifelse(iso2c != "US", color2, color)) %>%
ggplot(.) + theme_minimal() + scale_color_identity() +
geom_line(aes(x = date, y = value, color = color)) +
+
add_3flags theme(legend.title = element_blank(),
legend.position = c(0.85, 0.85)) +
scale_x_date(breaks = seq(1950, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 70, 5),
labels = scales::percent_format(accuracy = 1),
limits = 0.01*c(0, 35)) +
xlab("") + ylab("% du PIB mondial") +
ggtitle("En $ Parités de Pouvoir d'Achat")
::ggarrange(plot1, plot2) ggpubr
Eurozone
Code
<- NY.GDP.MKTP.CD %>%
plot1 right_join(iso2c, by = "iso2c") %>%
filter(iso2c %in% c("1W", "US", "CN", "XC")) %>%
group_by(year) %>%
filter(n() > 3) %>%
mutate(value = value/value[iso2c == "1W"]) %>%
%>%
year_to_date filter(!(iso2c == "1W")) %>%
mutate(Iso2c = ifelse(iso2c == "XC", "Europe", Iso2c)) %>%
filter(date >= as.Date("1990-01-01")) %>%
left_join(colors, by = c("Iso2c" = "country")) %>%
mutate(color = ifelse(iso2c != "US", color2, color)) %>%
ggplot(.) + theme_minimal() + scale_color_identity() +
geom_line(aes(x = date, y = value, color = color)) +
+
add_3flags theme(legend.title = element_blank(),
legend.position = c(0.85, 0.85)) +
scale_x_date(breaks = seq(1950, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 70, 5),
labels = scales::percent_format(accuracy = 1),
limits = 0.01*c(0, 35)) +
xlab("") + ylab("% du PIB mondial") +
ggtitle("En $ Courants")
<- NY.GDP.MKTP.PP.CD %>%
plot2 right_join(iso2c, by = "iso2c") %>%
filter(iso2c %in% c("1W", "US", "CN", "XC")) %>%
group_by(year) %>%
filter(n() > 3) %>%
mutate(value = value/value[iso2c == "1W"]) %>%
%>%
year_to_date filter(!(iso2c == "1W")) %>%
mutate(Iso2c = ifelse(iso2c == "XC", "Europe", Iso2c)) %>%
filter(date >= as.Date("1990-01-01")) %>%
left_join(colors, by = c("Iso2c" = "country")) %>%
mutate(color = ifelse(iso2c != "US", color2, color)) %>%
ggplot(.) + theme_minimal() + scale_color_identity() +
geom_line(aes(x = date, y = value, color = color)) +
+
add_3flags theme(legend.title = element_blank(),
legend.position = c(0.85, 0.85)) +
scale_x_date(breaks = seq(1950, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 70, 5),
labels = scales::percent_format(accuracy = 1),
limits = 0.01*c(0, 35)) +
xlab("") + ylab("% du PIB mondial") +
ggtitle("En $ Parités de Pouvoir d'Achat")
::ggarrange(plot1, plot2) ggpubr
Italy, France, Allemagne, Espagne
Linear
Code
%>%
NY.GDP.MKTP.PP.CD right_join(iso2c, by = "iso2c") %>%
filter(iso2c %in% c("1W", "IT", "FR", "DE", "ES")) %>%
group_by(year) %>%
mutate(value = value/value[iso2c == "1W"]) %>%
%>%
year_to_date filter(!(iso2c == "1W")) %>%
mutate(Iso2c = ifelse(iso2c == "EU", "Europe", Iso2c)) %>%
left_join(colors, by = c("Iso2c" = "country")) %>%
mutate(color = ifelse(iso2c == "US", color2, color)) %>%
ggplot(.) + theme_minimal() + scale_color_identity() +
geom_line(aes(x = date, y = value, color = color)) +
+
add_4flags scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 70, .5),
