Comptes Financiers Trimestriels

Data - BDF

Info

source dataset .html .RData
bdf CFT 2025-01-13 2025-01-13
  • Méthodologie. pdf

Last

date Nobs
2024-09-30 4

Liste des publications

  • Épargne et Patrimoine financiers des ménages, 2024T1. pdf / html

  • Comptes financiers des agents non financiers. STAT INFO – 4e trimestre 2023. pdf

  • Épargne des ménages. STAT INFO – février 2024. pdf

Info

  • Épargne et Patrimoine financiers des ménages, 2024T2. pdf html

  • Épargne et Patrimoine financiers des ménages, Comptes financiers des agents non financiers, 15 avril 2024, 2023T4. pdf html

  • Épargne et Patrimoine financiers des ménages, 2023T3. pdf

  • Épargne et Patrimoine financiers des ménages, 2023T2. pdf

  • Présentation trimestrielle de l’épargne des ménages, 2023T1. html pdf

  • Méthodologie. pdf

  • Liste séries. html

  • Épargne et Patrimoine financiers des ménages, 2022T2. pdf

  • Epargne des ménages, 2021T1. pdf

  • Taux d’endettement des agents non financiers – Comparaisons internationales, 2020T4. html / pdf

  • Epargne des ménages, 2020T3. pdf

STO

Code
CFT %>%
  left_join(CFT_var, by = "variable") %>%
  left_join(STO, by = "STO") %>%
  group_by(STO, Sto) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional
STO Sto Nobs
F flux 13459
LE Encours 8793
B8G Taux d'épargne des ménages 836
B9Z Taux d'épargne financière des ménages 693
K Réévaluations et autres changements de volume 258
K5 Impact de valorisation 167
P51G Formation brute de capital fixe 143

FREQ Frequency

Code
CFT %>%
  left_join(CFT_var, by = "variable") %>%
  left_join(FREQ, by = "FREQ") %>%
  group_by(FREQ, Freq) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional
FREQ Freq Nobs
Q Trimestriel 22870
A Annuel 1479

ADJUSTMENT Adjustment

Code
CFT %>%
  left_join(CFT_var, by = "variable") %>%
  left_join(ADJUSTMENT, by = "ADJUSTMENT") %>%
  group_by(ADJUSTMENT, Adjustment) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional
ADJUSTMENT Adjustment Nobs
N Brut 11931
S CVS 11874
Y CVS/CJO 286
_Z Non applicable 258

REF_AREA Reference area - ISO2

Code
CFT %>%
  left_join(CFT_var, by = "variable") %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  group_by(REF_AREA, Ref_area) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional
REF_AREA Ref_area Nobs
FR France 18452
DE Germany 936
ES Spain 936
IT Italy 936
US United States 936
GB United Kingdom 831
I9 NA 710
JP Japan 612

COUNTERPART_AREA Counterpart area

Code
CFT %>%
  left_join(CFT_var, by = "variable") %>%
  left_join(COUNTERPART_AREA, by = "COUNTERPART_AREA") %>%
  group_by(COUNTERPART_AREA, Counterpart_area) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional
COUNTERPART_AREA Counterpart_area Nobs
W0 World (all areas, including reference area, including IO) 23314
W2 Domestic (home or reference area) 1035

REF_SECTOR Reference sector

Code
CFT %>%
  left_join(CFT_var, by = "variable") %>%
  left_join(REF_SECTOR, by = "REF_SECTOR") %>%
  group_by(REF_SECTOR, Ref_sector) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional
REF_SECTOR Ref_sector Nobs
S1M Ménages et Institution sans but lucratif au service des ménages (ISBLSM) 14519
S11 Sociétés non financières 5326
S13 Administrations publiques 3586
S1V Sociétés non-financières, ménages et NPISH 918

COUNTERPART_SECTOR Counterpart sector

Code
CFT %>%
  left_join(CFT_var, by = "variable") %>%
  left_join(COUNTERPART_SECTOR, by = "COUNTERPART_SECTOR") %>%
  group_by(COUNTERPART_SECTOR, Counterpart_sector) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional
COUNTERPART_SECTOR Counterpart_sector Nobs
S1 Ensemble de l`économie 23314
S124 des OPC non monétaires 1035

ACCOUNTING_ENTRY Accounting entries

Code
CFT %>%
  left_join(CFT_var, by = "variable") %>%
  left_join(ACCOUNTING_ENTRY, by = "ACCOUNTING_ENTRY") %>%
  group_by(ACCOUNTING_ENTRY, Accounting_entry) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional
ACCOUNTING_ENTRY Accounting_entry Nobs
A Créances 13245
L Engagements 8673
B Balance (Crédit moins débit) 1529
N Net (avoirs moins engagements) 506
NE Engagements Nets (engagements moins avoirs) 253
D Débit (dépenses) 143

INSTR_ASSET Instrument and assets classification

Code
CFT %>%
  left_join(CFT_var, by = "variable") %>%
  left_join(INSTR_ASSET, by = "INSTR_ASSET") %>%
  group_by(INSTR_ASSET, Instr_asset) %>%
  summarise(Nobs = n()) %>%
  #arrange(-Nobs) %>%
  print_table_conditional

MATURITY Maturity

Code
CFT %>%
  left_join(CFT_var, by = "variable") %>%
  left_join(MATURITY, by = "MATURITY") %>%
  group_by(MATURITY, Maturity) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional
MATURITY Maturity Nobs
T Toutes maturités d`origine 12536
_Z Non applicable 11813

