Comptes Financiers Trimestriels
Data - BDF
Info
- Méthodologie. pdf
Last
| date | Nobs |
|---|---|
| 2024-09-30 | 4 |
Liste des publications
Info
Épargne et Patrimoine financiers des ménages, 2024T2. pdf html
Épargne et Patrimoine financiers des ménages, Comptes financiers des agents non financiers, 15 avril 2024, 2023T4. pdf html
Épargne et Patrimoine financiers des ménages, 2023T3. pdf
Épargne et Patrimoine financiers des ménages, 2023T2. pdf
Présentation trimestrielle de l’épargne des ménages, 2023T1. html pdf
Méthodologie. pdf
Liste séries. html
Épargne et Patrimoine financiers des ménages, 2022T2. pdf
Epargne des ménages, 2021T1. pdf
Taux d’endettement des agents non financiers – Comparaisons internationales, 2020T4. html / pdf
Epargne des ménages, 2020T3. pdf
STO
Code
CFT %>%
left_join(CFT_var, by = "variable") %>%
left_join(STO, by = "STO") %>%
group_by(STO, Sto) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional| STO | Sto | Nobs |
|---|---|---|
| F | flux | 13459 |
| LE | Encours | 8793 |
| B8G | Taux d'épargne des ménages | 836 |
| B9Z | Taux d'épargne financière des ménages | 693 |
| K | Réévaluations et autres changements de volume | 258 |
| K5 | Impact de valorisation | 167 |
| P51G | Formation brute de capital fixe | 143 |
FREQ Frequency
Code
CFT %>%
left_join(CFT_var, by = "variable") %>%
left_join(FREQ, by = "FREQ") %>%
group_by(FREQ, Freq) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional| FREQ | Freq | Nobs |
|---|---|---|
| Q | Trimestriel | 22870 |
| A | Annuel | 1479 |
ADJUSTMENT Adjustment
Code
CFT %>%
left_join(CFT_var, by = "variable") %>%
left_join(ADJUSTMENT, by = "ADJUSTMENT") %>%
group_by(ADJUSTMENT, Adjustment) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional| ADJUSTMENT | Adjustment | Nobs |
|---|---|---|
| N | Brut | 11931 |
| S | CVS | 11874 |
| Y | CVS/CJO | 286 |
| _Z | Non applicable | 258 |
REF_AREA Reference area - ISO2
Code
CFT %>%
left_join(CFT_var, by = "variable") %>%
left_join(REF_AREA, by = "REF_AREA") %>%
group_by(REF_AREA, Ref_area) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional| REF_AREA | Ref_area | Nobs |
|---|---|---|
| FR | France | 18452 |
| DE | Germany | 936 |
| ES | Spain | 936 |
| IT | Italy | 936 |
| US | United States | 936 |
| GB | United Kingdom | 831 |
| I9 | NA | 710 |
| JP | Japan | 612 |
COUNTERPART_AREA Counterpart area
Code
CFT %>%
left_join(CFT_var, by = "variable") %>%
left_join(COUNTERPART_AREA, by = "COUNTERPART_AREA") %>%
group_by(COUNTERPART_AREA, Counterpart_area) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional| COUNTERPART_AREA | Counterpart_area | Nobs |
|---|---|---|
| W0 | World (all areas, including reference area, including IO) | 23314 |
| W2 | Domestic (home or reference area) | 1035 |
REF_SECTOR Reference sector
Code
CFT %>%
left_join(CFT_var, by = "variable") %>%
left_join(REF_SECTOR, by = "REF_SECTOR") %>%
group_by(REF_SECTOR, Ref_sector) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional| REF_SECTOR | Ref_sector | Nobs |
|---|---|---|
| S1M | Ménages et Institution sans but lucratif au service des ménages (ISBLSM) | 14519 |
| S11 | Sociétés non financières | 5326 |
| S13 | Administrations publiques | 3586 |
| S1V | Sociétés non-financières, ménages et NPISH | 918 |
COUNTERPART_SECTOR Counterpart sector
Code
CFT %>%
left_join(CFT_var, by = "variable") %>%
left_join(COUNTERPART_SECTOR, by = "COUNTERPART_SECTOR") %>%
group_by(COUNTERPART_SECTOR, Counterpart_sector) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional| COUNTERPART_SECTOR | Counterpart_sector | Nobs |
|---|---|---|
| S1 | Ensemble de l`économie | 23314 |
| S124 | des OPC non monétaires | 1035 |
ACCOUNTING_ENTRY Accounting entries
Code
CFT %>%
left_join(CFT_var, by = "variable") %>%
left_join(ACCOUNTING_ENTRY, by = "ACCOUNTING_ENTRY") %>%
group_by(ACCOUNTING_ENTRY, Accounting_entry) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional| ACCOUNTING_ENTRY | Accounting_entry | Nobs |
|---|---|---|
| A | Créances | 13245 |
| L | Engagements | 8673 |
| B | Balance (Crédit moins débit) | 1529 |
| N | Net (avoirs moins engagements) | 506 |
| NE | Engagements Nets (engagements moins avoirs) | 253 |
| D | Débit (dépenses) | 143 |
INSTR_ASSET Instrument and assets classification
Code
CFT %>%
left_join(CFT_var, by = "variable") %>%
left_join(INSTR_ASSET, by = "INSTR_ASSET") %>%
group_by(INSTR_ASSET, Instr_asset) %>%
summarise(Nobs = n()) %>%
#arrange(-Nobs) %>%
print_table_conditionalMATURITY Maturity
Code
CFT %>%
left_join(CFT_var, by = "variable") %>%
left_join(MATURITY, by = "MATURITY") %>%
group_by(MATURITY, Maturity) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional| MATURITY | Maturity | Nobs |
|---|---|---|
| T | Toutes maturités d`origine | 12536 |
| _Z | Non applicable | 11813 |
UNIT_MEASURE Unit of measure
Code
CFT %>%
left_join(CFT_var, by = "variable") %>%