labels = scales::percent_format(accuracy = .1)) +
xlab("") + ylab("% du PIB mondial en Parité de Pouvoir d'Achat")
Log
Code
%>%
NY.GDP.MKTP.PP.CD right_join(iso2c, by = "iso2c") %>%
filter(iso2c %in% c("1W", "IT", "FR", "DE", "ES")) %>%
group_by(year) %>%
mutate(value = value/value[iso2c == "1W"]) %>%
%>%
year_to_date filter(!(iso2c == "1W")) %>%
mutate(Iso2c = ifelse(iso2c == "EU", "Europe", Iso2c)) %>%
left_join(colors, by = c("Iso2c" = "country")) %>%
mutate(color = ifelse(iso2c == "US", color2, color)) %>%
ggplot(.) + theme_minimal() + scale_color_identity() +
geom_line(aes(x = date, y = value, color = color)) +
+
add_4flags scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = 0.01*seq(0, 70, .5),
labels = scales::percent_format(accuracy = .1)) +
xlab("") + ylab("% du PIB mondial en Parité de Pouvoir d'Achat")
South Korea, Russia, Indonesia
Code
%>%
NY.GDP.MKTP.PP.CD right_join(iso2c, by = "iso2c") %>%
filter(iso2c %in% c("1W", "ID", "KR", "RU")) %>%
group_by(year) %>%
mutate(value = value/value[iso2c == "1W"]) %>%
%>%
year_to_date filter(!(iso2c == "1W")) %>%
mutate(Iso2c = ifelse(iso2c == "EU", "Europe", Iso2c)) %>%
mutate(Iso2c = ifelse(iso2c == "KR", "Korea", Iso2c)) %>%
mutate(Iso2c = ifelse(iso2c == "RU", "Russia", Iso2c)) %>%
left_join(colors, by = c("Iso2c" = "country")) %>%
mutate(color = ifelse(iso2c == "US", color2, color)) %>%
ggplot(.) + theme_minimal() + scale_color_identity() +
geom_line(aes(x = date, y = value, color = color)) +
+
add_3flags scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 70, 0.5),
labels = scales::percent_format(accuracy = .1)) +
xlab("") + ylab("% du World GDP")
Japan, India, United Kingdom
Code
%>%
NY.GDP.MKTP.PP.CD right_join(iso2c, by = "iso2c") %>%
filter(iso2c %in% c("1W", "IN", "JP", "GB")) %>%
group_by(year) %>%
mutate(value = value/value[iso2c == "1W"]) %>%
%>%
year_to_date filter(!(iso2c == "1W")) %>%
mutate(Iso2c = ifelse(iso2c == "EU", "Europe", Iso2c)) %>%
left_join(colors, by = c("Iso2c" = "country")) %>%
mutate(color = ifelse(iso2c == "US", color2, color)) %>%
ggplot(.) + theme_minimal() + scale_color_identity() +
geom_line(aes(x = date, y = value, color = color)) +
+
add_3flags scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 70, 2),
labels = scales::percent_format(accuracy = 1),
limits = 0.01*c(0, 10)) +
xlab("") + ylab("% of World GDP")
Germany, France, Italy
Code
%>%
NY.GDP.MKTP.PP.CD right_join(iso2c, by = "iso2c") %>%
filter(iso2c %in% c("1W", "DE", "FR", "IT")) %>%
group_by(year) %>%
mutate(value = value/value[iso2c == "1W"]) %>%
%>%
year_to_date filter(!(iso2c == "1W")) %>%
mutate(Iso2c = ifelse(iso2c == "EU", "Europe", Iso2c)) %>%
left_join(colors, by = c("Iso2c" = "country")) %>%
mutate(color = ifelse(iso2c == "US", color2, color)) %>%
ggplot(.) + theme_minimal() + scale_color_identity() +
geom_line(aes(x = date, y = value, color = color)) +
+
add_3flags scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 70, 2),
