Info
Liste des publications
Épargne et Patrimoine financiers des ménages, 2024T1. pdf / html
Comptes financiers des agents non financiers. STAT INFO – 4e trimestre 2023. pdf
Épargne des ménages. STAT INFO – février 2024. pdf
Info
Épargne et Patrimoine financiers des ménages, Comptes financiers des agents non financiers, 15 avril 2024, 2023T4. pdf / html
Épargne et Patrimoine financiers des ménages, 2023T3. pdf
Épargne et Patrimoine financiers des ménages, 2023T2. pdf
Présentation trimestrielle de l’épargne des ménages, 2023T1. html / pdf
Méthodologie. pdf
Liste séries. html
Épargne et Patrimoine financiers des ménages, 2022T2. pdf
Epargne des ménages, 2021T1. pdf
Taux d’endettement des agents non financiers – Comparaisons internationales, 2020T4. html / pdf
Epargne des ménages, 2020T3. pdf
STO
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (STO, by = "STO" ) %>%
group_by (STO, Sto) %>%
summarise (Nobs = n ()) %>%
arrange (- Nobs) %>%
print_table_conditional
F
flux
13291
LE
Encours
9837
B8G
Taux d'épargne des ménages
944
B9Z
Taux d'épargne financière des ménages
803
K
Réévaluations et autres changements de volume
254
K5
Impact de valorisation
167
P51G
Formation brute de capital fixe
141
FREQ Frequency
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (FREQ, by = "FREQ" ) %>%
group_by (FREQ, Freq) %>%
summarise (Nobs = n ()) %>%
arrange (- Nobs) %>%
print_table_conditional
Q
Trimestriel
23942
A
Annuel
1495
ADJUSTMENT Adjustment
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (ADJUSTMENT, by = "ADJUSTMENT" ) %>%
group_by (ADJUSTMENT, Adjustment) %>%
summarise (Nobs = n ()) %>%
arrange (- Nobs) %>%
print_table_conditional
N
Brut
13119
S
CVS
11782
Y
CVS/CJO
282
_Z
Non applicable
254
REF_AREA Reference area - ISO2
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (REF_AREA, by = "REF_AREA" ) %>%
group_by (REF_AREA, Ref_area) %>%
summarise (Nobs = n ()) %>%
arrange (- Nobs) %>%
print_table_conditional
FR
France
18214
DE
Germany
918
ES
Spain
918
IT
Italy
918
US
United States
918
GB
United Kingdom
818
UK
NA
797
I9
NA
672
I8
Euro area 19 (fixed composition)
668
JP
Japan
596
COUNTERPART_AREA Counterpart area
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (COUNTERPART_AREA, by = "COUNTERPART_AREA" ) %>%
group_by (COUNTERPART_AREA, Counterpart_area) %>%
summarise (Nobs = n ()) %>%
arrange (- Nobs) %>%
print_table_conditional
W0
World (all areas, including reference area, including IO)
24420
W2
Domestic (home or reference area)
1017
REF_SECTOR Reference sector
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (REF_SECTOR, by = "REF_SECTOR" ) %>%
group_by (REF_SECTOR, Ref_sector) %>%
summarise (Nobs = n ()) %>%
arrange (- Nobs) %>%
print_table_conditional
S1M
Ménages et Institution sans but lucratif au service des ménages (ISBLSM)
14957
S11
Sociétés non financières
5672
S13
Administrations publiques
3719
S1V
Sociétés non-financières, ménages et NPISH
1089
COUNTERPART_SECTOR Counterpart sector
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (COUNTERPART_SECTOR, by = "COUNTERPART_SECTOR" ) %>%
group_by (COUNTERPART_SECTOR, Counterpart_sector) %>%
summarise (Nobs = n ()) %>%
arrange (- Nobs) %>%
print_table_conditional
S1
Ensemble de l`économie
24420
S124
des OPC non monétaires
1017
ACCOUNTING_ENTRY Accounting entries
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (ACCOUNTING_ENTRY, by = "ACCOUNTING_ENTRY" ) %>%
group_by (ACCOUNTING_ENTRY, Accounting_entry) %>%
summarise (Nobs = n ()) %>%
arrange (- Nobs) %>%
print_table_conditional
A
Créances
13089
L
Engagements
9713
B
Balance (Crédit moins débit)
1747
N
Net (avoirs moins engagements)
498
NE
Engagements Nets (engagements moins avoirs)
249
D
Débit (dépenses)
141
INSTR_ASSET Instrument and assets classification
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (INSTR_ASSET, by = "INSTR_ASSET" ) %>%
group_by (INSTR_ASSET, Instr_asset) %>%
summarise (Nobs = n ()) %>%
#arrange(-Nobs) %>%
print_table_conditional
MATURITY Maturity
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (MATURITY, by = "MATURITY" ) %>%
group_by (MATURITY, Maturity) %>%
summarise (Nobs = n ()) %>%
arrange (- Nobs) %>%
print_table_conditional
T
Toutes maturités d`origine
13512
_Z
Non applicable
11925
UNIT_MEASURE Unit of measure
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (UNIT_MEASURE, by = "UNIT_MEASURE" ) %>%