left_join(UNIT_MEASURE, by = "UNIT_MEASURE") %>%
group_by(UNIT_MEASURE, Unit_measure) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional| UNIT_MEASURE | Unit_measure | Nobs |
|---|---|---|
| XDC | Monnaie nationale | 17073 |
| XDC_R_B1GQ_CY | Monnaie nationale (incl. une conversion à la monnaie courante en utilisant une parité fixe); ratio à la somme du glissement annuel du produit intérieur brut | 3260 |
| XDC_R_B6G_S1M | en % du RDB | 2202 |
| XDC_R_B1G_CY | NA | 809 |
| XDC_R_DEBT | NA | 612 |
| PC | Pourcent | 393 |
CURRENCY_DENOM Currency denominator
Code
CFT %>%
left_join(CFT_var, by = "variable") %>%
left_join(CURRENCY_DENOM, by = "CURRENCY_DENOM") %>%
group_by(CURRENCY_DENOM, Currency_denom) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional| CURRENCY_DENOM | Currency_denom | Nobs |
|---|---|---|
| _T | Toutes monnaies d`opération | 24349 |
VALUATION Valuation
Code
CFT %>%
left_join(CFT_var, by = "variable") %>%
left_join(VALUATION, by = "VALUATION") %>%
group_by(VALUATION, Valuation) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional| VALUATION | Valuation | Nobs |
|---|---|---|
| S | Valorisation standard basée sur ESA2010/SNA2008 | 23129 |
| N | Valeur nominale (N) | 612 |
| F | Valeur nominale (F) | 608 |
date
Code
CFT %>%
group_by(date) %>%
summarise(Nobs = n()) %>%
arrange(desc(date)) %>%
print_table_conditionalGrandes masses
2024T2
Code
ig_b("bdf", "CFT-2024T2")
2023T4
Code
ig_b("bdf", "CFT-2023T4")
Produits de taux
Code
CFT %>%
left_join(CFT_var, by = "variable") %>%
filter(STO == "LE",
INSTR_ASSET %in% c("PDTX")) %>%
na.omit %>%
ggplot + geom_line(aes(x = date, y = value, color = Variable)) +
xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = "1 year",
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(-200, 10000, 100),
labels = dollar_format(acc = 1, prefix = "", su = "Mds€")) +
theme(legend.position = c(0.35, 0.9),
legend.title = element_blank(),
legend.direction = "vertical") +
geom_label(data = . %>% filter(date == as.Date("2023-12-31")),
aes(x = date, y = value, color = Variable, label = round(value)))
Produits de fonds propres
Code
CFT %>%
left_join(CFT_var, by = "variable") %>%
filter(STO == "LE",
INSTR_ASSET %in% c("PDFP")) %>%
na.omit %>%
ggplot + geom_line(aes(x = date, y = value, color = Variable)) +
xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = "1 year",
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(-200, 10000, 100),
labels = dollar_format(acc = 1, prefix = "", su = "Mds€")) +
theme(legend.position = c(0.35, 0.9),
legend.title = element_blank(),
legend.direction = "vertical") +
geom_label(data = . %>% filter(date == as.Date("2023-12-31")),
aes(x = date, y = value, color = Variable, label = round(value)))
Côté, non côté
Code
CFT %>%
left_join(CFT_var, by = "variable") %>%
filter(STO == "LE",
INSTR_ASSET %in% c("PDFP", "F51", "F511", "F51M", "F52")) %>%
na.omit %>%
ggplot + geom_line(aes(x = date, y = value, color = Variable)) +
xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = "1 year",
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(-200, 10000, 100),
labels = dollar_format(acc = 1, prefix = "", su = "Mds€")) +
theme(legend.position = c(0.5, 0.7),
legend.title = element_blank(),
legend.direction = "vertical") +
geom_label(data = . %>% filter(date == as.Date("2023-12-31")),
aes(x = date, y = value, color = Variable, label = round(value)))
Detail
Linéaire
Code
CFT %>%
left_join(CFT_var, by = "variable") %>%
filter(STO == "LE",
INSTR_ASSET %in% c("F62A", "F62B", "F29R", "F2A", "F29Z")) %>%
na.omit %>%
ggplot + geom_line(aes(x = date, y = value, color = Variable)) +
xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = "1 year",
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(-200, 10000, 100),
labels = dollar_format(acc = 1, prefix = "", su = "Mds€")) +
theme(legend.position = c(0.45, 0.17),
legend.title = element_blank(),
legend.direction = "vertical") +
geom_label(data = . %>% filter(date == as.Date("2023-12-31")),
aes(x = date, y = value, color = Variable, label = round(value)))
Log
Code
CFT %>%
left_join(CFT_var, by = "variable") %>%
filter(STO == "LE",
INSTR_ASSET %in% c("F62A", "F62B", "F29R", "F2A", "F29Z")) %>%
na.omit %>%
ggplot + geom_line(aes(x = date, y = value, color = Variable)) +
xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = "1 year",
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(-200, 10000, 100),
labels = dollar_format(acc = 1, prefix = "", su = "Mds€")) +
theme(legend.position = c(0.45, 0.17),
legend.title = element_blank(),
legend.direction = "vertical") +
geom_label(data = . %>% filter(date == as.Date("2023-12-31")),
aes(x = date, y = value, color = Variable, label = round(value)))
Stock
Numéraires et dépôts à vue
Code
CFT %>%
left_join(CFT_var, by = "variable") %>%
left_join(REF_AREA, by = "REF_AREA") %>%
filter(REF_AREA %in% c("FR", "IT", "DE"),
INSTR_ASSET == "F2A",
