Warning: le package 'rwebstat' n'est pas disponible for this version of R
Une version de ce package pour votre version de R est peut-être disponible ailleurs,
Voyez des idées à
https://cran.r-project.org/doc/manuals/r-patched/R-admin.html#Installing-packages
Warning in library(package, lib.loc = lib.loc, character.only = TRUE,
logical.return = TRUE, : aucun package nommé 'rwebstat' n'est trouvé
Info
Liste des publications
Épargne et Patrimoine financiers des ménages, 2024T1. pdf / html
Comptes financiers des agents non financiers. STAT INFO – 4e trimestre 2023. pdf
Épargne des ménages. STAT INFO – février 2024. pdf
Info
Épargne et Patrimoine financiers des ménages, 2024T2. pdf html
Épargne et Patrimoine financiers des ménages, Comptes financiers des agents non financiers, 15 avril 2024, 2023T4. pdf html
Épargne et Patrimoine financiers des ménages, 2023T3. pdf
Épargne et Patrimoine financiers des ménages, 2023T2. pdf
Présentation trimestrielle de l’épargne des ménages, 2023T1. html pdf
Méthodologie. pdf
Liste séries. html
Épargne et Patrimoine financiers des ménages, 2022T2. pdf
Epargne des ménages, 2021T1. pdf
Taux d’endettement des agents non financiers – Comparaisons internationales, 2020T4. html / pdf
Epargne des ménages, 2020T3. pdf
STO
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (STO, by = "STO" ) %>%
group_by (STO, Sto) %>%
summarise (Nobs = n ()) %>%
arrange (- Nobs) %>%
print_table_conditional
F
flux
13459
LE
Encours
8793
B8G
Taux d'épargne des ménages
836
B9Z
Taux d'épargne financière des ménages
693
K
Réévaluations et autres changements de volume
258
K5
Impact de valorisation
167
P51G
Formation brute de capital fixe
143
FREQ Frequency
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (FREQ, by = "FREQ" ) %>%
group_by (FREQ, Freq) %>%
summarise (Nobs = n ()) %>%
arrange (- Nobs) %>%
print_table_conditional
Q
Trimestriel
22870
A
Annuel
1479
ADJUSTMENT Adjustment
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (ADJUSTMENT, by = "ADJUSTMENT" ) %>%
group_by (ADJUSTMENT, Adjustment) %>%
summarise (Nobs = n ()) %>%
arrange (- Nobs) %>%
print_table_conditional
N
Brut
11931
S
CVS
11874
Y
CVS/CJO
286
_Z
Non applicable
258
REF_AREA Reference area - ISO2
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (REF_AREA, by = "REF_AREA" ) %>%
group_by (REF_AREA, Ref_area) %>%
summarise (Nobs = n ()) %>%
arrange (- Nobs) %>%
print_table_conditional
FR
France
18452
DE
Germany
936
ES
Spain
936
IT
Italy
936
US
United States
936
GB
United Kingdom
831
I9
NA
710
JP
Japan
612
COUNTERPART_AREA Counterpart area
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (COUNTERPART_AREA, by = "COUNTERPART_AREA" ) %>%
group_by (COUNTERPART_AREA, Counterpart_area) %>%
summarise (Nobs = n ()) %>%
arrange (- Nobs) %>%
print_table_conditional
W0
World (all areas, including reference area, including IO)
23314
W2
Domestic (home or reference area)
1035
REF_SECTOR Reference sector
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (REF_SECTOR, by = "REF_SECTOR" ) %>%
group_by (REF_SECTOR, Ref_sector) %>%
summarise (Nobs = n ()) %>%
arrange (- Nobs) %>%
print_table_conditional
S1M
Ménages et Institution sans but lucratif au service des ménages (ISBLSM)
14519
S11
Sociétés non financières
5326
S13
Administrations publiques
3586
S1V
Sociétés non-financières, ménages et NPISH
918
COUNTERPART_SECTOR Counterpart sector
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (COUNTERPART_SECTOR, by = "COUNTERPART_SECTOR" ) %>%
group_by (COUNTERPART_SECTOR, Counterpart_sector) %>%
summarise (Nobs = n ()) %>%
arrange (- Nobs) %>%
print_table_conditional
S1
Ensemble de l`économie
23314
S124
des OPC non monétaires
1035
ACCOUNTING_ENTRY Accounting entries
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (ACCOUNTING_ENTRY, by = "ACCOUNTING_ENTRY" ) %>%
group_by (ACCOUNTING_ENTRY, Accounting_entry) %>%
summarise (Nobs = n ()) %>%
arrange (- Nobs) %>%
print_table_conditional
A
Créances
13245
L
Engagements
8673
B
Balance (Crédit moins débit)
1529
N
Net (avoirs moins engagements)
506
NE
Engagements Nets (engagements moins avoirs)
253
D
Débit (dépenses)
143
INSTR_ASSET Instrument and assets classification
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (INSTR_ASSET, by = "INSTR_ASSET" ) %>%
group_by (INSTR_ASSET, Instr_asset) %>%
summarise (Nobs = n ()) %>%
#arrange(-Nobs) %>%
print_table_conditional
MATURITY Maturity