group_by (UNIT_MEASURE, Unit_measure) %>%
summarise (Nobs = n ()) %>%
arrange (- Nobs) %>%
print_table_conditional
XDC
Monnaie nationale
16855
XDC_R_B1GQ_CY
Monnaie nationale (incl. une conversion à la monnaie courante en utilisant une parité fixe); ratio à la somme du glissement annuel du produit intérieur brut
3956
XDC_R_B6G_S1M
en % du RDB
2595
XDC_R_B1G_CY
NA
952
XDC_R_DEBT
NA
692
PC
Pourcent
387
CURRENCY_DENOM Currency denominator
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (CURRENCY_DENOM, by = "CURRENCY_DENOM" ) %>%
group_by (CURRENCY_DENOM, Currency_denom) %>%
summarise (Nobs = n ()) %>%
arrange (- Nobs) %>%
print_table_conditional
_T
Toutes monnaies d`opération
25437
VALUATION Valuation
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (VALUATION, by = "VALUATION" ) %>%
group_by (VALUATION, Valuation) %>%
summarise (Nobs = n ()) %>%
arrange (- Nobs) %>%
print_table_conditional
S
Valorisation standard basée sur ESA2010/SNA2008
24048
F
Valeur nominale (F)
789
N
Valeur nominale (N)
600
date
Code
CFT %>%
group_by (date) %>%
summarise (Nobs = n ()) %>%
arrange (desc (date)) %>%
print_table_conditional
Grandes masses
Table
Code
ig_b ("bdf" , "CFT-2023T4" )
Produits de taux
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
filter (STO == "LE" ,
INSTR_ASSET %in% c ("PDTX" )) %>%
na.omit %>%
ggplot + geom_line (aes (x = date, y = value, color = Variable)) +
xlab ("" ) + ylab ("" ) + theme_minimal () +
scale_x_date (breaks = "1 year" ,
labels = date_format ("%Y" )) +
scale_y_log10 (breaks = seq (- 200 , 10000 , 100 ),
labels = dollar_format (acc = 1 , prefix = "" , su = "Mds€" )) +
theme (legend.position = c (0.35 , 0.9 ),
legend.title = element_blank (),
legend.direction = "vertical" )
Produits de fonds propres
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
filter (STO == "LE" ,
INSTR_ASSET %in% c ("PDFP" )) %>%
na.omit %>%
ggplot + geom_line (aes (x = date, y = value, color = Variable)) +
xlab ("" ) + ylab ("" ) + theme_minimal () +
scale_x_date (breaks = "1 year" ,
labels = date_format ("%Y" )) +
scale_y_log10 (breaks = seq (- 200 , 10000 , 100 ),
labels = dollar_format (acc = 1 , prefix = "" , su = "Mds€" )) +
theme (legend.position = c (0.35 , 0.9 ),
legend.title = element_blank (),
legend.direction = "vertical" )
Côté, non côté
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
filter (STO == "LE" ,
INSTR_ASSET %in% c ("PDFP" , "F51" , "F511" , "F51M" , "F52" )) %>%
na.omit %>%
ggplot + geom_line (aes (x = date, y = value, color = Variable)) +
xlab ("" ) + ylab ("" ) + theme_minimal () +
scale_x_date (breaks = "1 year" ,
labels = date_format ("%Y" )) +
scale_y_log10 (breaks = seq (- 200 , 10000 , 100 ),
labels = dollar_format (acc = 1 , prefix = "" , su = "Mds€" )) +
theme (legend.position = c (0.5 , 0.7 ),
legend.title = element_blank (),
legend.direction = "vertical" )
Detail
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
filter (STO == "LE" ,
INSTR_ASSET %in% c ("F62A" , "F62B" , "F29R" , "F2A" , "F29Z" )) %>%
na.omit %>%
ggplot + geom_line (aes (x = date, y = value, color = Variable)) +
xlab ("" ) + ylab ("" ) + theme_minimal () +
scale_x_date (breaks = "1 year" ,
labels = date_format ("%Y" )) +
scale_y_log10 (breaks = seq (- 200 , 10000 , 100 ),
labels = dollar_format (acc = 1 , prefix = "" , su = "Mds€" )) +
theme (legend.position = c (0.45 , 0.17 ),
legend.title = element_blank (),
legend.direction = "vertical" )
Stock
Numéraires et dépôts à vue
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (REF_AREA, by = "REF_AREA" ) %>%
filter (REF_AREA %in% c ("FR" , "IT" , "DE" ),
INSTR_ASSET == "F2A" ,
STO == "LE" ) %>%
mutate (Ref_area = ifelse (REF_AREA == "I8" , "Europe" , Ref_area)) %>%
left_join (colors, by = c ("Ref_area" = "country" )) %>%
na.omit %>%
ggplot + geom_line (aes (x = date, y = value, color = color)) +
xlab ("" ) + ylab ("" ) + theme_minimal () + scale_color_identity () + add_3flags +
scale_x_date (breaks = "1 year" ,
labels = date_format ("%Y" )) +
scale_y_log10 (breaks = seq (100 , 4000 , 100 ),
labels = dollar_format (accuracy = 1 , pre = "" , su = " Mds€" ))
Stocks
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (INSTR_ASSET, by = "INSTR_ASSET" ) %>%
filter (REF_AREA %in% c ("FR" ),
INSTR_ASSET %in% c ("F2A" , "F29Z" , "F62B" , "F29R" ),