STO == "LE") %>%
mutate(Ref_area = ifelse(REF_AREA == "I8", "Europe", Ref_area)) %>%
left_join(colors, by = c("Ref_area" = "country")) %>%
na.omit %>%
ggplot + geom_line(aes(x = date, y = value, color = color)) +
xlab("") + ylab("") + theme_minimal() + scale_color_identity() + add_3flags +
scale_x_date(breaks = "1 year",
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 4000, 100),
labels = dollar_format(accuracy = 1, pre = "", su = " Mds€")) +
geom_label(data = . %>% filter(date == as.Date("2023-12-31")),
aes(x = date, y = value, label = round(value)))
Stocks
Code
CFT %>%
left_join(CFT_var, by = "variable") %>%
left_join(INSTR_ASSET, by = "INSTR_ASSET") %>%
filter(REF_AREA %in% c("FR"),
INSTR_ASSET %in% c("F2A", "F29Z", "F62B", "F29R"),
STO == "LE") %>%
select(date, value, Instr_asset) %>%
na.omit %>%
ggplot + geom_line(aes(x = date, y = value, color = Instr_asset)) +
xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = "1 year",
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 4000, 100),
labels = dollar_format(accuracy = 1, pre = "", su = " Mds€")) +
theme(legend.position = c(0.4, 0.4),
legend.title = element_blank(),
legend.direction = "vertical") +
geom_label(data = . %>% filter(date == as.Date("2023-12-31")),
aes(x = date, y = value, color = Instr_asset, label = round(value)))
Numéraires et dépôts à vue
Stocks
All
Code
CFT %>%
left_join(CFT_var, by = "variable") %>%
left_join(INSTR_ASSET, by = "INSTR_ASSET") %>%
filter(REF_AREA %in% c("FR"),
INSTR_ASSET %in% c("F2A", "F29Z", "F62B"),
STO == "LE") %>%
select(date, value, Instr_asset) %>%
na.omit %>%
ggplot + geom_line(aes(x = date, y = value, color = Instr_asset)) +
xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = "1 year",
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 4000, 100),
labels = dollar_format(accuracy = 1, pre = "", su = " Mds€")) +
theme(legend.position = c(0.4, 0.4),
legend.title = element_blank(),
legend.direction = "vertical") +
geom_label(data = . %>% filter(date == as.Date("2023-12-31")),
aes(x = date, y = value, color = Instr_asset, label = round(value)))
2019-
Code
CFT %>%
left_join(CFT_var, by = "variable") %>%
left_join(INSTR_ASSET, by = "INSTR_ASSET") %>%
filter(REF_AREA %in% c("FR"),
INSTR_ASSET %in% c("F2A", "F29Z", "F62B"),
STO == "LE") %>%
select(date, value, Instr_asset) %>%
na.omit %>%
filter(date >= as.Date("2022-01-01")) %>%
ggplot + geom_line(aes(x = date, y = value, color = Instr_asset)) +
xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = "3 months",
labels = date_format("%b %Y")) +
scale_y_log10(breaks = seq(100, 4000, 100),
labels = dollar_format(accuracy = 1, pre = "", su = " Mds€")) +
theme(legend.position = c(0.4, 0.4),
legend.title = element_blank(),
legend.direction = "vertical") +
geom_label(data = . %>% filter(date == as.Date("2023-12-31")),
aes(x = date, y = value, color = Instr_asset, label = round(value)))
Flux - 4 trimestres
Code
CFT %>%
left_join(CFT_var, by = "variable") %>%
left_join(INSTR_ASSET, by = "INSTR_ASSET") %>%
filter(REF_AREA %in% c("FR"),
INSTR_ASSET %in% c("F2A", "F29Z", "F62B", "F29R"),
STO == "F",
TRANSFORMATION == "C4") %>%
#filter(date >= as.Date("2016-01-01")) %>%
select(date, value, Instr_asset) %>%
na.omit %>%
ggplot + geom_line(aes(x = date, y = value, color = Instr_asset)) +
xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = "1 year",
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(-2000, 4000, 10),
labels = dollar_format(accuracy = 1, pre = "", su = " Mds€")) +
theme(legend.position = c(0.4, 0.8),
legend.title = element_blank(),
legend.direction = "vertical")
Flux
All
Code
CFT %>%
left_join(CFT_var, by = "variable") %>%
left_join(INSTR_ASSET, by = "INSTR_ASSET") %>%
filter(REF_AREA %in% c("FR"),
INSTR_ASSET %in% c("F2A", "F29Z", "F62B", "F29R"),
STO == "F",
TRANSFORMATION == "N",
FREQ == "Q") %>%
filter(date >= as.Date("2010-01-01")) %>%
ggplot + geom_line(aes(x = date, y = value, color = Instr_asset)) +
xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = "1 year",
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(-1000, 4000, 10),
labels = dollar_format(accuracy = 1, pre = "", su = " Mds€")) +
theme(legend.position = c(0.4, 0.8),
legend.title = element_blank(),
legend.direction = "vertical")
2016
Code
CFT %>%
left_join(CFT_var, by = "variable") %>%
left_join(INSTR_ASSET, by = "INSTR_ASSET") %>%
filter(REF_AREA %in% c("FR"),
INSTR_ASSET %in% c("F2A", "F29Z", "F62B", "F29R"),
STO == "F",
TRANSFORMATION == "N",
FREQ == "Q") %>%
filter(date >= as.Date("2016-01-01")) %>%
ggplot + geom_line(aes(x = date, y = value, color = Instr_asset)) +
xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = "1 year",
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(-1000, 4000, 10),
labels = dollar_format(accuracy = 1, pre = "", su = " Mds€")) +
theme(legend.position = c(0.4, 0.9),
legend.title = element_blank(),