UNIT_MEASURE Unit of measure

Code
CFT %>%
  left_join(CFT_var, by = "variable") %>%
  left_join(UNIT_MEASURE, by = "UNIT_MEASURE") %>%
  group_by(UNIT_MEASURE, Unit_measure) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional
UNIT_MEASURE Unit_measure Nobs
XDC Monnaie nationale 17073
XDC_R_B1GQ_CY Monnaie nationale (incl. une conversion à la monnaie courante en utilisant une parité fixe); ratio à la somme du glissement annuel du produit intérieur brut 3260
XDC_R_B6G_S1M en % du RDB 2202
XDC_R_B1G_CY NA 809
XDC_R_DEBT NA 612
PC Pourcent 393

CURRENCY_DENOM Currency denominator

Code
CFT %>%
  left_join(CFT_var, by = "variable") %>%
  left_join(CURRENCY_DENOM, by = "CURRENCY_DENOM") %>%
  group_by(CURRENCY_DENOM, Currency_denom) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional
CURRENCY_DENOM Currency_denom Nobs
_T Toutes monnaies d`opération 24349

VALUATION Valuation

Code
CFT %>%
  left_join(CFT_var, by = "variable") %>%
  left_join(VALUATION, by = "VALUATION") %>%
  group_by(VALUATION, Valuation) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional
VALUATION Valuation Nobs
S Valorisation standard basée sur ESA2010/SNA2008 23129
N Valeur nominale (N) 612
F Valeur nominale (F) 608

date

Code
CFT %>%
  group_by(date) %>%
  summarise(Nobs = n()) %>%
  arrange(desc(date)) %>%
  print_table_conditional

Grandes masses

2024T2

Code
ig_b("bdf", "CFT-2024T2")

2023T4

Code
ig_b("bdf", "CFT-2023T4")

Produits de taux

Code
CFT %>%
  left_join(CFT_var, by = "variable") %>%
  filter(STO == "LE",
         INSTR_ASSET %in% c("PDTX")) %>%
  na.omit %>%
  ggplot + geom_line(aes(x = date, y = value, color = Variable)) + 
  xlab("") + ylab("") + theme_minimal() +
  scale_x_date(breaks = "1 year",
               labels = date_format("%Y")) +
  scale_y_log10(breaks = seq(-200, 10000, 100),
                     labels = dollar_format(acc = 1, prefix = "", su = "Mds€")) +
  theme(legend.position = c(0.35, 0.9),
        legend.title = element_blank(),
        legend.direction = "vertical") +
  geom_label(data = . %>% filter(date == as.Date("2023-12-31")),
             aes(x = date, y = value, color = Variable, label = round(value)))

Produits de fonds propres

Code
CFT %>%
  left_join(CFT_var, by = "variable") %>%
  filter(STO == "LE",
         INSTR_ASSET %in% c("PDFP")) %>%
  na.omit %>%
  ggplot + geom_line(aes(x = date, y = value, color = Variable)) + 
  xlab("") + ylab("") + theme_minimal() +
  scale_x_date(breaks = "1 year",
               labels = date_format("%Y")) +
  scale_y_log10(breaks = seq(-200, 10000, 100),
                     labels = dollar_format(acc = 1, prefix = "", su = "Mds€")) +
  theme(legend.position = c(0.35, 0.9),
        legend.title = element_blank(),
        legend.direction = "vertical") +
  geom_label(data = . %>% filter(date == as.Date("2023-12-31")),
             aes(x = date, y = value, color = Variable, label = round(value)))

Côté, non côté

Code
CFT %>%
  left_join(CFT_var, by = "variable") %>%
  filter(STO == "LE",
         INSTR_ASSET %in% c("PDFP", "F51", "F511", "F51M", "F52")) %>%
  na.omit %>%
  ggplot + geom_line(aes(x = date, y = value, color = Variable)) + 
  xlab("") + ylab("") + theme_minimal() +
  scale_x_date(breaks = "1 year",
               labels = date_format("%Y")) +
  scale_y_log10(breaks = seq(-200, 10000, 100),
                     labels = dollar_format(acc = 1, prefix = "", su = "Mds€")) +
  theme(legend.position = c(0.5, 0.7),
        legend.title = element_blank(),
        legend.direction = "vertical") +
  geom_label(data = . %>% filter(date == as.Date("2023-12-31")),
             aes(x = date, y = value, color = Variable, label = round(value)))

Detail

Linéaire

Code
CFT %>%
  left_join(CFT_var, by = "variable") %>%
  filter(STO == "LE",
         INSTR_ASSET %in% c("F62A", "F62B", "F29R", "F2A", "F29Z")) %>%
  na.omit %>%
  ggplot + geom_line(aes(x = date, y = value, color = Variable)) + 
  xlab("") + ylab("") + theme_minimal() +
  scale_x_date(breaks = "1 year",
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = seq(-200, 10000, 100),
                     labels = dollar_format(acc = 1, prefix = "", su = "Mds€")) +
  theme(legend.position = c(0.45, 0.17),
        legend.title = element_blank(),
        legend.direction = "vertical") +
  geom_label(data = . %>% filter(date == as.Date("2023-12-31")),
             aes(x = date, y = value, color = Variable, label = round(value)))

Log

Code
CFT %>%
  left_join(CFT_var, by = "variable") %>%
  filter(STO == "LE",
         INSTR_ASSET %in% c("F62A", "F62B", "F29R", "F2A", "F29Z")) %>%
  na.omit %>%
  ggplot + geom_line(aes(x = date, y = value, color = Variable)) + 
  xlab("") + ylab("") + theme_minimal() +
  scale_x_date(breaks = "1 year",
               labels = date_format("%Y")) +
  scale_y_log10(breaks = seq(-200, 10000, 100),
                     labels = dollar_format(acc = 1, prefix = "", su = "Mds€")) +
  theme(legend.position = c(0.45, 0.17),
        legend.title = element_blank(),
        legend.direction = "vertical") +
  geom_label(data = . %>% filter(date == as.Date("2023-12-31")),
             aes(x = date, y = value, color = Variable, label = round(value)))