STO == "LE" ) %>%
select (date, value, Instr_asset) %>%
na.omit %>%
ggplot + geom_line (aes (x = date, y = value, color = Instr_asset)) +
xlab ("" ) + ylab ("" ) + theme_minimal () +
scale_x_date (breaks = "1 year" ,
labels = date_format ("%Y" )) +
scale_y_log10 (breaks = seq (100 , 4000 , 100 ),
labels = dollar_format (accuracy = 1 , pre = "" , su = " Mds€" )) +
theme (legend.position = c (0.4 , 0.4 ),
legend.title = element_blank (),
legend.direction = "vertical" )
Numéraires et dépôts à vue
Stocks
All
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (INSTR_ASSET, by = "INSTR_ASSET" ) %>%
filter (REF_AREA %in% c ("FR" ),
INSTR_ASSET %in% c ("F2A" , "F29Z" , "F62B" ),
STO == "LE" ) %>%
select (date, value, Instr_asset) %>%
na.omit %>%
ggplot + geom_line (aes (x = date, y = value, color = Instr_asset)) +
xlab ("" ) + ylab ("" ) + theme_minimal () +
scale_x_date (breaks = "1 year" ,
labels = date_format ("%Y" )) +
scale_y_log10 (breaks = seq (100 , 4000 , 100 ),
labels = dollar_format (accuracy = 1 , pre = "" , su = " Mds€" )) +
theme (legend.position = c (0.4 , 0.4 ),
legend.title = element_blank (),
legend.direction = "vertical" )
2019-
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (INSTR_ASSET, by = "INSTR_ASSET" ) %>%
filter (REF_AREA %in% c ("FR" ),
INSTR_ASSET %in% c ("F2A" , "F29Z" , "F62B" ),
STO == "LE" ) %>%
select (date, value, Instr_asset) %>%
na.omit %>%
filter (date >= as.Date ("2022-01-01" )) %>%
ggplot + geom_line (aes (x = date, y = value, color = Instr_asset)) +
xlab ("" ) + ylab ("" ) + theme_minimal () +
scale_x_date (breaks = "3 months" ,
labels = date_format ("%b %Y" )) +
scale_y_log10 (breaks = seq (100 , 4000 , 100 ),
labels = dollar_format (accuracy = 1 , pre = "" , su = " Mds€" )) +
theme (legend.position = c (0.4 , 0.4 ),
legend.title = element_blank (),
legend.direction = "vertical" )
Flux - 4 trimestres
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (INSTR_ASSET, by = "INSTR_ASSET" ) %>%
filter (REF_AREA %in% c ("FR" ),
INSTR_ASSET %in% c ("F2A" , "F29Z" , "F62B" , "F29R" ),
STO == "F" ,
TRANSFORMATION == "C4" ) %>%
#filter(date >= as.Date("2016-01-01")) %>%
select (date, value, Instr_asset) %>%
na.omit %>%
ggplot + geom_line (aes (x = date, y = value, color = Instr_asset)) +
xlab ("" ) + ylab ("" ) + theme_minimal () +
scale_x_date (breaks = "1 year" ,
labels = date_format ("%Y" )) +
scale_y_continuous (breaks = seq (- 2000 , 4000 , 10 ),
labels = dollar_format (accuracy = 1 , pre = "" , su = " Mds€" )) +
theme (legend.position = c (0.4 , 0.8 ),
legend.title = element_blank (),
legend.direction = "vertical" )
Flux
All
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (INSTR_ASSET, by = "INSTR_ASSET" ) %>%
filter (REF_AREA %in% c ("FR" ),
INSTR_ASSET %in% c ("F2A" , "F29Z" , "F62B" , "F29R" ),
STO == "F" ,
TRANSFORMATION == "N" ,
FREQ == "Q" ) %>%
filter (date >= as.Date ("2010-01-01" )) %>%
ggplot + geom_line (aes (x = date, y = value, color = Instr_asset)) +
xlab ("" ) + ylab ("" ) + theme_minimal () +
scale_x_date (breaks = "1 year" ,
labels = date_format ("%Y" )) +
scale_y_continuous (breaks = seq (- 1000 , 4000 , 10 ),
labels = dollar_format (accuracy = 1 , pre = "" , su = " Mds€" )) +
theme (legend.position = c (0.4 , 0.8 ),
legend.title = element_blank (),
legend.direction = "vertical" )
2016
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (INSTR_ASSET, by = "INSTR_ASSET" ) %>%
filter (REF_AREA %in% c ("FR" ),
INSTR_ASSET %in% c ("F2A" , "F29Z" , "F62B" , "F29R" ),
STO == "F" ,
TRANSFORMATION == "N" ,
FREQ == "Q" ) %>%
filter (date >= as.Date ("2016-01-01" )) %>%
ggplot + geom_line (aes (x = date, y = value, color = Instr_asset)) +
xlab ("" ) + ylab ("" ) + theme_minimal () +
scale_x_date (breaks = "1 year" ,
labels = date_format ("%Y" )) +
scale_y_continuous (breaks = seq (- 1000 , 4000 , 10 ),
labels = dollar_format (accuracy = 1 , pre = "" , su = " Mds€" )) +
theme (legend.position = c (0.4 , 0.9 ),
legend.title = element_blank (),
legend.direction = "vertical" ) +
geom_hline (yintercept = 0 , linetype = "dashed" )
Actions côtées / non côtées, AV en unités de compte
Stocks
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (INSTR_ASSET, by = "INSTR_ASSET" ) %>%
filter (REF_AREA %in% c ("FR" ),
INSTR_ASSET %in% c ( "F511" , "F51M" , "F62A" ),
STO == "LE" ) %>%
na.omit %>%