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (MATURITY, by = "MATURITY" ) %>%
group_by (MATURITY, Maturity) %>%
summarise (Nobs = n ()) %>%
arrange (- Nobs) %>%
print_table_conditional
T
Toutes maturités d`origine
12536
_Z
Non applicable
11813
UNIT_MEASURE Unit of measure
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (UNIT_MEASURE, by = "UNIT_MEASURE" ) %>%
group_by (UNIT_MEASURE, Unit_measure) %>%
summarise (Nobs = n ()) %>%
arrange (- Nobs) %>%
print_table_conditional
XDC
Monnaie nationale
17073
XDC_R_B1GQ_CY
Monnaie nationale (incl. une conversion à la monnaie courante en utilisant une parité fixe); ratio à la somme du glissement annuel du produit intérieur brut
3260
XDC_R_B6G_S1M
en % du RDB
2202
XDC_R_B1G_CY
NA
809
XDC_R_DEBT
NA
612
PC
Pourcent
393
CURRENCY_DENOM Currency denominator
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (CURRENCY_DENOM, by = "CURRENCY_DENOM" ) %>%
group_by (CURRENCY_DENOM, Currency_denom) %>%
summarise (Nobs = n ()) %>%
arrange (- Nobs) %>%
print_table_conditional
_T
Toutes monnaies d`opération
24349
VALUATION Valuation
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (VALUATION, by = "VALUATION" ) %>%
group_by (VALUATION, Valuation) %>%
summarise (Nobs = n ()) %>%
arrange (- Nobs) %>%
print_table_conditional
S
Valorisation standard basée sur ESA2010/SNA2008
23129
N
Valeur nominale (N)
612
F
Valeur nominale (F)
608
date
Code
CFT %>%
group_by (date) %>%
summarise (Nobs = n ()) %>%
arrange (desc (date)) %>%
print_table_conditional
Grandes masses
2024T2
Code
ig_b ("bdf" , "CFT-2024T2" )
2023T4
Code
ig_b ("bdf" , "CFT-2023T4" )
Produits de taux
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
filter (STO == "LE" ,
INSTR_ASSET %in% c ("PDTX" )) %>%
na.omit %>%
ggplot + geom_line (aes (x = date, y = value, color = Variable)) +
xlab ("" ) + ylab ("" ) + theme_minimal () +
scale_x_date (breaks = "1 year" ,
labels = date_format ("%Y" )) +
scale_y_log10 (breaks = seq (- 200 , 10000 , 100 ),
labels = dollar_format (acc = 1 , prefix = "" , su = "Mds€" )) +
theme (legend.position = c (0.35 , 0.9 ),
legend.title = element_blank (),
legend.direction = "vertical" ) +
geom_label (data = . %>% filter (date == as.Date ("2023-12-31" )),
aes (x = date, y = value, color = Variable, label = round (value)))
Produits de fonds propres
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
filter (STO == "LE" ,
INSTR_ASSET %in% c ("PDFP" )) %>%
na.omit %>%
ggplot + geom_line (aes (x = date, y = value, color = Variable)) +
xlab ("" ) + ylab ("" ) + theme_minimal () +
scale_x_date (breaks = "1 year" ,
labels = date_format ("%Y" )) +
scale_y_log10 (breaks = seq (- 200 , 10000 , 100 ),
labels = dollar_format (acc = 1 , prefix = "" , su = "Mds€" )) +
theme (legend.position = c (0.35 , 0.9 ),
legend.title = element_blank (),
legend.direction = "vertical" ) +
geom_label (data = . %>% filter (date == as.Date ("2023-12-31" )),
aes (x = date, y = value, color = Variable, label = round (value)))
Côté, non côté
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
filter (STO == "LE" ,
INSTR_ASSET %in% c ("PDFP" , "F51" , "F511" , "F51M" , "F52" )) %>%
na.omit %>%
ggplot + geom_line (aes (x = date, y = value, color = Variable)) +
xlab ("" ) + ylab ("" ) + theme_minimal () +
scale_x_date (breaks = "1 year" ,
labels = date_format ("%Y" )) +
scale_y_log10 (breaks = seq (- 200 , 10000 , 100 ),
labels = dollar_format (acc = 1 , prefix = "" , su = "Mds€" )) +
theme (legend.position = c (0.5 , 0.7 ),
legend.title = element_blank (),
legend.direction = "vertical" ) +
geom_label (data = . %>% filter (date == as.Date ("2023-12-31" )),
aes (x = date, y = value, color = Variable, label = round (value)))
Detail
Linéaire
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
filter (STO == "LE" ,
INSTR_ASSET %in% c ("F62A" , "F62B" , "F29R" , "F2A" , "F29Z" )) %>%
na.omit %>%
ggplot + geom_line (aes (x = date, y = value, color = Variable)) +
xlab ("" ) + ylab ("" ) + theme_minimal () +
scale_x_date (breaks = "1 year" ,
labels = date_format ("%Y" )) +
scale_y_continuous (breaks = seq (- 200 , 10000 , 100 ),
labels = dollar_format (acc = 1 , prefix = "" , su = "Mds€" )) +
theme (legend.position = c (0.45 , 0.17 ),
legend.title = element_blank (),
legend.direction = "vertical" ) +
geom_label (data = . %>% filter (date == as.Date ("2023-12-31" )),
aes (x = date, y = value, color = Variable, label = round (value)))