legend.direction = "vertical") +
geom_hline(yintercept = 0, linetype = "dashed")
Actions côtées / non côtées, AV en unités de compte
Stocks
Code
CFT %>%
left_join(CFT_var, by = "variable") %>%
left_join(INSTR_ASSET, by = "INSTR_ASSET") %>%
filter(REF_AREA %in% c("FR"),
INSTR_ASSET %in% c( "F511", "F51M", "F51"),
STO == "LE") %>%
na.omit %>%
ggplot + geom_line(aes(x = date, y = value, color = Instr_asset)) +
xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = "1 year",
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 4000, 100),
labels = dollar_format(accuracy = 1, pre = "", su = " Mds€")) +
theme(legend.position = c(0.4, 0.6),
legend.title = element_blank(),
legend.direction = "vertical") +
geom_label(data = . %>% filter(date == as.Date("2023-12-31")),
aes(x = date, y = value, color = Instr_asset, label = round(value)))
Actions côtées / non côtées, AV en unités de compte
Stocks
Code
CFT %>%
left_join(CFT_var, by = "variable") %>%
left_join(INSTR_ASSET, by = "INSTR_ASSET") %>%
filter(REF_AREA %in% c("FR"),
INSTR_ASSET %in% c( "F511", "F51M", "F62A"),
STO == "LE") %>%
na.omit %>%
ggplot + geom_line(aes(x = date, y = value, color = Instr_asset)) +
xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = "1 year",
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 4000, 100),
labels = dollar_format(accuracy = 1, pre = "", su = " Mds€")) +
theme(legend.position = c(0.4, 0.6),
legend.title = element_blank(),
legend.direction = "vertical") +
geom_label(data = . %>% filter(date == as.Date("2023-12-31")),
aes(x = date, y = value, color = Instr_asset, label = round(value)))
Flux
Code
CFT %>%
left_join(CFT_var, by = "variable") %>%
left_join(INSTR_ASSET, by = "INSTR_ASSET") %>%
filter(REF_AREA %in% c("FR"),
INSTR_ASSET %in% c( "F511", "F51M", "F62A"),
STO == "F",
TRANSFORMATION == "N",
FREQ == "Q") %>%
filter(date >= as.Date("2016-01-01")) %>%
ggplot + geom_line(aes(x = date, y = value, color = Instr_asset)) +
xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = "1 year",
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(-2000, 4000, 5),
labels = dollar_format(accuracy = 1, pre = "", su = " Mds€")) +
theme(legend.position = c(0.4, 0.4),
legend.title = element_blank(),
legend.direction = "vertical")
Numéraires et dépôts à vue
Code
CFT %>%
left_join(CFT_var, by = "variable") %>%
left_join(INSTR_ASSET, by = "INSTR_ASSET") %>%
filter(REF_AREA %in% c("FR"),
INSTR_ASSET %in% c("F2A", "F29Z"),
STO == "LE") %>%
na.omit %>%
ggplot + geom_line(aes(x = date, y = value, color = Instr_asset)) +
xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = "1 year",
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 4000, 100),
labels = dollar_format(accuracy = 1, pre = "", su = " Mds€")) +
theme(legend.position = c(0.75, 0.1),
legend.title = element_blank(),
legend.direction = "vertical") +
geom_label(data = . %>% filter(date == as.Date("2023-12-31")),
aes(x = date, y = value, color = Instr_asset, label = round(value)))
Assurance Vie
Toutes
2007-
Code
CFT %>%
left_join(CFT_var, by = "variable") %>%
filter(variable %in% c("CFT.Q.S.FR.W0.S1M.S1.N.A.F.F62B._Z._Z.XDC._T.S.V.N._T",
"CFT.Q.S.FR.W0.S1M.S1.N.A.F.F62A._Z._Z.XDC._T.S.V.N._T",
"CFT.Q.S.FR.W0.S1M.S1.N.A.F.F29R.T._Z.XDC._T.S.V.N._T",
"CFT.Q.S.FR.W0.S1M.S1.N.A.F.F2A.T._Z.XDC._T.S.V.N._T")) %>%
na.omit %>%
ggplot + geom_line(aes(x = date, y = value, color = Variable)) +
xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = "1 year",
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(-200, 1000, 5),
limits = c(-25 ,40),
labels = dollar_format(acc = 1, prefix = "", su = "Mds€")) +
theme(legend.position = c(0.45, 0.17),
legend.title = element_blank(),
legend.direction = "vertical")
2015-
Code
CFT %>%
left_join(CFT_var, by = "variable") %>%
filter(variable %in% c("CFT.Q.S.FR.W0.S1M.S1.N.A.F.F62B._Z._Z.XDC._T.S.V.N._T",
"CFT.Q.S.FR.W0.S1M.S1.N.A.F.F29Z.T._Z.XDC._T.S.V.N._T",
"CFT.Q.S.FR.W0.S1M.S1.N.A.F.F29R.T._Z.XDC._T.S.V.N._T",
"CFT.Q.S.FR.W0.S1M.S1.N.A.F.F2A.T._Z.XDC._T.S.V.N._T")) %>%
filter(date >= as.Date("2015-01-01")) %>%
ggplot + geom_line(aes(x = date, y = value, color = Variable)) +
xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = "1 year",
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(-200, 1000, 5),
limits = c(-5 ,40),
labels = dollar_format(acc = 1, prefix = "", su = "Mds€")) +
theme(legend.position = c(0.45, 0.8),
legend.title = element_blank(),
legend.direction = "vertical")
Taux d’épargne des ménages
Le taux d’épargne des ménages est le rapport entre l’épargne brute des ménages (B8G) et le revenu disponible brut ajusté des variations de droits à pension. Le revenu disponible brut (B6G) correspond aux revenus que perçoivent les ménages (revenus d’activité et revenus fonciers) après opérations de redistribution (ajout des prestations sociales en espèces reçues, soustraction des cotisations et impôts).