Stock

Numéraires et dépôts à vue

Code
CFT %>%
  left_join(CFT_var, by = "variable") %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  filter(REF_AREA %in% c("FR", "IT", "DE"),
         INSTR_ASSET == "F2A",
         STO == "LE") %>%
  mutate(Ref_area = ifelse(REF_AREA == "I8", "Europe", Ref_area)) %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  na.omit %>%
  ggplot + geom_line(aes(x = date, y = value, color = color)) + 
  xlab("") + ylab("") + theme_minimal() + scale_color_identity() + add_3flags +
  scale_x_date(breaks = "1 year",
               labels = date_format("%Y")) +
  scale_y_log10(breaks = seq(100, 4000, 100),
                labels = dollar_format(accuracy = 1, pre = "", su = " Mds€")) +
  geom_label(data = . %>% filter(date == as.Date("2023-12-31")),
             aes(x = date, y = value, label = round(value)))

Stocks

Code
CFT %>%
  left_join(CFT_var, by = "variable") %>%
  left_join(INSTR_ASSET, by = "INSTR_ASSET") %>%
  filter(REF_AREA %in% c("FR"),
         INSTR_ASSET %in% c("F2A", "F29Z", "F62B", "F29R"),
         STO == "LE") %>%
  select(date, value, Instr_asset) %>%
  na.omit %>%
  ggplot + geom_line(aes(x = date, y = value, color = Instr_asset)) + 
  xlab("") + ylab("") + theme_minimal() +
  
  scale_x_date(breaks = "1 year",
               labels = date_format("%Y")) +
  scale_y_log10(breaks = seq(100, 4000, 100),
                labels = dollar_format(accuracy = 1, pre = "", su = " Mds€")) +
  theme(legend.position = c(0.4, 0.4),
        legend.title = element_blank(),
        legend.direction = "vertical") +
  geom_label(data = . %>% filter(date == as.Date("2023-12-31")),
             aes(x = date, y = value, color = Instr_asset, label = round(value)))

Numéraires et dépôts à vue

Stocks

All

Code
CFT %>%
  left_join(CFT_var, by = "variable") %>%
  left_join(INSTR_ASSET, by = "INSTR_ASSET") %>%
  filter(REF_AREA %in% c("FR"),
         INSTR_ASSET %in% c("F2A", "F29Z", "F62B"),
         STO == "LE") %>%
  select(date, value, Instr_asset) %>%
  na.omit %>%
  ggplot + geom_line(aes(x = date, y = value, color = Instr_asset)) + 
  xlab("") + ylab("") + theme_minimal() +
  
  scale_x_date(breaks = "1 year",
               labels = date_format("%Y")) +
  scale_y_log10(breaks = seq(100, 4000, 100),
                labels = dollar_format(accuracy = 1, pre = "", su = " Mds€")) +
  theme(legend.position = c(0.4, 0.4),
        legend.title = element_blank(),
        legend.direction = "vertical") +
  geom_label(data = . %>% filter(date == as.Date("2023-12-31")),
             aes(x = date, y = value, color = Instr_asset, label = round(value)))

2019-

Code
CFT %>%
  left_join(CFT_var, by = "variable") %>%
  left_join(INSTR_ASSET, by = "INSTR_ASSET") %>%
  filter(REF_AREA %in% c("FR"),
         INSTR_ASSET %in% c("F2A", "F29Z", "F62B"),
         STO == "LE") %>%
  select(date, value, Instr_asset) %>%
  na.omit %>%
  filter(date >= as.Date("2022-01-01")) %>%
  ggplot + geom_line(aes(x = date, y = value, color = Instr_asset)) + 
  xlab("") + ylab("") + theme_minimal() +
  
  scale_x_date(breaks = "3 months",
               labels = date_format("%b %Y")) +
  scale_y_log10(breaks = seq(100, 4000, 100),
                labels = dollar_format(accuracy = 1, pre = "", su = " Mds€")) +
  theme(legend.position = c(0.4, 0.4),
        legend.title = element_blank(),
        legend.direction = "vertical") +
  geom_label(data = . %>% filter(date == as.Date("2023-12-31")),
             aes(x = date, y = value, color = Instr_asset, label = round(value)))

Flux - 4 trimestres

Code
CFT %>%
  left_join(CFT_var, by = "variable") %>%
  left_join(INSTR_ASSET, by = "INSTR_ASSET") %>%
  filter(REF_AREA %in% c("FR"),
         INSTR_ASSET %in% c("F2A", "F29Z", "F62B", "F29R"),
         STO == "F",
         TRANSFORMATION == "C4") %>%
  #filter(date >= as.Date("2016-01-01")) %>%
  select(date, value, Instr_asset) %>%
  na.omit %>%
  ggplot + geom_line(aes(x = date, y = value, color = Instr_asset)) + 
  xlab("") + ylab("") + theme_minimal() +
  
  scale_x_date(breaks = "1 year",
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = seq(-2000, 4000, 10),
                labels = dollar_format(accuracy = 1, pre = "", su = " Mds€")) +
  theme(legend.position = c(0.4, 0.8),
        legend.title = element_blank(),
        legend.direction = "vertical")