Log
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
filter (STO == "LE" ,
INSTR_ASSET %in% c ("F62A" , "F62B" , "F29R" , "F2A" , "F29Z" )) %>%
na.omit %>%
ggplot + geom_line (aes (x = date, y = value, color = Variable)) +
xlab ("" ) + ylab ("" ) + theme_minimal () +
scale_x_date (breaks = "1 year" ,
labels = date_format ("%Y" )) +
scale_y_log10 (breaks = seq (- 200 , 10000 , 100 ),
labels = dollar_format (acc = 1 , prefix = "" , su = "Mds€" )) +
theme (legend.position = c (0.45 , 0.17 ),
legend.title = element_blank (),
legend.direction = "vertical" ) +
geom_label (data = . %>% filter (date == as.Date ("2023-12-31" )),
aes (x = date, y = value, color = Variable, label = round (value)))
Stock
Numéraires et dépôts à vue
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (REF_AREA, by = "REF_AREA" ) %>%
filter (REF_AREA %in% c ("FR" , "IT" , "DE" ),
INSTR_ASSET == "F2A" ,
STO == "LE" ) %>%
mutate (Ref_area = ifelse (REF_AREA == "I8" , "Europe" , Ref_area)) %>%
left_join (colors, by = c ("Ref_area" = "country" )) %>%
na.omit %>%
ggplot + geom_line (aes (x = date, y = value, color = color)) +
xlab ("" ) + ylab ("" ) + theme_minimal () + scale_color_identity () + add_3flags +
scale_x_date (breaks = "1 year" ,
labels = date_format ("%Y" )) +
scale_y_log10 (breaks = seq (100 , 4000 , 100 ),
labels = dollar_format (accuracy = 1 , pre = "" , su = " Mds€" )) +
geom_label (data = . %>% filter (date == as.Date ("2023-12-31" )),
aes (x = date, y = value, label = round (value)))
Stocks
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (INSTR_ASSET, by = "INSTR_ASSET" ) %>%
filter (REF_AREA %in% c ("FR" ),
INSTR_ASSET %in% c ("F2A" , "F29Z" , "F62B" , "F29R" ),
STO == "LE" ) %>%
select (date, value, Instr_asset) %>%
na.omit %>%
ggplot + geom_line (aes (x = date, y = value, color = Instr_asset)) +
xlab ("" ) + ylab ("" ) + theme_minimal () +
scale_x_date (breaks = "1 year" ,
labels = date_format ("%Y" )) +
scale_y_log10 (breaks = seq (100 , 4000 , 100 ),
labels = dollar_format (accuracy = 1 , pre = "" , su = " Mds€" )) +
theme (legend.position = c (0.4 , 0.4 ),
legend.title = element_blank (),
legend.direction = "vertical" ) +
geom_label (data = . %>% filter (date == as.Date ("2023-12-31" )),
aes (x = date, y = value, color = Instr_asset, label = round (value)))
Numéraires et dépôts à vue
Stocks
All
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (INSTR_ASSET, by = "INSTR_ASSET" ) %>%
filter (REF_AREA %in% c ("FR" ),
INSTR_ASSET %in% c ("F2A" , "F29Z" , "F62B" ),
STO == "LE" ) %>%
select (date, value, Instr_asset) %>%
na.omit %>%
ggplot + geom_line (aes (x = date, y = value, color = Instr_asset)) +
xlab ("" ) + ylab ("" ) + theme_minimal () +
scale_x_date (breaks = "1 year" ,
labels = date_format ("%Y" )) +
scale_y_log10 (breaks = seq (100 , 4000 , 100 ),
labels = dollar_format (accuracy = 1 , pre = "" , su = " Mds€" )) +
theme (legend.position = c (0.4 , 0.4 ),
legend.title = element_blank (),
legend.direction = "vertical" ) +
geom_label (data = . %>% filter (date == as.Date ("2023-12-31" )),
aes (x = date, y = value, color = Instr_asset, label = round (value)))
2019-
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (INSTR_ASSET, by = "INSTR_ASSET" ) %>%
filter (REF_AREA %in% c ("FR" ),
INSTR_ASSET %in% c ("F2A" , "F29Z" , "F62B" ),
STO == "LE" ) %>%
select (date, value, Instr_asset) %>%
na.omit %>%
filter (date >= as.Date ("2022-01-01" )) %>%
ggplot + geom_line (aes (x = date, y = value, color = Instr_asset)) +
xlab ("" ) + ylab ("" ) + theme_minimal () +
scale_x_date (breaks = "3 months" ,
labels = date_format ("%b %Y" )) +
scale_y_log10 (breaks = seq (100 , 4000 , 100 ),
labels = dollar_format (accuracy = 1 , pre = "" , su = " Mds€" )) +
theme (legend.position = c (0.4 , 0.4 ),
legend.title = element_blank (),
legend.direction = "vertical" ) +
geom_label (data = . %>% filter (date == as.Date ("2023-12-31" )),
aes (x = date, y = value, color = Instr_asset, label = round (value)))
Flux - 4 trimestres
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (INSTR_ASSET, by = "INSTR_ASSET" ) %>%
filter (REF_AREA %in% c ("FR" ),
INSTR_ASSET %in% c ("F2A" , "F29Z" , "F62B" , "F29R" ),
STO == "F" ,
TRANSFORMATION == "C4" ) %>%
#filter(date >= as.Date("2016-01-01")) %>%
select (date, value, Instr_asset) %>%
na.omit %>%
ggplot + geom_line (aes (x = date, y = value, color = Instr_asset)) +
xlab ("" ) + ylab ("" ) + theme_minimal () +