ggplot + geom_line (aes (x = date, y = value, color = Instr_asset)) +
xlab ("" ) + ylab ("" ) + theme_minimal () +
scale_x_date (breaks = "1 year" ,
labels = date_format ("%Y" )) +
scale_y_log10 (breaks = seq (100 , 4000 , 100 ),
labels = dollar_format (accuracy = 1 , pre = "" , su = " Mds€" )) +
theme (legend.position = c (0.4 , 0.6 ),
legend.title = element_blank (),
legend.direction = "vertical" )
Flux
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (INSTR_ASSET, by = "INSTR_ASSET" ) %>%
filter (REF_AREA %in% c ("FR" ),
INSTR_ASSET %in% c ( "F511" , "F51M" , "F62A" ),
STO == "F" ,
TRANSFORMATION == "N" ,
FREQ == "Q" ) %>%
filter (date >= as.Date ("2016-01-01" )) %>%
ggplot + geom_line (aes (x = date, y = value, color = Instr_asset)) +
xlab ("" ) + ylab ("" ) + theme_minimal () +
scale_x_date (breaks = "1 year" ,
labels = date_format ("%Y" )) +
scale_y_continuous (breaks = seq (- 2000 , 4000 , 5 ),
labels = dollar_format (accuracy = 1 , pre = "" , su = " Mds€" )) +
theme (legend.position = c (0.4 , 0.4 ),
legend.title = element_blank (),
legend.direction = "vertical" )
Numéraires et dépôts à vue
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (INSTR_ASSET, by = "INSTR_ASSET" ) %>%
filter (REF_AREA %in% c ("FR" ),
INSTR_ASSET %in% c ("F2A" , "F29Z" ),
STO == "LE" ) %>%
na.omit %>%
ggplot + geom_line (aes (x = date, y = value, color = Instr_asset)) +
xlab ("" ) + ylab ("" ) + theme_minimal () +
scale_x_date (breaks = "1 year" ,
labels = date_format ("%Y" )) +
scale_y_log10 (breaks = seq (100 , 4000 , 100 ),
labels = dollar_format (accuracy = 1 , pre = "" , su = " Mds€" )) +
theme (legend.position = c (0.75 , 0.1 ),
legend.title = element_blank (),
legend.direction = "vertical" )
Assurance Vie
Toutes
2007-
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
filter (variable %in% c ("CFT.Q.S.FR.W0.S1M.S1.N.A.F.F62B._Z._Z.XDC._T.S.V.N._T" ,
"CFT.Q.S.FR.W0.S1M.S1.N.A.F.F62A._Z._Z.XDC._T.S.V.N._T" ,
"CFT.Q.S.FR.W0.S1M.S1.N.A.F.F29R.T._Z.XDC._T.S.V.N._T" ,
"CFT.Q.S.FR.W0.S1M.S1.N.A.F.F2A.T._Z.XDC._T.S.V.N._T" )) %>%
na.omit %>%
ggplot + geom_line (aes (x = date, y = value, color = Variable)) +
xlab ("" ) + ylab ("" ) + theme_minimal () +
scale_x_date (breaks = "1 year" ,
labels = date_format ("%Y" )) +
scale_y_continuous (breaks = seq (- 200 , 1000 , 5 ),
limits = c (- 25 ,40 ),
labels = dollar_format (acc = 1 , prefix = "" , su = "Mds€" )) +
theme (legend.position = c (0.45 , 0.17 ),
legend.title = element_blank (),
legend.direction = "vertical" )
2015-
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
filter (variable %in% c ("CFT.Q.S.FR.W0.S1M.S1.N.A.F.F62B._Z._Z.XDC._T.S.V.N._T" ,
"CFT.Q.S.FR.W0.S1M.S1.N.A.F.F29Z.T._Z.XDC._T.S.V.N._T" ,
"CFT.Q.S.FR.W0.S1M.S1.N.A.F.F29R.T._Z.XDC._T.S.V.N._T" ,
"CFT.Q.S.FR.W0.S1M.S1.N.A.F.F2A.T._Z.XDC._T.S.V.N._T" )) %>%
filter (date >= as.Date ("2015-01-01" )) %>%
ggplot + geom_line (aes (x = date, y = value, color = Variable)) +
xlab ("" ) + ylab ("" ) + theme_minimal () +
scale_x_date (breaks = "1 year" ,
labels = date_format ("%Y" )) +
scale_y_continuous (breaks = seq (- 200 , 1000 , 5 ),
limits = c (- 5 ,40 ),
labels = dollar_format (acc = 1 , prefix = "" , su = "Mds€" )) +
theme (legend.position = c (0.45 , 0.8 ),
legend.title = element_blank (),
legend.direction = "vertical" )
Taux d’épargne des ménages
Le taux d’épargne des ménages est le rapport entre l’épargne brute des ménages (B8G) et le revenu disponible brut ajusté des variations de droits à pension. Le revenu disponible brut (B6G) correspond aux revenus que perçoivent les ménages (revenus d’activité et revenus fonciers) après opérations de redistribution (ajout des prestations sociales en espèces reçues, soustraction des cotisations et impôts).
Quant au taux d’épargne financière, il s’agit de la part du revenu disponible brut investie dans des actifs financiers.
le taux d’épargne s’obtient en rapportant l’épargne brute au revenu disponible brut ajusté de la variation des droits des ménages sur les fonds de pension, préalablement corrigés des variations saisonnières
le taux d’épargne financière est estimé en soustrayant la formation brute de capital fixe à l’épargne brute, ensuite rapportée au revenu disponible brut ajusté de la variation des droits des ménages sur les fonds de pension, puis en corrigeant des variations saisonnières.