Flux

All

Code
CFT %>%
  left_join(CFT_var, by = "variable") %>%
  left_join(INSTR_ASSET, by = "INSTR_ASSET") %>%
  filter(REF_AREA %in% c("FR"),
         INSTR_ASSET %in% c("F2A", "F29Z", "F62B", "F29R"),
         STO == "F",
         TRANSFORMATION == "N",
         FREQ == "Q") %>%
  filter(date >= as.Date("2010-01-01")) %>%
  ggplot + geom_line(aes(x = date, y = value, color = Instr_asset)) + 
  xlab("") + ylab("") + theme_minimal() +
  
  scale_x_date(breaks = "1 year",
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = seq(-1000, 4000, 10),
                labels = dollar_format(accuracy = 1, pre = "", su = " Mds€")) +
  theme(legend.position = c(0.4, 0.8),
        legend.title = element_blank(),
        legend.direction = "vertical")

2016

Code
CFT %>%
  left_join(CFT_var, by = "variable") %>%
  left_join(INSTR_ASSET, by = "INSTR_ASSET") %>%
  filter(REF_AREA %in% c("FR"),
         INSTR_ASSET %in% c("F2A", "F29Z", "F62B", "F29R"),
         STO == "F",
         TRANSFORMATION == "N",
         FREQ == "Q") %>%
  filter(date >= as.Date("2016-01-01")) %>%
  ggplot + geom_line(aes(x = date, y = value, color = Instr_asset)) + 
  xlab("") + ylab("") + theme_minimal() +
  
  scale_x_date(breaks = "1 year",
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = seq(-1000, 4000, 10),
                labels = dollar_format(accuracy = 1, pre = "", su = " Mds€")) +
  theme(legend.position = c(0.4, 0.9),
        legend.title = element_blank(),
        legend.direction = "vertical") +
  geom_hline(yintercept = 0, linetype = "dashed")

Actions côtées / non côtées, AV en unités de compte

Stocks

Code
CFT %>%
  left_join(CFT_var, by = "variable") %>%
  left_join(INSTR_ASSET, by = "INSTR_ASSET") %>%
  filter(REF_AREA %in% c("FR"),
         INSTR_ASSET %in% c( "F511", "F51M", "F51"),
         STO == "LE") %>%
  na.omit %>%
  ggplot + geom_line(aes(x = date, y = value, color = Instr_asset)) + 
  xlab("") + ylab("") + theme_minimal() +
  
  scale_x_date(breaks = "1 year",
               labels = date_format("%Y")) +
  scale_y_log10(breaks = seq(100, 4000, 100),
                labels = dollar_format(accuracy = 1, pre = "", su = " Mds€")) +
  theme(legend.position = c(0.4, 0.6),
        legend.title = element_blank(),
        legend.direction = "vertical") +
  geom_label(data = . %>% filter(date == as.Date("2023-12-31")),
             aes(x = date, y = value, color = Instr_asset, label = round(value)))

Actions côtées / non côtées, AV en unités de compte

Stocks

Code
CFT %>%
  left_join(CFT_var, by = "variable") %>%
  left_join(INSTR_ASSET, by = "INSTR_ASSET") %>%
  filter(REF_AREA %in% c("FR"),
         INSTR_ASSET %in% c( "F511", "F51M", "F62A"),
         STO == "LE") %>%
  na.omit %>%
  ggplot + geom_line(aes(x = date, y = value, color = Instr_asset)) + 
  xlab("") + ylab("") + theme_minimal() +
  
  scale_x_date(breaks = "1 year",
               labels = date_format("%Y")) +
  scale_y_log10(breaks = seq(100, 4000, 100),
                labels = dollar_format(accuracy = 1, pre = "", su = " Mds€")) +
  theme(legend.position = c(0.4, 0.6),
        legend.title = element_blank(),
        legend.direction = "vertical") +
  geom_label(data = . %>% filter(date == as.Date("2023-12-31")),
             aes(x = date, y = value, color = Instr_asset, label = round(value)))

Flux

Code
CFT %>%
  left_join(CFT_var, by = "variable") %>%
  left_join(INSTR_ASSET, by = "INSTR_ASSET") %>%
  filter(REF_AREA %in% c("FR"),
         INSTR_ASSET %in% c( "F511", "F51M", "F62A"),
         STO == "F",
         TRANSFORMATION == "N",
         FREQ == "Q") %>%
  filter(date >= as.Date("2016-01-01")) %>%
  ggplot + geom_line(aes(x = date, y = value, color = Instr_asset)) + 
  xlab("") + ylab("") + theme_minimal() +
  
  scale_x_date(breaks = "1 year",
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = seq(-2000, 4000, 5),
                labels = dollar_format(accuracy = 1, pre = "", su = " Mds€")) +
  theme(legend.position = c(0.4, 0.4),
        legend.title = element_blank(),
        legend.direction = "vertical")

Numéraires et dépôts à vue

Code
CFT %>%
  left_join(CFT_var, by = "variable") %>%
  left_join(INSTR_ASSET, by = "INSTR_ASSET") %>%
  filter(REF_AREA %in% c("FR"),
         INSTR_ASSET %in% c("F2A", "F29Z"),
         STO == "LE") %>%
  na.omit %>%
  ggplot + geom_line(aes(x = date, y = value, color = Instr_asset)) + 
  xlab("") + ylab("") + theme_minimal() +
  
  scale_x_date(breaks = "1 year",
               labels = date_format("%Y")) +
  scale_y_log10(breaks = seq(100, 4000, 100),
                labels = dollar_format(accuracy = 1, pre = "", su = " Mds€")) +
  theme(legend.position = c(0.75, 0.1),
        legend.title = element_blank(),
        legend.direction = "vertical") +
  geom_label(data = . %>% filter(date == as.Date("2023-12-31")),
             aes(x = date, y = value, color = Instr_asset, label = round(value)))