scale_x_date (breaks = "1 year" ,
labels = date_format ("%Y" )) +
scale_y_continuous (breaks = seq (- 2000 , 4000 , 10 ),
labels = dollar_format (accuracy = 1 , pre = "" , su = " Mds€" )) +
theme (legend.position = c (0.4 , 0.8 ),
legend.title = element_blank (),
legend.direction = "vertical" )
Flux
All
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (INSTR_ASSET, by = "INSTR_ASSET" ) %>%
filter (REF_AREA %in% c ("FR" ),
INSTR_ASSET %in% c ("F2A" , "F29Z" , "F62B" , "F29R" ),
STO == "F" ,
TRANSFORMATION == "N" ,
FREQ == "Q" ) %>%
filter (date >= as.Date ("2010-01-01" )) %>%
ggplot + geom_line (aes (x = date, y = value, color = Instr_asset)) +
xlab ("" ) + ylab ("" ) + theme_minimal () +
scale_x_date (breaks = "1 year" ,
labels = date_format ("%Y" )) +
scale_y_continuous (breaks = seq (- 1000 , 4000 , 10 ),
labels = dollar_format (accuracy = 1 , pre = "" , su = " Mds€" )) +
theme (legend.position = c (0.4 , 0.8 ),
legend.title = element_blank (),
legend.direction = "vertical" )
2016
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (INSTR_ASSET, by = "INSTR_ASSET" ) %>%
filter (REF_AREA %in% c ("FR" ),
INSTR_ASSET %in% c ("F2A" , "F29Z" , "F62B" , "F29R" ),
STO == "F" ,
TRANSFORMATION == "N" ,
FREQ == "Q" ) %>%
filter (date >= as.Date ("2016-01-01" )) %>%
ggplot + geom_line (aes (x = date, y = value, color = Instr_asset)) +
xlab ("" ) + ylab ("" ) + theme_minimal () +
scale_x_date (breaks = "1 year" ,
labels = date_format ("%Y" )) +
scale_y_continuous (breaks = seq (- 1000 , 4000 , 10 ),
labels = dollar_format (accuracy = 1 , pre = "" , su = " Mds€" )) +
theme (legend.position = c (0.4 , 0.9 ),
legend.title = element_blank (),
legend.direction = "vertical" ) +
geom_hline (yintercept = 0 , linetype = "dashed" )
Actions côtées / non côtées, AV en unités de compte
Stocks
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (INSTR_ASSET, by = "INSTR_ASSET" ) %>%
filter (REF_AREA %in% c ("FR" ),
INSTR_ASSET %in% c ( "F511" , "F51M" , "F51" ),
STO == "LE" ) %>%
na.omit %>%
ggplot + geom_line (aes (x = date, y = value, color = Instr_asset)) +
xlab ("" ) + ylab ("" ) + theme_minimal () +
scale_x_date (breaks = "1 year" ,
labels = date_format ("%Y" )) +
scale_y_log10 (breaks = seq (100 , 4000 , 100 ),
labels = dollar_format (accuracy = 1 , pre = "" , su = " Mds€" )) +
theme (legend.position = c (0.4 , 0.6 ),
legend.title = element_blank (),
legend.direction = "vertical" ) +
geom_label (data = . %>% filter (date == as.Date ("2023-12-31" )),
aes (x = date, y = value, color = Instr_asset, label = round (value)))
Actions côtées / non côtées, AV en unités de compte
Stocks
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (INSTR_ASSET, by = "INSTR_ASSET" ) %>%
filter (REF_AREA %in% c ("FR" ),
INSTR_ASSET %in% c ( "F511" , "F51M" , "F62A" ),
STO == "LE" ) %>%
na.omit %>%
ggplot + geom_line (aes (x = date, y = value, color = Instr_asset)) +
xlab ("" ) + ylab ("" ) + theme_minimal () +
scale_x_date (breaks = "1 year" ,
labels = date_format ("%Y" )) +
scale_y_log10 (breaks = seq (100 , 4000 , 100 ),
labels = dollar_format (accuracy = 1 , pre = "" , su = " Mds€" )) +
theme (legend.position = c (0.4 , 0.6 ),
legend.title = element_blank (),
legend.direction = "vertical" ) +
geom_label (data = . %>% filter (date == as.Date ("2023-12-31" )),
aes (x = date, y = value, color = Instr_asset, label = round (value)))
Flux
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (INSTR_ASSET, by = "INSTR_ASSET" ) %>%
filter (REF_AREA %in% c ("FR" ),
INSTR_ASSET %in% c ( "F511" , "F51M" , "F62A" ),
STO == "F" ,
TRANSFORMATION == "N" ,
FREQ == "Q" ) %>%
filter (date >= as.Date ("2016-01-01" )) %>%
ggplot + geom_line (aes (x = date, y = value, color = Instr_asset)) +
xlab ("" ) + ylab ("" ) + theme_minimal () +
scale_x_date (breaks = "1 year" ,
labels = date_format ("%Y" )) +
scale_y_continuous (breaks = seq (- 2000 , 4000 , 5 ),
labels = dollar_format (accuracy = 1 , pre = "" , su = " Mds€" )) +
theme (legend.position = c (0.4 , 0.4 ),
legend.title = element_blank (),
legend.direction = "vertical" )
Numéraires et dépôts à vue
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (INSTR_ASSET, by = "INSTR_ASSET" ) %>%
filter (REF_AREA %in% c ("FR" ),
INSTR_ASSET %in% c ("F2A" , "F29Z" ),
STO == "LE" ) %>%
na.omit %>%
ggplot + geom_line (aes (x = date, y = value, color = Instr_asset)) +
xlab ("" ) + ylab ("" ) + theme_minimal () +