Annual
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
filter (variable %in% c ("CFT.A.N.FR.W0.S1M.S1.N.B.B8G._Z._Z._Z.XDC_R_B6G_S1M._T.S.V.N._T" ,
"CFT.A.N.FR.W0.S1M.S1.N.B.B9Z._Z._Z._Z.XDC_R_B6G_S1M._T.S.V.N._T" )) %>%
na.omit %>%
ggplot + geom_line (aes (x = date, y = value/ 100 , color = Variable)) +
xlab ("" ) + ylab ("" ) + theme_minimal () +
scale_x_date (breaks = "1 year" ,
labels = date_format ("%Y" )) +
scale_y_continuous (breaks = 0.01 * seq (- 10 , 100 , 1 ),
labels = percent_format (accuracy = 1 )) +
theme (legend.position = c (0.4 , 0.9 ),
legend.title = element_blank (),
legend.direction = "vertical" )
Quarterly
All
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
filter (variable %in% c ("CFT.Q.N.FR.W0.S1M.S1.N.B.B8G._Z._Z._Z.XDC_R_B6G_S1M._T.S.V.C4._T" ,
"CFT.Q.N.FR.W0.S1M.S1.N.B.B9Z._Z._Z._Z.XDC_R_B6G_S1M._T.S.V.C4._T" )) %>%
na.omit %>%
ggplot + geom_line (aes (x = date, y = value/ 100 , color = Variable)) +
xlab ("" ) + ylab ("" ) + theme_minimal () +
scale_x_date (breaks = "2 years" ,
labels = date_format ("%Y" )) +
scale_y_continuous (breaks = 0.01 * seq (- 10 , 100 , 1 ),
labels = percent_format (accuracy = 1 )) +
theme (legend.position = c (0.42 , 0.9 ),
legend.title = element_blank (),
legend.direction = "vertical" )
2010-
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
filter (variable %in% c ("CFT.Q.N.FR.W0.S1M.S1.N.B.B8G._Z._Z._Z.XDC_R_B6G_S1M._T.S.V.C4._T" ,
"CFT.Q.N.FR.W0.S1M.S1.N.B.B9Z._Z._Z._Z.XDC_R_B6G_S1M._T.S.V.C4._T" )) %>%
na.omit %>%
filter (date >= as.Date ("2010-01-01" )) %>%
ggplot + geom_line (aes (x = date, y = value/ 100 , color = Variable)) +
xlab ("" ) + ylab ("" ) + theme_minimal () +
scale_x_date (breaks = "2 years" ,
labels = date_format ("%Y" )) +
scale_y_continuous (breaks = 0.01 * seq (- 10 , 100 , 1 ),
labels = percent_format (accuracy = 1 )) +
theme (legend.position = c (0.45 , 0.9 ),
legend.title = element_blank (),
legend.direction = "vertical" )
France, Spain, Italy
Table
Code
load_data ("bdf/REF_AREA.RData" )
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (REF_AREA, by = "REF_AREA" ) %>%
filter (FREQ == "Q" ,
UNIT_MEASURE == "XDC_R_B6G_S1M" ,
REF_SECTOR == "S1M" ,
date == as.Date ("2020-01-01" )) %>%
select (Variable, Ref_area, value) %>%
arrange (Ref_area) %>%
print_table_conditional
Dette des ménages - Zone euro, en % du RDB
Euro area 19 (fixed composition)
94.161
Dette des ménages - France, en % du RDB
France
99.078
Taux d'épargne des ménages, flux cumulé sur 4 trimestres - France, en % du RDB
France
15.690
Taux d'épargne financière des ménages, flux cumulé sur 4 trimestres - France, en % du RDB
France
6.196
Dette des ménages - Allemagne, en % du RDB
Germany
86.421
Taux d'épargne des ménages, flux cumulé sur 4 trimestres - Allemagne, en % du RDB
Germany
18.965
Taux d'épargne financière des ménages, flux cumulé sur 4 trimestres - Allemagne, en % du RDB
Germany
9.047
Dette des ménages -Italie, en % du RDB
Italy
61.985
Taux d'épargne des ménages, flux cumulé sur 4 trimestres - Italie, en % du RDB
Italy
11.305
Taux d'épargne financière des ménages, flux cumulé sur 4 trimestres - Italie, en % du RDB
Italy
3.914
Dette des ménages - Japon, en % du RDB
Japan
104.604
Dette des ménages -Espagne, en % du RDB
Spain
89.562
Taux d'épargne des ménages, flux cumulé sur 4 trimestres - Espagne, en % du RDB
Spain
10.046
Taux d'épargne financière des ménages, flux cumulé sur 4 trimestres - Espagne, en % du RDB
Spain
4.668
Taux d'épargne des ménages, flux cumulé sur 4 trimestres - Royaume-Uni, en % du RDB
United Kingdom
5.840
Taux d'épargne financière des ménages, flux cumulé sur 4 trimestres - Royaume-Uni, en % du RDB
United Kingdom
-0.987
Dette des ménages -Royaume-Uni, en % du RDB
United Kingdom
131.346
Dette des ménages - Etats-Unis, en % du RDB
United States
131.713
Taux d'épargne des ménages, flux cumulé sur 4 trimestres - Etats-Unis, en % du RDB
United States
11.602
Taux d'épargne financière des ménages, flux cumulé sur 4 trimestres - Etats-Unis, en % du RDB
United States
6.101
Dette des ménages - Zone euro, en % du RDB
NA
94.036
Dette des ménages -Royaume-Uni, en % du RDB