Quant au taux d’épargne financière, il s’agit de la part du revenu disponible brut investie dans des actifs financiers.
le taux d’épargne s’obtient en rapportant l’épargne brute au revenu disponible brut ajusté de la variation des droits des ménages sur les fonds de pension, préalablement corrigés des variations saisonnières
le taux d’épargne financière est estimé en soustrayant la formation brute de capital fixe à l’épargne brute, ensuite rapportée au revenu disponible brut ajusté de la variation des droits des ménages sur les fonds de pension, puis en corrigeant des variations saisonnières.
France
Annual
Code
CFT %>%
left_join(CFT_var, by = "variable") %>%
filter(variable %in% c("CFT.A.N.FR.W0.S1M.S1.N.B.B8G._Z._Z._Z.XDC_R_B6G_S1M._T.S.V.N._T",
"CFT.A.N.FR.W0.S1M.S1.N.B.B9Z._Z._Z._Z.XDC_R_B6G_S1M._T.S.V.N._T")) %>%
na.omit %>%
ggplot + geom_line(aes(x = date, y = value/100, color = Variable)) +
xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = "1 year",
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.4, 0.9),
legend.title = element_blank(),
legend.direction = "vertical")
Quarterly
All
Code
CFT %>%
left_join(CFT_var, by = "variable") %>%
filter(variable %in% c("CFT.Q.N.FR.W0.S1M.S1.N.B.B8G._Z._Z._Z.XDC_R_B6G_S1M._T.S.V.C4._T",
"CFT.Q.N.FR.W0.S1M.S1.N.B.B9Z._Z._Z._Z.XDC_R_B6G_S1M._T.S.V.C4._T")) %>%
na.omit %>%
ggplot + geom_line(aes(x = date, y = value/100, color = Variable)) +
xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = "2 years",
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.42, 0.9),
legend.title = element_blank(),
legend.direction = "vertical")
2010-
Code
CFT %>%
left_join(CFT_var, by = "variable") %>%
filter(variable %in% c("CFT.Q.N.FR.W0.S1M.S1.N.B.B8G._Z._Z._Z.XDC_R_B6G_S1M._T.S.V.C4._T",
"CFT.Q.N.FR.W0.S1M.S1.N.B.B9Z._Z._Z._Z.XDC_R_B6G_S1M._T.S.V.C4._T")) %>%
na.omit %>%
filter(date >= as.Date("2010-01-01")) %>%
ggplot + geom_line(aes(x = date, y = value/100, color = Variable)) +
xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = "2 years",
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.45, 0.9),
legend.title = element_blank(),
legend.direction = "vertical")
France, Spain, Italy
Table
Code
load_data("bdf/REF_AREA.RData")
CFT %>%
left_join(CFT_var, by = "variable") %>%
left_join(REF_AREA, by = "REF_AREA") %>%
filter(FREQ == "Q",
UNIT_MEASURE == "XDC_R_B6G_S1M",
REF_SECTOR == "S1M",
date == as.Date("2020-01-01")) %>%
select(Variable, Ref_area, value) %>%
arrange(Ref_area) %>%
print_table_conditional| Variable | Ref_area | value |
|---|---|---|
| NA | NA | NA |
| :--------: | :--------: | :-----: |
Taux d’épargne financière
France, Italy, Germany
Code
CFT %>%
left_join(CFT_var, by = "variable") %>%
left_join(REF_AREA, by = "REF_AREA") %>%
filter(FREQ == "Q",
REF_AREA %in% c("FR", "IT", "DE"),
UNIT_MEASURE == "XDC_R_B6G_S1M",
STO == "B9Z",
REF_SECTOR == "S1M") %>%
mutate(value = value/100) %>%
na.omit %>%
ggplot + geom_line(aes(x = date, y = value, color = Ref_area)) +
xlab("") + ylab("") + theme_minimal() +
scale_color_manual(values = c("#002395", "#000000", "#009246")) +
scale_x_date(breaks = "2 years",
labels = date_format("%Y")) +
add_3flags +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = "none")
France, Italy, Germany, Spain, United States
All
Code
CFT %>%
left_join(CFT_var, by = "variable") %>%
left_join(REF_AREA, by = "REF_AREA") %>%
filter(FREQ == "Q",
UNIT_MEASURE == "XDC_R_B6G_S1M",
STO == "B9Z",
REF_SECTOR == "S1M") %>%
left_join(colors, by = c("Ref_area" = "country")) %>%
mutate(value = value/100) %>%
na.omit %>%
ggplot + geom_line(aes(x = date, y = value, color = color)) +
xlab("") + ylab("") + theme_minimal() + scale_color_identity() + add_6flags +
scale_x_date(breaks = "2 years",
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 1),
labels = percent_format(accuracy = 1))
2007-
Code
CFT %>%
left_join(CFT_var, by = "variable") %>%
left_join(REF_AREA, by = "REF_AREA") %>%
filter(FREQ == "Q",
UNIT_MEASURE == "XDC_R_B6G_S1M",
STO == "B9Z",
REF_SECTOR == "S1M") %>%
left_join(colors, by = c("Ref_area" = "country")) %>%