scale_x_date (breaks = "1 year" ,
labels = date_format ("%Y" )) +
scale_y_log10 (breaks = seq (100 , 4000 , 100 ),
labels = dollar_format (accuracy = 1 , pre = "" , su = " Mds€" )) +
theme (legend.position = c (0.75 , 0.1 ),
legend.title = element_blank (),
legend.direction = "vertical" ) +
geom_label (data = . %>% filter (date == as.Date ("2023-12-31" )),
aes (x = date, y = value, color = Instr_asset, label = round (value)))
Assurance Vie
Toutes
2007-
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
filter (variable %in% c ("CFT.Q.S.FR.W0.S1M.S1.N.A.F.F62B._Z._Z.XDC._T.S.V.N._T" ,
"CFT.Q.S.FR.W0.S1M.S1.N.A.F.F62A._Z._Z.XDC._T.S.V.N._T" ,
"CFT.Q.S.FR.W0.S1M.S1.N.A.F.F29R.T._Z.XDC._T.S.V.N._T" ,
"CFT.Q.S.FR.W0.S1M.S1.N.A.F.F2A.T._Z.XDC._T.S.V.N._T" )) %>%
na.omit %>%
ggplot + geom_line (aes (x = date, y = value, color = Variable)) +
xlab ("" ) + ylab ("" ) + theme_minimal () +
scale_x_date (breaks = "1 year" ,
labels = date_format ("%Y" )) +
scale_y_continuous (breaks = seq (- 200 , 1000 , 5 ),
limits = c (- 25 ,40 ),
labels = dollar_format (acc = 1 , prefix = "" , su = "Mds€" )) +
theme (legend.position = c (0.45 , 0.17 ),
legend.title = element_blank (),
legend.direction = "vertical" )
2015-
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
filter (variable %in% c ("CFT.Q.S.FR.W0.S1M.S1.N.A.F.F62B._Z._Z.XDC._T.S.V.N._T" ,
"CFT.Q.S.FR.W0.S1M.S1.N.A.F.F29Z.T._Z.XDC._T.S.V.N._T" ,
"CFT.Q.S.FR.W0.S1M.S1.N.A.F.F29R.T._Z.XDC._T.S.V.N._T" ,
"CFT.Q.S.FR.W0.S1M.S1.N.A.F.F2A.T._Z.XDC._T.S.V.N._T" )) %>%
filter (date >= as.Date ("2015-01-01" )) %>%
ggplot + geom_line (aes (x = date, y = value, color = Variable)) +
xlab ("" ) + ylab ("" ) + theme_minimal () +
scale_x_date (breaks = "1 year" ,
labels = date_format ("%Y" )) +
scale_y_continuous (breaks = seq (- 200 , 1000 , 5 ),
limits = c (- 5 ,40 ),
labels = dollar_format (acc = 1 , prefix = "" , su = "Mds€" )) +
theme (legend.position = c (0.45 , 0.8 ),
legend.title = element_blank (),
legend.direction = "vertical" )
Taux d’épargne des ménages
Le taux d’épargne des ménages est le rapport entre l’épargne brute des ménages (B8G) et le revenu disponible brut ajusté des variations de droits à pension. Le revenu disponible brut (B6G) correspond aux revenus que perçoivent les ménages (revenus d’activité et revenus fonciers) après opérations de redistribution (ajout des prestations sociales en espèces reçues, soustraction des cotisations et impôts).
Quant au taux d’épargne financière, il s’agit de la part du revenu disponible brut investie dans des actifs financiers.
le taux d’épargne s’obtient en rapportant l’épargne brute au revenu disponible brut ajusté de la variation des droits des ménages sur les fonds de pension, préalablement corrigés des variations saisonnières
le taux d’épargne financière est estimé en soustrayant la formation brute de capital fixe à l’épargne brute, ensuite rapportée au revenu disponible brut ajusté de la variation des droits des ménages sur les fonds de pension, puis en corrigeant des variations saisonnières.
Annual
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
filter (variable %in% c ("CFT.A.N.FR.W0.S1M.S1.N.B.B8G._Z._Z._Z.XDC_R_B6G_S1M._T.S.V.N._T" ,
"CFT.A.N.FR.W0.S1M.S1.N.B.B9Z._Z._Z._Z.XDC_R_B6G_S1M._T.S.V.N._T" )) %>%
na.omit %>%
ggplot + geom_line (aes (x = date, y = value/ 100 , color = Variable)) +
xlab ("" ) + ylab ("" ) + theme_minimal () +
scale_x_date (breaks = "1 year" ,
labels = date_format ("%Y" )) +
scale_y_continuous (breaks = 0.01 * seq (- 10 , 100 , 1 ),
labels = percent_format (accuracy = 1 )) +
theme (legend.position = c (0.4 , 0.9 ),
legend.title = element_blank (),
legend.direction = "vertical" )
Quarterly
All
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
filter (variable %in% c ("CFT.Q.N.FR.W0.S1M.S1.N.B.B8G._Z._Z._Z.XDC_R_B6G_S1M._T.S.V.C4._T" ,
"CFT.Q.N.FR.W0.S1M.S1.N.B.B9Z._Z._Z._Z.XDC_R_B6G_S1M._T.S.V.C4._T" )) %>%
na.omit %>%
ggplot + geom_line (aes (x = date, y = value/ 100 , color = Variable)) +
xlab ("" ) + ylab ("" ) + theme_minimal () +
scale_x_date (breaks = "2 years" ,
labels = date_format ("%Y" )) +
scale_y_continuous (breaks = 0.01 * seq (- 10 , 100 , 1 ),
labels = percent_format (accuracy = 1 )) +
theme (legend.position = c (0.42 , 0.9 ),
legend.title = element_blank (),
legend.direction = "vertical" )
2010-
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