labels = scales::percent_format(accuracy = 1),
limits = 0.01*c(0, 6)) +
xlab("") + ylab("% of World GDP")
Eurozone, European Union, United States
Code
%>%
NY.GDP.MKTP.PP.CD right_join(iso2c, by = "iso2c") %>%
filter(iso2c %in% c("1W", "XC", "US", "EU")) %>%
group_by(year) %>%
mutate(value = value/value[iso2c == "1W"]) %>%
%>%
year_to_date filter(!(iso2c == "1W")) %>%
mutate(Iso2c = ifelse(iso2c == "EU", "Europe", Iso2c)) %>%
left_join(colors, by = c("Iso2c" = "country")) %>%
mutate(color = ifelse(iso2c == "US", color2, color)) %>%
ggplot(.) + theme_minimal() + scale_color_identity() +
geom_line(aes(x = date, y = value, color = color)) +
+
add_3flags scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 70, 5),
labels = scales::percent_format(accuracy = 1),
limits = 0.01*c(0, 25)) +
xlab("") + ylab("% of World GDP")
Germany, Japan, United Kingdom
Code
%>%
NY.GDP.MKTP.PP.CD right_join(iso2c, by = "iso2c") %>%
filter(iso2c %in% c("1W", "JP", "DE", "GB")) %>%
group_by(year) %>%
mutate(value = value/value[iso2c == "1W"]) %>%
%>%
year_to_date filter(!(iso2c == "1W")) %>%
mutate(Iso2c = ifelse(iso2c == "EU", "Europe", Iso2c)) %>%
left_join(colors, by = c("Iso2c" = "country")) %>%
mutate(color = ifelse(iso2c == "US", color2, color)) %>%
ggplot(.) + theme_minimal() + scale_color_identity() +
geom_line(aes(x = date, y = value, color = color)) +
+
add_3flags scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 70, 2),
labels = scales::percent_format(accuracy = 1),
limits = 0.01*c(0, 10)) +
xlab("") + ylab("% of World GDP")
United Kingdom, France, Italy
Code
%>%
NY.GDP.MKTP.PP.CD right_join(iso2c, by = "iso2c") %>%
filter(iso2c %in% c("1W", "GB", "FR", "IT")) %>%
group_by(year) %>%
mutate(value = value/value[iso2c == "1W"]) %>%
%>%
year_to_date filter(!(iso2c == "1W")) %>%
mutate(Iso2c = ifelse(iso2c == "EU", "Europe", Iso2c)) %>%
left_join(colors, by = c("Iso2c" = "country")) %>%
mutate(color = ifelse(iso2c == "US", color2, color)) %>%
ggplot(.) + theme_minimal() + scale_color_identity() +
geom_line(aes(x = date, y = value, color = color)) +
+
add_3flags scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 70, 0.5),
labels = scales::percent_format(accuracy = .1)) +
xlab("") + ylab("% of World GDP")
Brazil, Russia, India
Code
%>%
NY.GDP.MKTP.PP.CD right_join(iso2c, by = "iso2c") %>%
filter(iso2c %in% c("1W", "BR", "RU", "IN")) %>%
mutate(Iso2c = ifelse(iso2c == "RU", "Russia", Iso2c)) %>%
group_by(year) %>%
mutate(value = value/value[iso2c == "1W"]) %>%
%>%
year_to_date filter(!(iso2c == "1W")) %>%
mutate(Iso2c = ifelse(iso2c == "EU", "Europe", Iso2c)) %>%
left_join(colors, by = c("Iso2c" = "country")) %>%
mutate(color = ifelse(iso2c == "US", color2, color)) %>%
ggplot(.) + theme_minimal() + scale_color_identity() +
geom_line(aes(x = date, y = value, color = color)) +
+
add_3flags scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 70, 1),
labels = scales::percent_format(accuracy = 1)) +
xlab("") + ylab("% of World GDP")