NA
128.203
Taux d'épargne des ménages, flux cumulé sur 4 trimestres - Royaume-Uni, en % du RDB
NA
5.415
Taux d'épargne financière des ménages, flux cumulé sur 4 trimestres - Royaume-Uni, en % du RDB
NA
-1.397
Taux d’épargne financière
France, Italy, Germany
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (REF_AREA, by = "REF_AREA" ) %>%
filter (FREQ == "Q" ,
REF_AREA %in% c ("FR" , "IT" , "DE" ),
UNIT_MEASURE == "XDC_R_B6G_S1M" ,
STO == "B9Z" ,
REF_SECTOR == "S1M" ) %>%
mutate (value = value/ 100 ) %>%
na.omit %>%
ggplot + geom_line (aes (x = date, y = value, color = Ref_area)) +
xlab ("" ) + ylab ("" ) + theme_minimal () +
scale_color_manual (values = c ("#002395" , "#000000" , "#009246" )) +
scale_x_date (breaks = "2 years" ,
labels = date_format ("%Y" )) +
add_3flags +
scale_y_continuous (breaks = 0.01 * seq (- 10 , 100 , 1 ),
labels = percent_format (accuracy = 1 )) +
theme (legend.position = "none" )
France, Italy, Germany, Spain, United States
All
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (REF_AREA, by = "REF_AREA" ) %>%
filter (FREQ == "Q" ,
UNIT_MEASURE == "XDC_R_B6G_S1M" ,
STO == "B9Z" ,
REF_SECTOR == "S1M" ) %>%
left_join (colors, by = c ("Ref_area" = "country" )) %>%
mutate (value = value/ 100 ) %>%
na.omit %>%
ggplot + geom_line (aes (x = date, y = value, color = color)) +
xlab ("" ) + ylab ("" ) + theme_minimal () + scale_color_identity () + add_6flags +
scale_x_date (breaks = "2 years" ,
labels = date_format ("%Y" )) +
scale_y_continuous (breaks = 0.01 * seq (- 10 , 100 , 1 ),
labels = percent_format (accuracy = 1 ))
2007-
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (REF_AREA, by = "REF_AREA" ) %>%
filter (FREQ == "Q" ,
UNIT_MEASURE == "XDC_R_B6G_S1M" ,
STO == "B9Z" ,
REF_SECTOR == "S1M" ) %>%
left_join (colors, by = c ("Ref_area" = "country" )) %>%
mutate (value = value/ 100 ) %>%
filter (date >= as.Date ("2007-01-01" )) %>%
na.omit %>%
ggplot + geom_line (aes (x = date, y = value, color = color)) +
xlab ("" ) + ylab ("" ) + theme_minimal () + scale_color_identity () + add_6flags +
scale_x_date (breaks = "1 year" ,
labels = date_format ("%Y" )) +
scale_y_continuous (breaks = 0.01 * seq (- 10 , 100 , 1 ),
labels = percent_format (accuracy = 1 ))
2015-
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (REF_AREA, by = "REF_AREA" ) %>%
filter (FREQ == "Q" ,
UNIT_MEASURE == "XDC_R_B6G_S1M" ,
STO == "B9Z" ,
REF_SECTOR == "S1M" ) %>%
left_join (colors, by = c ("Ref_area" = "country" )) %>%
mutate (value = value/ 100 ) %>%
filter (date >= as.Date ("2015-01-01" )) %>%
na.omit %>%
ggplot + geom_line (aes (x = date, y = value, color = color)) +
xlab ("" ) + ylab ("Taux d'épargne financière (%)" ) + theme_minimal () + scale_color_identity () + add_6flags +
scale_x_date (breaks = "1 year" ,
labels = date_format ("%Y" )) +
scale_y_continuous (breaks = 0.01 * seq (- 10 , 100 , 1 ),
labels = percent_format (accuracy = 1 ))
Taux d’épargne
France, Italy, Germany
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (REF_AREA, by = "REF_AREA" ) %>%
filter (FREQ == "Q" ,
REF_AREA %in% c ("FR" , "IT" , "DE" ),
UNIT_MEASURE == "XDC_R_B6G_S1M" ,
STO == "B8G" ,
REF_SECTOR == "S1M" ) %>%
left_join (colors, by = c ("Ref_area" = "country" )) %>%
mutate (value = value/ 100 ) %>%
na.omit %>%
ggplot + geom_line (aes (x = date, y = value, color = color)) +
xlab ("" ) + ylab ("" ) + theme_minimal () + scale_color_identity () + add_3flags +
scale_x_date (breaks = "2 years" ,
labels = date_format ("%Y" )) +
scale_y_continuous (breaks = 0.01 * seq (- 10 , 100 , 1 ),
labels = percent_format (accuracy = 1 ))
France, Italy, Germany, Spain, United States
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (REF_AREA, by = "REF_AREA" ) %>%
filter (FREQ == "Q" ,
UNIT_MEASURE == "XDC_R_B6G_S1M" ,
STO == "B8G" ,
REF_SECTOR == "S1M" ) %>%
left_join (colors, by = c ("Ref_area" = "country" )) %>%
mutate (value = value/ 100 ) %>%
na.omit %>%
ggplot + geom_line (aes (x = date, y = value, color = color)) +
xlab ("" ) + ylab ("" ) + theme_minimal () + scale_color_identity () + add_6flags +
scale_x_date (breaks = "2 years" ,
labels = date_format ("%Y" )) +