filter (variable %in% c ("CFT.Q.N.FR.W0.S1M.S1.N.B.B8G._Z._Z._Z.XDC_R_B6G_S1M._T.S.V.C4._T" ,
"CFT.Q.N.FR.W0.S1M.S1.N.B.B9Z._Z._Z._Z.XDC_R_B6G_S1M._T.S.V.C4._T" )) %>%
na.omit %>%
filter (date >= as.Date ("2010-01-01" )) %>%
ggplot + geom_line (aes (x = date, y = value/ 100 , color = Variable)) +
xlab ("" ) + ylab ("" ) + theme_minimal () +
scale_x_date (breaks = "2 years" ,
labels = date_format ("%Y" )) +
scale_y_continuous (breaks = 0.01 * seq (- 10 , 100 , 1 ),
labels = percent_format (accuracy = 1 )) +
theme (legend.position = c (0.45 , 0.9 ),
legend.title = element_blank (),
legend.direction = "vertical" )
France, Spain, Italy
Table
Code
load_data ("bdf/REF_AREA.RData" )
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (REF_AREA, by = "REF_AREA" ) %>%
filter (FREQ == "Q" ,
UNIT_MEASURE == "XDC_R_B6G_S1M" ,
REF_SECTOR == "S1M" ,
date == as.Date ("2020-01-01" )) %>%
select (Variable, Ref_area, value) %>%
arrange (Ref_area) %>%
print_table_conditional
NA
NA
NA
:--------:
:--------:
:-----:
Taux d’épargne financière
France, Italy, Germany
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (REF_AREA, by = "REF_AREA" ) %>%
filter (FREQ == "Q" ,
REF_AREA %in% c ("FR" , "IT" , "DE" ),
UNIT_MEASURE == "XDC_R_B6G_S1M" ,
STO == "B9Z" ,
REF_SECTOR == "S1M" ) %>%
mutate (value = value/ 100 ) %>%
na.omit %>%
ggplot + geom_line (aes (x = date, y = value, color = Ref_area)) +
xlab ("" ) + ylab ("" ) + theme_minimal () +
scale_color_manual (values = c ("#002395" , "#000000" , "#009246" )) +
scale_x_date (breaks = "2 years" ,
labels = date_format ("%Y" )) +
add_3flags +
scale_y_continuous (breaks = 0.01 * seq (- 10 , 100 , 1 ),
labels = percent_format (accuracy = 1 )) +
theme (legend.position = "none" )
France, Italy, Germany, Spain, United States
All
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (REF_AREA, by = "REF_AREA" ) %>%
filter (FREQ == "Q" ,
UNIT_MEASURE == "XDC_R_B6G_S1M" ,
STO == "B9Z" ,
REF_SECTOR == "S1M" ) %>%
left_join (colors, by = c ("Ref_area" = "country" )) %>%
mutate (value = value/ 100 ) %>%
na.omit %>%
ggplot + geom_line (aes (x = date, y = value, color = color)) +
xlab ("" ) + ylab ("" ) + theme_minimal () + scale_color_identity () + add_6flags +
scale_x_date (breaks = "2 years" ,
labels = date_format ("%Y" )) +
scale_y_continuous (breaks = 0.01 * seq (- 10 , 100 , 1 ),
labels = percent_format (accuracy = 1 ))
2007-
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (REF_AREA, by = "REF_AREA" ) %>%
filter (FREQ == "Q" ,
UNIT_MEASURE == "XDC_R_B6G_S1M" ,
STO == "B9Z" ,
REF_SECTOR == "S1M" ) %>%
left_join (colors, by = c ("Ref_area" = "country" )) %>%
mutate (value = value/ 100 ) %>%
filter (date >= as.Date ("2007-01-01" )) %>%
na.omit %>%
ggplot + geom_line (aes (x = date, y = value, color = color)) +
xlab ("" ) + ylab ("" ) + theme_minimal () + scale_color_identity () + add_6flags +
scale_x_date (breaks = "1 year" ,
labels = date_format ("%Y" )) +
scale_y_continuous (breaks = 0.01 * seq (- 10 , 100 , 1 ),
labels = percent_format (accuracy = 1 ))
2015-
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (REF_AREA, by = "REF_AREA" ) %>%
filter (FREQ == "Q" ,
UNIT_MEASURE == "XDC_R_B6G_S1M" ,
STO == "B9Z" ,
REF_SECTOR == "S1M" ) %>%
left_join (colors, by = c ("Ref_area" = "country" )) %>%
mutate (value = value/ 100 ) %>%
filter (date >= as.Date ("2015-01-01" )) %>%
na.omit %>%
ggplot + geom_line (aes (x = date, y = value, color = color)) +
xlab ("" ) + ylab ("Taux d'épargne financière (%)" ) + theme_minimal () + scale_color_identity () + add_6flags +
scale_x_date (breaks = "1 year" ,
labels = date_format ("%Y" )) +
scale_y_continuous (breaks = 0.01 * seq (- 10 , 100 , 1 ),
labels = percent_format (accuracy = 1 ))
Taux d’épargne
France, Italy, Germany
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (REF_AREA, by = "REF_AREA" ) %>%
filter (FREQ == "Q" ,
REF_AREA %in% c ("FR" , "IT" , "DE" ),
UNIT_MEASURE == "XDC_R_B6G_S1M" ,
STO == "B8G" ,
REF_SECTOR == "S1M" ) %>%
left_join (colors, by = c ("Ref_area" = "country" )) %>%
mutate (value = value/ 100 ) %>%
na.omit %>%
ggplot + geom_line (aes (x = date, y = value, color = color)) +
xlab ("" ) + ylab ("" ) + theme_minimal () + scale_color_identity () + add_3flags +
scale_x_date (breaks = "2 years" ,
labels = date_format ("%Y" )) +
scale_y_continuous (breaks = 0.01 * seq (- 10 , 100 , 1 ),
labels = percent_format (accuracy = 1 ))