Assurance Vie

Toutes

2007-

Code
CFT %>%
  left_join(CFT_var, by = "variable") %>%
  filter(variable %in% c("CFT.Q.S.FR.W0.S1M.S1.N.A.F.F62B._Z._Z.XDC._T.S.V.N._T",
                         "CFT.Q.S.FR.W0.S1M.S1.N.A.F.F62A._Z._Z.XDC._T.S.V.N._T",
                         "CFT.Q.S.FR.W0.S1M.S1.N.A.F.F29R.T._Z.XDC._T.S.V.N._T",
                         "CFT.Q.S.FR.W0.S1M.S1.N.A.F.F2A.T._Z.XDC._T.S.V.N._T")) %>%
  na.omit %>%
  ggplot + geom_line(aes(x = date, y = value, color = Variable)) + 
  xlab("") + ylab("") + theme_minimal() +
  
  scale_x_date(breaks = "1 year",
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = seq(-200, 1000, 5),
                     limits = c(-25 ,40),
                     labels = dollar_format(acc = 1, prefix = "", su = "Mds€")) +
  theme(legend.position = c(0.45, 0.17),
        legend.title = element_blank(),
        legend.direction = "vertical")

2015-

Code
CFT %>%
  left_join(CFT_var, by = "variable") %>%
  filter(variable %in% c("CFT.Q.S.FR.W0.S1M.S1.N.A.F.F62B._Z._Z.XDC._T.S.V.N._T",
                         "CFT.Q.S.FR.W0.S1M.S1.N.A.F.F29Z.T._Z.XDC._T.S.V.N._T",
                         "CFT.Q.S.FR.W0.S1M.S1.N.A.F.F29R.T._Z.XDC._T.S.V.N._T",
                         "CFT.Q.S.FR.W0.S1M.S1.N.A.F.F2A.T._Z.XDC._T.S.V.N._T")) %>%
  filter(date >= as.Date("2015-01-01")) %>%
  ggplot + geom_line(aes(x = date, y = value, color = Variable)) + 
  xlab("") + ylab("") + theme_minimal() +
  
  scale_x_date(breaks = "1 year",
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = seq(-200, 1000, 5),
                     limits = c(-5 ,40),
                     labels = dollar_format(acc = 1, prefix = "", su = "Mds€")) +
  theme(legend.position = c(0.45, 0.8),
        legend.title = element_blank(),
        legend.direction = "vertical")

Taux d’épargne des ménages

Le taux d’épargne des ménages est le rapport entre l’épargne brute des ménages (B8G) et le revenu disponible brut ajusté des variations de droits à pension. Le revenu disponible brut (B6G) correspond aux revenus que perçoivent les ménages (revenus d’activité et revenus fonciers) après opérations de redistribution (ajout des prestations sociales en espèces reçues, soustraction des cotisations et impôts).

Quant au taux d’épargne financière, il s’agit de la part du revenu disponible brut investie dans des actifs financiers.

  • le taux d’épargne s’obtient en rapportant l’épargne brute au revenu disponible brut ajusté de la variation des droits des ménages sur les fonds de pension, préalablement corrigés des variations saisonnières

  • le taux d’épargne financière est estimé en soustrayant la formation brute de capital fixe à l’épargne brute, ensuite rapportée au revenu disponible brut ajusté de la variation des droits des ménages sur les fonds de pension, puis en corrigeant des variations saisonnières.

France

Annual

Code
CFT %>%
  left_join(CFT_var, by = "variable") %>%
  filter(variable %in% c("CFT.A.N.FR.W0.S1M.S1.N.B.B8G._Z._Z._Z.XDC_R_B6G_S1M._T.S.V.N._T",
                         "CFT.A.N.FR.W0.S1M.S1.N.B.B9Z._Z._Z._Z.XDC_R_B6G_S1M._T.S.V.N._T")) %>%
  na.omit %>%
  ggplot + geom_line(aes(x = date, y = value/100, color = Variable)) + 
  xlab("") + ylab("") + theme_minimal() +
  
  scale_x_date(breaks = "1 year",
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 100, 1),
                labels = percent_format(accuracy = 1)) +
  theme(legend.position = c(0.4, 0.9),
        legend.title = element_blank(),
        legend.direction = "vertical")

Quarterly

All

Code
CFT %>%
  left_join(CFT_var, by = "variable") %>%
  filter(variable %in% c("CFT.Q.N.FR.W0.S1M.S1.N.B.B8G._Z._Z._Z.XDC_R_B6G_S1M._T.S.V.C4._T",
                         "CFT.Q.N.FR.W0.S1M.S1.N.B.B9Z._Z._Z._Z.XDC_R_B6G_S1M._T.S.V.C4._T")) %>%
  na.omit %>%
  ggplot + geom_line(aes(x = date, y = value/100, color = Variable)) + 
  xlab("") + ylab("") + theme_minimal() +
  scale_x_date(breaks = "2 years",
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 100, 1),
                labels = percent_format(accuracy = 1)) +
  theme(legend.position = c(0.42, 0.9),
        legend.title = element_blank(),
        legend.direction = "vertical")

2010-

Code
CFT %>%
  left_join(CFT_var, by = "variable") %>%
  filter(variable %in% c("CFT.Q.N.FR.W0.S1M.S1.N.B.B8G._Z._Z._Z.XDC_R_B6G_S1M._T.S.V.C4._T",
                         "CFT.Q.N.FR.W0.S1M.S1.N.B.B9Z._Z._Z._Z.XDC_R_B6G_S1M._T.S.V.C4._T")) %>%
  na.omit %>%
  filter(date >= as.Date("2010-01-01")) %>%
  ggplot + geom_line(aes(x = date, y = value/100, color = Variable)) + 
  xlab("") + ylab("") + theme_minimal() +
  scale_x_date(breaks = "2 years",
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 100, 1),
                labels = percent_format(accuracy = 1)) +
  theme(legend.position = c(0.45, 0.9),
        legend.title = element_blank(),
        legend.direction = "vertical")