mutate(value = value/100) %>%
filter(date >= as.Date("2007-01-01")) %>%
na.omit %>%
ggplot + geom_line(aes(x = date, y = value, color = color)) +
xlab("") + ylab("") + theme_minimal() + scale_color_identity() + add_6flags +
scale_x_date(breaks = "1 year",
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 1),
labels = percent_format(accuracy = 1))
2015-
Code
CFT %>%
left_join(CFT_var, by = "variable") %>%
left_join(REF_AREA, by = "REF_AREA") %>%
filter(FREQ == "Q",
UNIT_MEASURE == "XDC_R_B6G_S1M",
STO == "B9Z",
REF_SECTOR == "S1M") %>%
left_join(colors, by = c("Ref_area" = "country")) %>%
mutate(value = value/100) %>%
filter(date >= as.Date("2015-01-01")) %>%
na.omit %>%
ggplot + geom_line(aes(x = date, y = value, color = color)) +
xlab("") + ylab("Taux d'épargne financière (%)") + theme_minimal() + scale_color_identity() + add_6flags +
scale_x_date(breaks = "1 year",
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 1),
labels = percent_format(accuracy = 1))
Taux d’épargne
France, Italy, Germany
Code
CFT %>%
left_join(CFT_var, by = "variable") %>%
left_join(REF_AREA, by = "REF_AREA") %>%
filter(FREQ == "Q",
REF_AREA %in% c("FR", "IT", "DE"),
UNIT_MEASURE == "XDC_R_B6G_S1M",
STO == "B8G",
REF_SECTOR == "S1M") %>%
left_join(colors, by = c("Ref_area" = "country")) %>%
mutate(value = value/100) %>%
na.omit %>%
ggplot + geom_line(aes(x = date, y = value, color = color)) +
xlab("") + ylab("") + theme_minimal() + scale_color_identity() + add_3flags +
scale_x_date(breaks = "2 years",
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 1),
labels = percent_format(accuracy = 1))
France, Italy, Germany, Spain, United States
Code
CFT %>%
left_join(CFT_var, by = "variable") %>%
left_join(REF_AREA, by = "REF_AREA") %>%
filter(FREQ == "Q",
UNIT_MEASURE == "XDC_R_B6G_S1M",
STO == "B8G",
REF_SECTOR == "S1M") %>%
left_join(colors, by = c("Ref_area" = "country")) %>%
mutate(value = value/100) %>%
na.omit %>%
ggplot + geom_line(aes(x = date, y = value, color = color)) +
xlab("") + ylab("") + theme_minimal() + scale_color_identity() + add_6flags +
scale_x_date(breaks = "2 years",
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 1),
labels = percent_format(accuracy = 1))
Dette
Dette des ménages
All
Code
CFT %>%
left_join(CFT_var, by = "variable") %>%
left_join(REF_AREA, by = "REF_AREA") %>%
filter(INSTR_ASSET == "DETT",
UNIT_MEASURE == "XDC_R_B1GQ_CY",
REF_SECTOR == "S1M") %>%
mutate(Ref_area = ifelse(REF_AREA == "I8", "Europe", Ref_area)) %>%
mutate(Ref_area = ifelse(REF_AREA == "UK", "United Kingdom", Ref_area)) %>%
left_join(colors, by = c("Ref_area" = "country")) %>%
mutate(value = value/100) %>%
arrange(date) %>%
select(REF_AREA,everything()) %>%
ggplot + geom_line(aes(x = date, y = value, color = color)) +
xlab("") + ylab("") + theme_minimal() + scale_color_identity() + add_7flags +
scale_x_date(breaks = "2 years",
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 200, 10),
labels = percent_format(accuracy = 1))
France, Italy, Germany, Spain, Japan, EU
Code
CFT %>%
left_join(CFT_var, by = "variable") %>%
left_join(REF_AREA, by = "REF_AREA") %>%
filter(REF_AREA %in% c("FR", "IT", "DE", "ES", "JP", "I8"),
INSTR_ASSET == "DETT",
UNIT_MEASURE == "XDC_R_B1GQ_CY",
REF_SECTOR == "S1M") %>%
mutate(Ref_area = ifelse(REF_AREA == "I8", "Europe", Ref_area)) %>%
left_join(colors, by = c("Ref_area" = "country")) %>%
mutate(value = value/100) %>%
ggplot + geom_line(aes(x = date, y = value, color = color)) +
xlab("") + ylab("") + theme_minimal() + scale_color_identity() + add_6flags +
scale_x_date(breaks = "2 years",
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 5),
labels = percent_format(accuracy = 1))
France, Italy, Germany
All
Code
CFT %>%
left_join(CFT_var, by = "variable") %>%
left_join(REF_AREA, by = "REF_AREA") %>%
filter(REF_AREA %in% c("FR", "IT", "DE"),
INSTR_ASSET == "DETT",
UNIT_MEASURE == "XDC_R_B1GQ_CY",
REF_SECTOR == "S1M") %>%
mutate(Ref_area = ifelse(REF_AREA == "I8", "Europe", Ref_area)) %>%
left_join(colors, by = c("Ref_area" = "country")) %>%