scale_y_continuous (breaks = 0.01 * seq (- 10 , 100 , 1 ),
labels = percent_format (accuracy = 1 ))
Dette
Dette des ménages
All
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (REF_AREA, by = "REF_AREA" ) %>%
filter (INSTR_ASSET == "DETT" ,
UNIT_MEASURE == "XDC_R_B1GQ_CY" ,
REF_SECTOR == "S1M" ) %>%
mutate (Ref_area = ifelse (REF_AREA == "I8" , "Europe" , Ref_area)) %>%
mutate (Ref_area = ifelse (REF_AREA == "UK" , "United Kingdom" , Ref_area)) %>%
left_join (colors, by = c ("Ref_area" = "country" )) %>%
mutate (value = value/ 100 ) %>%
arrange (date) %>%
select (REF_AREA,everything ()) %>%
ggplot + geom_line (aes (x = date, y = value, color = color)) +
xlab ("" ) + ylab ("" ) + theme_minimal () + scale_color_identity () + add_7flags +
scale_x_date (breaks = "2 years" ,
labels = date_format ("%Y" )) +
scale_y_continuous (breaks = 0.01 * seq (- 10 , 200 , 10 ),
labels = percent_format (accuracy = 1 ))
France, Italy, Germany, Spain, Japan, EU
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (REF_AREA, by = "REF_AREA" ) %>%
filter (REF_AREA %in% c ("FR" , "IT" , "DE" , "ES" , "JP" , "I8" ),
INSTR_ASSET == "DETT" ,
UNIT_MEASURE == "XDC_R_B1GQ_CY" ,
REF_SECTOR == "S1M" ) %>%
mutate (Ref_area = ifelse (REF_AREA == "I8" , "Europe" , Ref_area)) %>%
left_join (colors, by = c ("Ref_area" = "country" )) %>%
mutate (value = value/ 100 ) %>%
ggplot + geom_line (aes (x = date, y = value, color = color)) +
xlab ("" ) + ylab ("" ) + theme_minimal () + scale_color_identity () + add_6flags +
scale_x_date (breaks = "2 years" ,
labels = date_format ("%Y" )) +
scale_y_continuous (breaks = 0.01 * seq (- 10 , 100 , 5 ),
labels = percent_format (accuracy = 1 ))
France, Italy, Germany
All
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (REF_AREA, by = "REF_AREA" ) %>%
filter (REF_AREA %in% c ("FR" , "IT" , "DE" ),
INSTR_ASSET == "DETT" ,
UNIT_MEASURE == "XDC_R_B1GQ_CY" ,
REF_SECTOR == "S1M" ) %>%
mutate (Ref_area = ifelse (REF_AREA == "I8" , "Europe" , Ref_area)) %>%
left_join (colors, by = c ("Ref_area" = "country" )) %>%
mutate (value = value/ 100 ) %>%
ggplot + geom_line (aes (x = date, y = value, color = color)) +
xlab ("" ) + ylab ("" ) + theme_minimal () + scale_color_identity () + add_3flags +
scale_x_date (breaks = "2 years" ,
labels = date_format ("%Y" )) +
scale_y_continuous (breaks = 0.01 * seq (- 10 , 100 , 5 ),
labels = percent_format (accuracy = 1 ))
2013-
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (REF_AREA, by = "REF_AREA" ) %>%
filter (REF_AREA %in% c ("FR" , "IT" , "DE" ),
INSTR_ASSET == "DETT" ,
UNIT_MEASURE == "XDC_R_B1GQ_CY" ,
REF_SECTOR == "S1M" ) %>%
mutate (Ref_area = ifelse (REF_AREA == "I8" , "Europe" , Ref_area)) %>%
left_join (colors, by = c ("Ref_area" = "country" )) %>%
mutate (value = value/ 100 ) %>%
filter (date >= as.Date ("2013-01-01" )) %>%
ggplot + geom_line (aes (x = date, y = value, color = color)) +
xlab ("" ) + ylab ("" ) + theme_minimal () + scale_color_identity () + add_3flags +
scale_x_date (breaks = "1 year" ,
labels = date_format ("%Y" )) +
scale_y_continuous (breaks = 0.01 * seq (- 10 , 100 , 2 ),
labels = percent_format (accuracy = 1 ))
Non-financial corporations
France, Italy, Germany
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (REF_AREA, by = "REF_AREA" ) %>%
filter (REF_AREA %in% c ("FR" , "IT" , "DE" , "I8" ),
INSTR_ASSET == "DETT" ,
UNIT_MEASURE == "XDC_R_B1GQ_CY" ,
REF_SECTOR == "S11" ) %>%
mutate (Ref_area = ifelse (REF_AREA == "I8" , "Europe" , Ref_area)) %>%
left_join (colors, by = c ("Ref_area" = "country" )) %>%
mutate (value = value/ 100 ) %>%
ggplot + geom_line (aes (x = date, y = value, color = color)) +
xlab ("" ) + ylab ("" ) + theme_minimal () + scale_color_identity () + add_4flags +
scale_x_date (breaks = "2 years" ,
labels = date_format ("%Y" )) +
scale_y_continuous (breaks = 0.01 * seq (- 10 , 100 , 5 ),
labels = dollar_format (accuracy = .01 , pre = "" , su = " année" ))
Taux d’endettement
France
Années de PIB
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
filter (variable %in% c ("CFT.Q.S.FR.W0.S1M.S1.N.L.LE.DETT.T._Z.XDC_R_B1GQ_CY._T.S.V.N._T" ,