France, Spain, Italy

Table

Code
load_data("bdf/REF_AREA.RData")
CFT %>%
  left_join(CFT_var, by = "variable") %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  filter(FREQ == "Q",
         UNIT_MEASURE == "XDC_R_B6G_S1M",
         REF_SECTOR == "S1M",
         date == as.Date("2020-01-01")) %>%
  select(Variable, Ref_area, value) %>%
  arrange(Ref_area) %>%
  print_table_conditional
Variable Ref_area value
NA NA NA
:--------: :--------: :-----:

Taux d’épargne financière

France, Italy, Germany

Code
CFT %>%
  left_join(CFT_var, by = "variable") %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  filter(FREQ == "Q",
         REF_AREA %in% c("FR", "IT", "DE"),
         UNIT_MEASURE == "XDC_R_B6G_S1M",
         STO == "B9Z",
         REF_SECTOR == "S1M") %>%
  mutate(value = value/100) %>%
  na.omit %>%
  ggplot + geom_line(aes(x = date, y = value, color = Ref_area)) + 
  xlab("") + ylab("") + theme_minimal() +
  scale_color_manual(values = c("#002395", "#000000", "#009246")) +
  scale_x_date(breaks = "2 years",
               labels = date_format("%Y")) +
  add_3flags +
  scale_y_continuous(breaks = 0.01*seq(-10, 100, 1),
                labels = percent_format(accuracy = 1)) +
  theme(legend.position = "none")

France, Italy, Germany, Spain, United States

All

Code
CFT %>%
  left_join(CFT_var, by = "variable") %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  filter(FREQ == "Q",
         UNIT_MEASURE == "XDC_R_B6G_S1M",
         STO == "B9Z",
         REF_SECTOR == "S1M") %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  mutate(value = value/100) %>%
  na.omit %>%
  ggplot + geom_line(aes(x = date, y = value, color = color)) + 
  xlab("") + ylab("") + theme_minimal() + scale_color_identity() + add_6flags +
  scale_x_date(breaks = "2 years",
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 100, 1),
                labels = percent_format(accuracy = 1))

2007-

Code
CFT %>%
  left_join(CFT_var, by = "variable") %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  filter(FREQ == "Q",
         UNIT_MEASURE == "XDC_R_B6G_S1M",
         STO == "B9Z",
         REF_SECTOR == "S1M") %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  mutate(value = value/100) %>%
  filter(date >= as.Date("2007-01-01")) %>%
  na.omit %>%
  ggplot + geom_line(aes(x = date, y = value, color = color)) + 
  xlab("") + ylab("") + theme_minimal() + scale_color_identity() + add_6flags +
  scale_x_date(breaks = "1 year",
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 100, 1),
                labels = percent_format(accuracy = 1))

2015-

Code
CFT %>%
  left_join(CFT_var, by = "variable") %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  filter(FREQ == "Q",
         UNIT_MEASURE == "XDC_R_B6G_S1M",
         STO == "B9Z",
         REF_SECTOR == "S1M") %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  mutate(value = value/100) %>%
  filter(date >= as.Date("2015-01-01")) %>%
  na.omit %>%
  ggplot + geom_line(aes(x = date, y = value, color = color)) + 
  xlab("") + ylab("Taux d'épargne financière (%)") + theme_minimal() + scale_color_identity() + add_6flags +
  scale_x_date(breaks = "1 year",
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 100, 1),
                labels = percent_format(accuracy = 1))

Taux d’épargne

France, Italy, Germany

Code
CFT %>%
  left_join(CFT_var, by = "variable") %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  filter(FREQ == "Q",
         REF_AREA %in% c("FR", "IT", "DE"),
         UNIT_MEASURE == "XDC_R_B6G_S1M",
         STO == "B8G",
         REF_SECTOR == "S1M") %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  mutate(value = value/100) %>%
  na.omit %>%
  ggplot + geom_line(aes(x = date, y = value, color = color)) + 
  xlab("") + ylab("") + theme_minimal() + scale_color_identity() + add_3flags +
  scale_x_date(breaks = "2 years",
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 100, 1),
                labels = percent_format(accuracy = 1))

France, Italy, Germany, Spain, United States

Code
CFT %>%
  left_join(CFT_var, by = "variable") %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  filter(FREQ == "Q",
         UNIT_MEASURE == "XDC_R_B6G_S1M",
         STO == "B8G",
         REF_SECTOR == "S1M") %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  mutate(value = value/100) %>%
  na.omit %>%
  ggplot + geom_line(aes(x = date, y = value, color = color)) + 
  xlab("") + ylab("") + theme_minimal() + scale_color_identity() + add_6flags +
  scale_x_date(breaks = "2 years",
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 100, 1),
                labels = percent_format(accuracy = 1))

Dette

Dette des ménages

All

Code
CFT %>%
  left_join(CFT_var, by = "variable") %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  filter(INSTR_ASSET == "DETT",
         UNIT_MEASURE == "XDC_R_B1GQ_CY",
         REF_SECTOR == "S1M") %>%
  mutate(Ref_area = ifelse(REF_AREA == "I8", "Europe", Ref_area)) %>%
  mutate(Ref_area = ifelse(REF_AREA == "UK", "United Kingdom", Ref_area)) %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  mutate(value = value/100) %>%
  arrange(date) %>%
  select(REF_AREA,everything()) %>%
  ggplot + geom_line(aes(x = date, y = value, color = color)) + 
  xlab("") + ylab("") + theme_minimal() + scale_color_identity() + add_7flags +
  scale_x_date(breaks = "2 years",
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 200, 10),
                labels = percent_format(accuracy = 1))