France, Italy, Germany, Spain, United States
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (REF_AREA, by = "REF_AREA" ) %>%
filter (FREQ == "Q" ,
UNIT_MEASURE == "XDC_R_B6G_S1M" ,
STO == "B8G" ,
REF_SECTOR == "S1M" ) %>%
left_join (colors, by = c ("Ref_area" = "country" )) %>%
mutate (value = value/ 100 ) %>%
na.omit %>%
ggplot + geom_line (aes (x = date, y = value, color = color)) +
xlab ("" ) + ylab ("" ) + theme_minimal () + scale_color_identity () + add_6flags +
scale_x_date (breaks = "2 years" ,
labels = date_format ("%Y" )) +
scale_y_continuous (breaks = 0.01 * seq (- 10 , 100 , 1 ),
labels = percent_format (accuracy = 1 ))
Dette
Dette des ménages
All
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (REF_AREA, by = "REF_AREA" ) %>%
filter (INSTR_ASSET == "DETT" ,
UNIT_MEASURE == "XDC_R_B1GQ_CY" ,
REF_SECTOR == "S1M" ) %>%
mutate (Ref_area = ifelse (REF_AREA == "I8" , "Europe" , Ref_area)) %>%
mutate (Ref_area = ifelse (REF_AREA == "UK" , "United Kingdom" , Ref_area)) %>%
left_join (colors, by = c ("Ref_area" = "country" )) %>%
mutate (value = value/ 100 ) %>%
arrange (date) %>%
select (REF_AREA,everything ()) %>%
ggplot + geom_line (aes (x = date, y = value, color = color)) +
xlab ("" ) + ylab ("" ) + theme_minimal () + scale_color_identity () + add_7flags +
scale_x_date (breaks = "2 years" ,
labels = date_format ("%Y" )) +
scale_y_continuous (breaks = 0.01 * seq (- 10 , 200 , 10 ),
labels = percent_format (accuracy = 1 ))
France, Italy, Germany, Spain, Japan, EU
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (REF_AREA, by = "REF_AREA" ) %>%
filter (REF_AREA %in% c ("FR" , "IT" , "DE" , "ES" , "JP" , "I8" ),
INSTR_ASSET == "DETT" ,
UNIT_MEASURE == "XDC_R_B1GQ_CY" ,
REF_SECTOR == "S1M" ) %>%
mutate (Ref_area = ifelse (REF_AREA == "I8" , "Europe" , Ref_area)) %>%
left_join (colors, by = c ("Ref_area" = "country" )) %>%
mutate (value = value/ 100 ) %>%
ggplot + geom_line (aes (x = date, y = value, color = color)) +
xlab ("" ) + ylab ("" ) + theme_minimal () + scale_color_identity () + add_6flags +
scale_x_date (breaks = "2 years" ,
labels = date_format ("%Y" )) +
scale_y_continuous (breaks = 0.01 * seq (- 10 , 100 , 5 ),
labels = percent_format (accuracy = 1 ))
France, Italy, Germany
All
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (REF_AREA, by = "REF_AREA" ) %>%
filter (REF_AREA %in% c ("FR" , "IT" , "DE" ),
INSTR_ASSET == "DETT" ,
UNIT_MEASURE == "XDC_R_B1GQ_CY" ,
REF_SECTOR == "S1M" ) %>%
mutate (Ref_area = ifelse (REF_AREA == "I8" , "Europe" , Ref_area)) %>%
left_join (colors, by = c ("Ref_area" = "country" )) %>%
mutate (value = value/ 100 ) %>%
ggplot + geom_line (aes (x = date, y = value, color = color)) +
xlab ("" ) + ylab ("" ) + theme_minimal () + scale_color_identity () + add_3flags +
scale_x_date (breaks = "2 years" ,
labels = date_format ("%Y" )) +
scale_y_continuous (breaks = 0.01 * seq (- 10 , 100 , 5 ),
labels = percent_format (accuracy = 1 ))
2013-
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (REF_AREA, by = "REF_AREA" ) %>%
filter (REF_AREA %in% c ("FR" , "IT" , "DE" ),
INSTR_ASSET == "DETT" ,
UNIT_MEASURE == "XDC_R_B1GQ_CY" ,
REF_SECTOR == "S1M" ) %>%
mutate (Ref_area = ifelse (REF_AREA == "I8" , "Europe" , Ref_area)) %>%
left_join (colors, by = c ("Ref_area" = "country" )) %>%
mutate (value = value/ 100 ) %>%
filter (date >= as.Date ("2013-01-01" )) %>%
ggplot + geom_line (aes (x = date, y = value, color = color)) +
xlab ("" ) + ylab ("" ) + theme_minimal () + scale_color_identity () + add_3flags +
scale_x_date (breaks = "1 year" ,
labels = date_format ("%Y" )) +
scale_y_continuous (breaks = 0.01 * seq (- 10 , 100 , 2 ),
labels = percent_format (accuracy = 1 ))
Non-financial corporations
France, Italy, Germany
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
left_join (REF_AREA, by = "REF_AREA" ) %>%
filter (REF_AREA %in% c ("FR" , "IT" , "DE" , "I8" ),
INSTR_ASSET == "DETT" ,
UNIT_MEASURE == "XDC_R_B1GQ_CY" ,
REF_SECTOR == "S11" ) %>%
mutate (Ref_area = ifelse (REF_AREA == "I8" , "Europe" , Ref_area)) %>%
left_join (colors, by = c ("Ref_area" = "country" )) %>%
mutate (value = value/ 100 ) %>%
ggplot + geom_line (aes (x = date, y = value, color = color)) +
xlab ("" ) + ylab ("" ) + theme_minimal () + scale_color_identity () + add_4flags +
scale_x_date (breaks = "2 years" ,
labels = date_format ("%Y" )) +
scale_y_continuous (breaks = 0.01 * seq (- 10 , 100 , 5 ),