mutate(value = value/100) %>%
ggplot + geom_line(aes(x = date, y = value, color = color)) +
xlab("") + ylab("") + theme_minimal() + scale_color_identity() + add_3flags +
scale_x_date(breaks = "2 years",
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 5),
labels = percent_format(accuracy = 1))
2013-
Code
CFT %>%
left_join(CFT_var, by = "variable") %>%
left_join(REF_AREA, by = "REF_AREA") %>%
filter(REF_AREA %in% c("FR", "IT", "DE"),
INSTR_ASSET == "DETT",
UNIT_MEASURE == "XDC_R_B1GQ_CY",
REF_SECTOR == "S1M") %>%
mutate(Ref_area = ifelse(REF_AREA == "I8", "Europe", Ref_area)) %>%
left_join(colors, by = c("Ref_area" = "country")) %>%
mutate(value = value/100) %>%
filter(date >=as.Date("2013-01-01")) %>%
ggplot + geom_line(aes(x = date, y = value, color = color)) +
xlab("") + ylab("") + theme_minimal() + scale_color_identity() + add_3flags +
scale_x_date(breaks = "1 year",
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 2),
labels = percent_format(accuracy = 1))
Non-financial corporations
France, Italy, Germany
Code
CFT %>%
left_join(CFT_var, by = "variable") %>%
left_join(REF_AREA, by = "REF_AREA") %>%
filter(REF_AREA %in% c("FR", "IT", "DE", "I8"),
INSTR_ASSET == "DETT",
UNIT_MEASURE == "XDC_R_B1GQ_CY",
REF_SECTOR == "S11") %>%
mutate(Ref_area = ifelse(REF_AREA == "I8", "Europe", Ref_area)) %>%
left_join(colors, by = c("Ref_area" = "country")) %>%
mutate(value = value/100) %>%
ggplot + geom_line(aes(x = date, y = value, color = color)) +
xlab("") + ylab("") + theme_minimal() + scale_color_identity() + add_4flags +
scale_x_date(breaks = "2 years",
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 5),
labels = dollar_format(accuracy = .01, pre = "", su = " année"))
Taux d’endettement
France
Années de PIB
Code
CFT %>%
left_join(CFT_var, by = "variable") %>%
filter(variable %in% c("CFT.Q.S.FR.W0.S1M.S1.N.L.LE.DETT.T._Z.XDC_R_B1GQ_CY._T.S.V.N._T",
"CFT.Q.S.FR.W0.S11.S1.C.L.LE.DETT.T._Z.XDC_R_B1GQ_CY._T.S.V.N._T",
"CFT.Q.N.FR.W0.S13.S1.C.L.LE.GD.T._Z.XDC_R_B1GQ_CY._T.F.V.N._T")) %>%
mutate(Variable = gsub(", en % du PIB", "", Variable),
Variable = gsub(" en % du PIB", "", Variable)) %>%
ggplot + geom_line(aes(x = date, y = value/100, color = Variable)) +
xlab("") + ylab("Dette/PIB (en années de PIB)") + theme_minimal() +
scale_x_date(breaks = "2 years",
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 1.3, 0.1),
labels = dollar_format(su = " ans", p = "", acc = 0.1)) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank(),
legend.direction = "vertical")
% du PIB
Code
CFT %>%
left_join(CFT_var, by = "variable") %>%
filter(variable %in% c("CFT.Q.S.FR.W0.S1M.S1.N.L.LE.DETT.T._Z.XDC_R_B1GQ_CY._T.S.V.N._T",
"CFT.Q.S.FR.W0.S11.S1.C.L.LE.DETT.T._Z.XDC_R_B1GQ_CY._T.S.V.N._T",
"CFT.Q.N.FR.W0.S13.S1.C.L.LE.GD.T._Z.XDC_R_B1GQ_CY._T.F.V.N._T")) %>%
ggplot + geom_line(aes(x = date, y = value/100, color = Variable)) +
xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = "2 years",
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 140, 5),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank(),
legend.direction = "vertical")
Allemagne
Code
CFT %>%
left_join(CFT_var, by = "variable") %>%
filter(variable %in% c("CFT.Q.N.DE.W0.S1M.S1.N.L.LE.DETT.T._Z.XDC_R_B1GQ_CY._T.S.V.N._T",
"CFT.Q.N.DE.W0.S11.S1.C.L.LE.DETT.T._Z.XDC_R_B1GQ_CY._T.S.V.N._T",
"CFT.Q.N.DE.W0.S13.S1.C.L.LE.GD.T._Z.XDC_R_B1GQ_CY._T.F.V.N._T")) %>%
ggplot + geom_line(aes(x = date, y = value/100, color = Variable)) +
xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = "2 years",
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 140, 5),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank(),
legend.direction = "vertical")
Italie
Code
CFT %>%
left_join(CFT_var, by = "variable") %>%
filter(variable %in% c("CFT.Q.N.IT.W0.S1M.S1.N.L.LE.DETT.T._Z.XDC_R_B1GQ_CY._T.S.V.N._T",
"CFT.Q.N.IT.W0.S11.S1.C.L.LE.DETT.T._Z.XDC_R_B1GQ_CY._T.S.V.N._T",
"CFT.Q.N.IT.W0.S13.S1.C.L.LE.GD.T._Z.XDC_R_B1GQ_CY._T.F.V.N._T")) %>%
ggplot + geom_line(aes(x = date, y = value/100, color = Variable)) +
xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = "2 years",
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 400, 10),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank(),
legend.direction = "vertical")
Espagne
Code
CFT %>%
left_join(CFT_var, by = "variable") %>%
filter(variable %in% c("CFT.Q.N.ES.W0.S1M.S1.N.L.LE.DETT.T._Z.XDC_R_B1GQ_CY._T.S.V.N._T",
"CFT.Q.N.ES.W0.S11.S1.C.L.LE.DETT.T._Z.XDC_R_B1GQ_CY._T.S.V.N._T",
"CFT.Q.N.ES.W0.S13.S1.C.L.LE.GD.T._Z.XDC_R_B1GQ_CY._T.F.V.N._T")) %>%
ggplot + geom_line(aes(x = date, y = value/100, color = Variable)) +
xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = "2 years",
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 400, 10),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.2, 0.9),
legend.title = element_blank(),
legend.direction = "vertical")
Zone Euro
Code
CFT %>%
left_join(CFT_var, by = "variable") %>%
filter(variable %in% c("CFT.Q.N.I8.W0.S1M.S1.N.L.LE.DETT.T._Z.XDC_R_B1GQ_CY._T.S.V.N._T",
"CFT.Q.N.I8.W0.S11.S1.C.L.LE.DETT.T._Z.XDC_R_B1GQ_CY._T.S.V.N._T",
"CFT.Q.N.I8.W0.S13.S1.C.L.LE.GD.T._Z.XDC_R_B1GQ_CY._T.F.V.N._T")) %>%
ggplot + geom_line(aes(x = date, y = value/100, color = Variable)) +
xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = "2 years",
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 140, 5),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank(),
legend.direction = "vertical")
Informations supplémentaires
Données sur la macroéconomie en France
| source | dataset | Title | .html | .rData |
|---|---|---|---|---|
| bdf | CFT | Comptes Financiers Trimestriels | 2025-12-20 | 2025-03-09 |
| insee | CNA-2014-CONSO-SI | Dépenses de consommation finale par secteur institutionnel | 2025-12-23 | 2025-12-23 |
| insee | CNA-2014-CSI | Comptes des secteurs institutionnels | 2025-12-23 | 2025-12-23 |
| insee | CNA-2014-FBCF-BRANCHE | Formation brute de capital fixe (FBCF) par branche | 2025-12-23 | 2025-12-23 |
| insee | CNA-2014-FBCF-SI | Formation brute de capital fixe (FBCF) par secteur institutionnel | 2025-12-23 | 2025-12-23 |
| insee | CNA-2014-RDB | Revenu et pouvoir d’achat des ménages | 2025-12-23 | 2025-12-23 |
| insee | CNA-2020-CONSO-MEN | Consommation des ménages | 2025-12-23 | 2025-09-30 |
| insee | CNA-2020-PIB | Produit intérieur brut (PIB) et ses composantes | 2025-12-23 | 2025-05-28 |
| insee | CNT-2014-CB | Comptes des branches | 2025-12-23 | 2025-12-23 |
| insee | CNT-2014-CSI | Comptes de secteurs institutionnels | 2025-12-23 | 2025-12-23 |
| insee | CNT-2014-OPERATIONS | Opérations sur biens et services | 2025-12-23 | 2025-12-23 |
| insee | CNT-2014-PIB-EQB-RF | Équilibre du produit intérieur brut | 2025-12-23 | 2025-12-23 |
| insee | CONSO-MENAGES-2020 | Consommation des ménages en biens | 2025-12-23 | 2025-12-23 |
| insee | ICA-2015-IND-CONS | Indices de chiffre d'affaires dans l'industrie et la construction | 2025-12-23 | 2025-12-23 |
| insee | conso-mensuelle | Consommation de biens, données mensuelles | 2025-12-23 | 2023-07-04 |
| insee | t_1101 | 1.101 – Le produit intérieur brut et ses composantes à prix courants (En milliards d'euros) | 2025-12-23 | 2022-01-02 |
| insee | t_1102 | 1.102 – Le produit intérieur brut et ses composantes en volume aux prix de l'année précédente chaînés (En milliards d'euros 2014) | 2025-12-23 | 2020-10-30 |
| insee | t_1105 | 1.105 – Produit intérieur brut - les trois approches à prix courants (En milliards d'euros) - t_1105 | 2025-12-23 | 2020-10-30 |
Data on saving
| source | dataset | Title | .html | .rData |
|---|---|---|---|---|
| bdf | CFT | Comptes Financiers Trimestriels | 2025-12-20 | 2025-03-09 |
| bea | T50100 | Table 5.1. Saving and Investment by Sector (A) (Q) | 2025-10-23 | 2025-10-23 |
| fred | saving | Saving - saving | 2025-12-23 | 2025-12-23 |
| oecd | NAAG | National Accounts at a Glance - NAAG | 2024-04-16 | 2025-05-12 |
| wdi | NY.GDS.TOTL.ZS | Gross domestic savings (% of GDP) - NY.GDS.TOTL.ZS | 2022-09-27 | 2025-12-20 |
| wdi | NY.GNS.ICTR.ZS | Gross savings (% of GDP) - NY.GNS.ICTR.ZS | 2022-09-27 | 2025-12-20 |