France, Italy, Germany, Spain, Japan, EU

Code
CFT %>%
  left_join(CFT_var, by = "variable") %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  filter(REF_AREA %in% c("FR", "IT", "DE", "ES", "JP", "I8"),
         INSTR_ASSET == "DETT",
         UNIT_MEASURE == "XDC_R_B1GQ_CY",
         REF_SECTOR == "S1M") %>%
  mutate(Ref_area = ifelse(REF_AREA == "I8", "Europe", Ref_area)) %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  mutate(value = value/100) %>%
  ggplot + geom_line(aes(x = date, y = value, color = color)) + 
  xlab("") + ylab("") + theme_minimal() + scale_color_identity() + add_6flags +
  scale_x_date(breaks = "2 years",
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 100, 5),
                labels = percent_format(accuracy = 1))

France, Italy, Germany

All

Code
CFT %>%
  left_join(CFT_var, by = "variable") %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  filter(REF_AREA %in% c("FR", "IT", "DE"),
         INSTR_ASSET == "DETT",
         UNIT_MEASURE == "XDC_R_B1GQ_CY",
         REF_SECTOR == "S1M") %>%
  mutate(Ref_area = ifelse(REF_AREA == "I8", "Europe", Ref_area)) %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  mutate(value = value/100) %>%
  ggplot + geom_line(aes(x = date, y = value, color = color)) + 
  xlab("") + ylab("") + theme_minimal() + scale_color_identity() + add_3flags +
  scale_x_date(breaks = "2 years",
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 100, 5),
                labels = percent_format(accuracy = 1))

2013-

Code
CFT %>%
  left_join(CFT_var, by = "variable") %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  filter(REF_AREA %in% c("FR", "IT", "DE"),
         INSTR_ASSET == "DETT",
         UNIT_MEASURE == "XDC_R_B1GQ_CY",
         REF_SECTOR == "S1M") %>%
  mutate(Ref_area = ifelse(REF_AREA == "I8", "Europe", Ref_area)) %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  mutate(value = value/100) %>%
  filter(date >=as.Date("2013-01-01")) %>%
  ggplot + geom_line(aes(x = date, y = value, color = color)) + 
  xlab("") + ylab("") + theme_minimal() + scale_color_identity() + add_3flags +
  scale_x_date(breaks = "1 year",
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 100, 2),
                labels = percent_format(accuracy = 1))

Non-financial corporations

France, Italy, Germany

Code
CFT %>%
  left_join(CFT_var, by = "variable") %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  filter(REF_AREA %in% c("FR", "IT", "DE", "I8"),
         INSTR_ASSET == "DETT",
         UNIT_MEASURE == "XDC_R_B1GQ_CY",
         REF_SECTOR == "S11") %>%
  mutate(Ref_area = ifelse(REF_AREA == "I8", "Europe", Ref_area)) %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  mutate(value = value/100) %>%
  ggplot + geom_line(aes(x = date, y = value, color = color)) + 
  xlab("") + ylab("") + theme_minimal() + scale_color_identity() + add_4flags +
  scale_x_date(breaks = "2 years",
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 100, 5),
                labels = dollar_format(accuracy = .01, pre = "", su = " année"))

Taux d’endettement

France

Années de PIB
Code
CFT %>%
  left_join(CFT_var, by = "variable") %>%
  filter(variable %in% c("CFT.Q.S.FR.W0.S1M.S1.N.L.LE.DETT.T._Z.XDC_R_B1GQ_CY._T.S.V.N._T",
                         "CFT.Q.S.FR.W0.S11.S1.C.L.LE.DETT.T._Z.XDC_R_B1GQ_CY._T.S.V.N._T",
                         "CFT.Q.N.FR.W0.S13.S1.C.L.LE.GD.T._Z.XDC_R_B1GQ_CY._T.F.V.N._T")) %>%
  mutate(Variable = gsub(", en % du PIB", "", Variable),
         Variable = gsub(" en % du PIB", "", Variable)) %>%
  ggplot + geom_line(aes(x = date, y = value/100, color = Variable)) + 
  xlab("") + ylab("Dette/PIB (en années de PIB)") + theme_minimal() +
  
  scale_x_date(breaks = "2 years",
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = seq(0, 1.3, 0.1),
                     labels = dollar_format(su = " ans", p = "", acc = 0.1)) +
  theme(legend.position = c(0.3, 0.9),
        legend.title = element_blank(),
        legend.direction = "vertical")

% du PIB
Code
CFT %>%
  left_join(CFT_var, by = "variable") %>%
  filter(variable %in% c("CFT.Q.S.FR.W0.S1M.S1.N.L.LE.DETT.T._Z.XDC_R_B1GQ_CY._T.S.V.N._T",
                         "CFT.Q.S.FR.W0.S11.S1.C.L.LE.DETT.T._Z.XDC_R_B1GQ_CY._T.S.V.N._T",
                         "CFT.Q.N.FR.W0.S13.S1.C.L.LE.GD.T._Z.XDC_R_B1GQ_CY._T.F.V.N._T")) %>%
  ggplot + geom_line(aes(x = date, y = value/100, color = Variable)) + 
  xlab("") + ylab("") + theme_minimal() +
  
  scale_x_date(breaks = "2 years",
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 140, 5),
                labels = percent_format(accuracy = 1)) +
  theme(legend.position = c(0.3, 0.9),
        legend.title = element_blank(),
        legend.direction = "vertical")