labels = dollar_format (accuracy = .01 , pre = "" , su = " année" ))
Taux d’endettement
France
Années de PIB
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
filter (variable %in% c ("CFT.Q.S.FR.W0.S1M.S1.N.L.LE.DETT.T._Z.XDC_R_B1GQ_CY._T.S.V.N._T" ,
"CFT.Q.S.FR.W0.S11.S1.C.L.LE.DETT.T._Z.XDC_R_B1GQ_CY._T.S.V.N._T" ,
"CFT.Q.N.FR.W0.S13.S1.C.L.LE.GD.T._Z.XDC_R_B1GQ_CY._T.F.V.N._T" )) %>%
mutate (Variable = gsub (", en % du PIB" , "" , Variable),
Variable = gsub (" en % du PIB" , "" , Variable)) %>%
ggplot + geom_line (aes (x = date, y = value/ 100 , color = Variable)) +
xlab ("" ) + ylab ("Dette/PIB (en années de PIB)" ) + theme_minimal () +
scale_x_date (breaks = "2 years" ,
labels = date_format ("%Y" )) +
scale_y_continuous (breaks = seq (0 , 1.3 , 0.1 ),
labels = dollar_format (su = " ans" , p = "" , acc = 0.1 )) +
theme (legend.position = c (0.3 , 0.9 ),
legend.title = element_blank (),
legend.direction = "vertical" )
% du PIB
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
filter (variable %in% c ("CFT.Q.S.FR.W0.S1M.S1.N.L.LE.DETT.T._Z.XDC_R_B1GQ_CY._T.S.V.N._T" ,
"CFT.Q.S.FR.W0.S11.S1.C.L.LE.DETT.T._Z.XDC_R_B1GQ_CY._T.S.V.N._T" ,
"CFT.Q.N.FR.W0.S13.S1.C.L.LE.GD.T._Z.XDC_R_B1GQ_CY._T.F.V.N._T" )) %>%
ggplot + geom_line (aes (x = date, y = value/ 100 , color = Variable)) +
xlab ("" ) + ylab ("" ) + theme_minimal () +
scale_x_date (breaks = "2 years" ,
labels = date_format ("%Y" )) +
scale_y_continuous (breaks = 0.01 * seq (- 10 , 140 , 5 ),
labels = percent_format (accuracy = 1 )) +
theme (legend.position = c (0.3 , 0.9 ),
legend.title = element_blank (),
legend.direction = "vertical" )
Allemagne
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
filter (variable %in% c ("CFT.Q.N.DE.W0.S1M.S1.N.L.LE.DETT.T._Z.XDC_R_B1GQ_CY._T.S.V.N._T" ,
"CFT.Q.N.DE.W0.S11.S1.C.L.LE.DETT.T._Z.XDC_R_B1GQ_CY._T.S.V.N._T" ,
"CFT.Q.N.DE.W0.S13.S1.C.L.LE.GD.T._Z.XDC_R_B1GQ_CY._T.F.V.N._T" )) %>%
ggplot + geom_line (aes (x = date, y = value/ 100 , color = Variable)) +
xlab ("" ) + ylab ("" ) + theme_minimal () +
scale_x_date (breaks = "2 years" ,
labels = date_format ("%Y" )) +
scale_y_continuous (breaks = 0.01 * seq (- 10 , 140 , 5 ),
labels = percent_format (accuracy = 1 )) +
theme (legend.position = c (0.3 , 0.9 ),
legend.title = element_blank (),
legend.direction = "vertical" )
Italie
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
filter (variable %in% c ("CFT.Q.N.IT.W0.S1M.S1.N.L.LE.DETT.T._Z.XDC_R_B1GQ_CY._T.S.V.N._T" ,
"CFT.Q.N.IT.W0.S11.S1.C.L.LE.DETT.T._Z.XDC_R_B1GQ_CY._T.S.V.N._T" ,
"CFT.Q.N.IT.W0.S13.S1.C.L.LE.GD.T._Z.XDC_R_B1GQ_CY._T.F.V.N._T" )) %>%
ggplot + geom_line (aes (x = date, y = value/ 100 , color = Variable)) +
xlab ("" ) + ylab ("" ) + theme_minimal () +
scale_x_date (breaks = "2 years" ,
labels = date_format ("%Y" )) +
scale_y_continuous (breaks = 0.01 * seq (- 10 , 400 , 10 ),
labels = percent_format (accuracy = 1 )) +
theme (legend.position = c (0.3 , 0.9 ),
legend.title = element_blank (),
legend.direction = "vertical" )
Espagne
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
filter (variable %in% c ("CFT.Q.N.ES.W0.S1M.S1.N.L.LE.DETT.T._Z.XDC_R_B1GQ_CY._T.S.V.N._T" ,
"CFT.Q.N.ES.W0.S11.S1.C.L.LE.DETT.T._Z.XDC_R_B1GQ_CY._T.S.V.N._T" ,
"CFT.Q.N.ES.W0.S13.S1.C.L.LE.GD.T._Z.XDC_R_B1GQ_CY._T.F.V.N._T" )) %>%
ggplot + geom_line (aes (x = date, y = value/ 100 , color = Variable)) +
xlab ("" ) + ylab ("" ) + theme_minimal () +
scale_x_date (breaks = "2 years" ,
labels = date_format ("%Y" )) +
scale_y_continuous (breaks = 0.01 * seq (- 10 , 400 , 10 ),
labels = percent_format (accuracy = 1 )) +
theme (legend.position = c (0.2 , 0.9 ),
legend.title = element_blank (),
legend.direction = "vertical" )
Zone Euro
Code
CFT %>%
left_join (CFT_var, by = "variable" ) %>%
filter (variable %in% c ("CFT.Q.N.I8.W0.S1M.S1.N.L.LE.DETT.T._Z.XDC_R_B1GQ_CY._T.S.V.N._T" ,
"CFT.Q.N.I8.W0.S11.S1.C.L.LE.DETT.T._Z.XDC_R_B1GQ_CY._T.S.V.N._T" ,
"CFT.Q.N.I8.W0.S13.S1.C.L.LE.GD.T._Z.XDC_R_B1GQ_CY._T.F.V.N._T" )) %>%
ggplot + geom_line (aes (x = date, y = value/ 100 , color = Variable)) +
xlab ("" ) + ylab ("" ) + theme_minimal () +
scale_x_date (breaks = "2 years" ,
labels = date_format ("%Y" )) +
scale_y_continuous (breaks = 0.01 * seq (- 10 , 140 , 5 ),
labels = percent_format (accuracy = 1 )) +
theme (legend.position = c (0.3 , 0.9 ),
legend.title = element_blank (),
legend.direction = "vertical" )