"CFT.Q.S.FR.W0.S11.S1.C.L.LE.DETT.T._Z.XDC_R_B1GQ_CY._T.S.V.N._T" ,
"CFT.Q.N.FR.W0.S13.S1.C.L.LE.GD.T._Z.XDC_R_B1GQ_CY._T.F.V.N._T" )) %>%
mutate (Variable = gsub (", en % du PIB" , "" , Variable),
Variable = gsub (" en % du PIB" , "" , Variable)) %>%
ggplot + geom_line (aes (x = date, y = value/ 100 , color = Variable)) +
xlab ("" ) + ylab ("Dette/PIB (en années de PIB)" ) + theme_minimal () +
scale_x_date (breaks = "2 years" ,
labels = date_format ("%Y" )) +
scale_y_continuous (breaks = seq (0 , 1.3 , 0.1 ),
labels = dollar_format (su = " ans" , p = "" , acc = 0.1 )) +
theme (legend.position = c (0.3 , 0.9 ),
legend.title = element_blank (),
legend.direction = "vertical" )
% du PIB
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
filter (variable %in% c ("CFT.Q.S.FR.W0.S1M.S1.N.L.LE.DETT.T._Z.XDC_R_B1GQ_CY._T.S.V.N._T" ,
"CFT.Q.S.FR.W0.S11.S1.C.L.LE.DETT.T._Z.XDC_R_B1GQ_CY._T.S.V.N._T" ,
"CFT.Q.N.FR.W0.S13.S1.C.L.LE.GD.T._Z.XDC_R_B1GQ_CY._T.F.V.N._T" )) %>%
ggplot + geom_line (aes (x = date, y = value/ 100 , color = Variable)) +
xlab ("" ) + ylab ("" ) + theme_minimal () +
scale_x_date (breaks = "2 years" ,
labels = date_format ("%Y" )) +
scale_y_continuous (breaks = 0.01 * seq (- 10 , 140 , 5 ),
labels = percent_format (accuracy = 1 )) +
theme (legend.position = c (0.3 , 0.9 ),
legend.title = element_blank (),
legend.direction = "vertical" )
Allemagne
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
filter (variable %in% c ("CFT.Q.N.DE.W0.S1M.S1.N.L.LE.DETT.T._Z.XDC_R_B1GQ_CY._T.S.V.N._T" ,
"CFT.Q.N.DE.W0.S11.S1.C.L.LE.DETT.T._Z.XDC_R_B1GQ_CY._T.S.V.N._T" ,
"CFT.Q.N.DE.W0.S13.S1.C.L.LE.GD.T._Z.XDC_R_B1GQ_CY._T.F.V.N._T" )) %>%
ggplot + geom_line (aes (x = date, y = value/ 100 , color = Variable)) +
xlab ("" ) + ylab ("" ) + theme_minimal () +
scale_x_date (breaks = "2 years" ,
labels = date_format ("%Y" )) +
scale_y_continuous (breaks = 0.01 * seq (- 10 , 140 , 5 ),
labels = percent_format (accuracy = 1 )) +
theme (legend.position = c (0.3 , 0.9 ),
legend.title = element_blank (),
legend.direction = "vertical" )
Italie
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
filter (variable %in% c ("CFT.Q.N.IT.W0.S1M.S1.N.L.LE.DETT.T._Z.XDC_R_B1GQ_CY._T.S.V.N._T" ,
"CFT.Q.N.IT.W0.S11.S1.C.L.LE.DETT.T._Z.XDC_R_B1GQ_CY._T.S.V.N._T" ,
"CFT.Q.N.IT.W0.S13.S1.C.L.LE.GD.T._Z.XDC_R_B1GQ_CY._T.F.V.N._T" )) %>%
ggplot + geom_line (aes (x = date, y = value/ 100 , color = Variable)) +
xlab ("" ) + ylab ("" ) + theme_minimal () +
scale_x_date (breaks = "2 years" ,
labels = date_format ("%Y" )) +
scale_y_continuous (breaks = 0.01 * seq (- 10 , 400 , 10 ),
labels = percent_format (accuracy = 1 )) +
theme (legend.position = c (0.3 , 0.9 ),
legend.title = element_blank (),
legend.direction = "vertical" )
Espagne
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
filter (variable %in% c ("CFT.Q.N.ES.W0.S1M.S1.N.L.LE.DETT.T._Z.XDC_R_B1GQ_CY._T.S.V.N._T" ,
"CFT.Q.N.ES.W0.S11.S1.C.L.LE.DETT.T._Z.XDC_R_B1GQ_CY._T.S.V.N._T" ,
"CFT.Q.N.ES.W0.S13.S1.C.L.LE.GD.T._Z.XDC_R_B1GQ_CY._T.F.V.N._T" )) %>%
ggplot + geom_line (aes (x = date, y = value/ 100 , color = Variable)) +
xlab ("" ) + ylab ("" ) + theme_minimal () +
scale_x_date (breaks = "2 years" ,
labels = date_format ("%Y" )) +
scale_y_continuous (breaks = 0.01 * seq (- 10 , 400 , 10 ),
labels = percent_format (accuracy = 1 )) +
theme (legend.position = c (0.2 , 0.9 ),
legend.title = element_blank (),
legend.direction = "vertical" )
Zone Euro
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
filter (variable %in% c ("CFT.Q.N.I8.W0.S1M.S1.N.L.LE.DETT.T._Z.XDC_R_B1GQ_CY._T.S.V.N._T" ,
"CFT.Q.N.I8.W0.S11.S1.C.L.LE.DETT.T._Z.XDC_R_B1GQ_CY._T.S.V.N._T" ,
"CFT.Q.N.I8.W0.S13.S1.C.L.LE.GD.T._Z.XDC_R_B1GQ_CY._T.F.V.N._T" )) %>%
ggplot + geom_line (aes (x = date, y = value/ 100 , color = Variable)) +
xlab ("" ) + ylab ("" ) + theme_minimal () +
scale_x_date (breaks = "2 years" ,
labels = date_format ("%Y" )) +
scale_y_continuous (breaks = 0.01 * seq (- 10 , 140 , 5 ),
labels = percent_format (accuracy = 1 )) +
theme (legend.position = c (0.3 , 0.9 ),
legend.title = element_blank (),
legend.direction = "vertical" )