Allemagne

Code
CFT %>%
  left_join(CFT_var, by = "variable") %>%
  filter(variable %in% c("CFT.Q.N.DE.W0.S1M.S1.N.L.LE.DETT.T._Z.XDC_R_B1GQ_CY._T.S.V.N._T",
                         "CFT.Q.N.DE.W0.S11.S1.C.L.LE.DETT.T._Z.XDC_R_B1GQ_CY._T.S.V.N._T",
                         "CFT.Q.N.DE.W0.S13.S1.C.L.LE.GD.T._Z.XDC_R_B1GQ_CY._T.F.V.N._T")) %>%
  ggplot + geom_line(aes(x = date, y = value/100, color = Variable)) + 
  xlab("") + ylab("") + theme_minimal() +
  
  scale_x_date(breaks = "2 years",
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 140, 5),
                labels = percent_format(accuracy = 1)) +
  theme(legend.position = c(0.3, 0.9),
        legend.title = element_blank(),
        legend.direction = "vertical")

Italie

Code
CFT %>%
  left_join(CFT_var, by = "variable") %>%
  filter(variable %in% c("CFT.Q.N.IT.W0.S1M.S1.N.L.LE.DETT.T._Z.XDC_R_B1GQ_CY._T.S.V.N._T",
                         "CFT.Q.N.IT.W0.S11.S1.C.L.LE.DETT.T._Z.XDC_R_B1GQ_CY._T.S.V.N._T",
                         "CFT.Q.N.IT.W0.S13.S1.C.L.LE.GD.T._Z.XDC_R_B1GQ_CY._T.F.V.N._T")) %>%
  ggplot + geom_line(aes(x = date, y = value/100, color = Variable)) + 
  xlab("") + ylab("") + theme_minimal() +
  
  scale_x_date(breaks = "2 years",
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 400, 10),
                labels = percent_format(accuracy = 1)) +
  theme(legend.position = c(0.3, 0.9),
        legend.title = element_blank(),
        legend.direction = "vertical")

Espagne

Code
CFT %>%
  left_join(CFT_var, by = "variable") %>%
  filter(variable %in% c("CFT.Q.N.ES.W0.S1M.S1.N.L.LE.DETT.T._Z.XDC_R_B1GQ_CY._T.S.V.N._T",
                         "CFT.Q.N.ES.W0.S11.S1.C.L.LE.DETT.T._Z.XDC_R_B1GQ_CY._T.S.V.N._T",
                         "CFT.Q.N.ES.W0.S13.S1.C.L.LE.GD.T._Z.XDC_R_B1GQ_CY._T.F.V.N._T")) %>%
  ggplot + geom_line(aes(x = date, y = value/100, color = Variable)) + 
  xlab("") + ylab("") + theme_minimal() +
  
  scale_x_date(breaks = "2 years",
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 400, 10),
                labels = percent_format(accuracy = 1)) +
  theme(legend.position = c(0.2, 0.9),
        legend.title = element_blank(),
        legend.direction = "vertical")

Zone Euro

Code
CFT %>%
  left_join(CFT_var, by = "variable") %>%
  filter(variable %in% c("CFT.Q.N.I8.W0.S1M.S1.N.L.LE.DETT.T._Z.XDC_R_B1GQ_CY._T.S.V.N._T",
                         "CFT.Q.N.I8.W0.S11.S1.C.L.LE.DETT.T._Z.XDC_R_B1GQ_CY._T.S.V.N._T",
                         "CFT.Q.N.I8.W0.S13.S1.C.L.LE.GD.T._Z.XDC_R_B1GQ_CY._T.F.V.N._T")) %>%
  ggplot + geom_line(aes(x = date, y = value/100, color = Variable)) + 
  xlab("") + ylab("") + theme_minimal() +
  
  scale_x_date(breaks = "2 years",
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 140, 5),
                labels = percent_format(accuracy = 1)) +
  theme(legend.position = c(0.3, 0.9),
        legend.title = element_blank(),
        legend.direction = "vertical")

Informations supplémentaires

Données sur la macroéconomie en France

source dataset .html .RData
bdf CFT 2025-01-13 2025-01-13
insee CNA-2014-CONSO-SI 2025-01-07 2024-12-29
insee CNA-2014-CSI 2025-01-07 2024-12-29
insee CNA-2014-FBCF-BRANCHE 2025-01-07 2025-01-07
insee CNA-2014-FBCF-SI 2024-06-07 2025-01-05
insee CNA-2014-RDB 2025-01-07 2025-01-07
insee CNA-2020-CONSO-MEN 2025-01-07 2024-09-12
insee CNA-2020-PIB 2025-01-07 2024-09-11
insee CNT-2014-CB 2025-01-07 2025-01-07
insee CNT-2014-CSI 2025-01-07 2025-01-05
insee CNT-2014-OPERATIONS 2025-01-07 2025-01-05
insee CNT-2014-PIB-EQB-RF 2025-01-07 2025-01-05
insee CONSO-MENAGES-2020 2025-01-07 2025-01-05
insee conso-mensuelle 2024-06-07 2023-07-04
insee ICA-2015-IND-CONS 2025-01-07 2025-01-07
insee t_1101 2025-01-07 2022-01-02
insee t_1102 2025-01-07 2020-10-30
insee t_1105 2025-01-07 2020-10-30

Data on saving

source dataset .html .RData
bdf CFT 2025-01-13 2025-01-13
bea T50100 2024-02-11 2024-03-13
fred saving 2025-01-07 2025-01-07
oecd NAAG 2024-04-16 2024-03-13
wdi NY.GDS.TOTL.ZS 2022-09-27 2024-09-18
wdi NY.GNS.ICTR.ZS 2022-09-27 2024-09-18