Employment A*10 industry breakdowns

Data - Eurostat

Info

source dataset .html .RData
eurostat namq_10_a10_e 2025-05-24 2025-05-24

Data on employment

source dataset .html .RData
bls jt 2024-11-12 NA
bls la 2024-11-12 NA
bls ln 2024-11-12 NA
eurostat nama_10_a10_e 2025-05-18 2025-05-18
eurostat nama_10_a64_e 2025-05-24 2025-05-24
eurostat namq_10_a10_e 2025-05-24 2025-05-24
eurostat une_rt_m 2025-05-18 2025-05-18
oecd ALFS_EMP 2024-04-16 2025-03-04
oecd EPL_T 2024-11-12 2023-12-10
oecd LFS_SEXAGE_I_R 2024-09-15 2024-04-15
oecd STLABOUR 2025-01-17 2025-01-17

Data on industry

source dataset .html .RData
ec INDUSTRY 2025-01-05 2023-10-01
eurostat ei_isin_m 2025-05-18 2025-05-18
eurostat htec_trd_group4 2025-05-18 2025-05-18
eurostat nama_10_a64 2025-05-18 2025-05-18
eurostat nama_10_a64_e 2025-05-24 2025-05-24
eurostat namq_10_a10_e 2025-05-24 2025-05-24
eurostat road_eqr_carmot 2025-05-18 2025-05-18
eurostat sts_inpp_m 2024-06-24 2025-05-18
eurostat sts_inppd_m 2025-05-18 2025-05-18
eurostat sts_inpr_m 2025-05-18 2025-05-18
eurostat sts_intvnd_m 2025-05-24 2025-05-24
fred industry 2025-05-18 2025-05-18
oecd ALFS_EMP 2024-04-16 2025-03-04
oecd BERD_MA_SOF 2024-04-16 2023-09-09
oecd GBARD_NABS2007 2024-04-16 2023-11-22
oecd MEI_REAL 2024-05-12 2025-01-31
oecd MSTI_PUB 2024-09-15 2025-01-31
oecd SNA_TABLE4 2024-09-15 2025-03-09
wdi NV.IND.EMPL.KD 2024-01-06 2025-03-09
wdi NV.IND.MANF.CD 2025-03-09 2025-03-09
wdi NV.IND.MANF.ZS 2025-01-31 2025-03-09
wdi NV.IND.TOTL.KD 2024-01-06 2025-03-09
wdi NV.IND.TOTL.ZS 2025-01-31 2025-03-09
wdi SL.IND.EMPL.ZS 2025-01-31 2025-03-09
wdi TX.VAL.MRCH.CD.WT 2024-01-06 2025-03-09

Last

Code
namq_10_a10_e %>%
  group_by(time) %>%
  summarise(Nobs = n()) %>%
  arrange(desc(time)) %>%
  head(2) %>%
  print_table_conditional()
time Nobs
2025Q1 4998
2024Q4 25715

na_item

Code
namq_10_a10_e %>%
  left_join(na_item, by = "na_item") %>%
  group_by(na_item, Na_item) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) print_table(.) else .}
na_item Na_item Nobs
EMP_DC Total employment domestic concept 1143753
SAL_DC Employees domestic concept 1108824
SELF_DC Self-employed domestic concept 1099226

unit

namq_10_a10_e

Code
namq_10_a10_e %>%
  left_join(unit, by = "unit") %>%
  group_by(unit, Unit) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

unit

Code
namq_10_a10_e %>%
  left_join(unit, by = "unit") %>%
  group_by(unit, Unit) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

nace_r2

Code
namq_10_a10_e %>%
  left_join(nace_r2, by = "nace_r2") %>%
  group_by(nace_r2, Nace_r2) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) print_table(.) else .}
nace_r2 Nace_r2 Nobs
TOTAL Total - all NACE activities 283625
A Agriculture, forestry and fishing 279445
G-I Wholesale and retail trade, transport, accommodation and food service activities 279445
B-E Industry (except construction) 279369
C Manufacturing 279369
F Construction 279369
M_N Professional, scientific and technical activities; administrative and support service activities 279369
R-U Arts, entertainment and recreation; other service activities; activities of household and extra-territorial organizations and bodies 279351
J Information and communication 278987
O-Q Public administration, defence, education, human health and social work activities 278973
L Real estate activities 278595
K Financial and insurance activities 275906

s_adj

Code
namq_10_a10_e %>%
  left_join(s_adj, by = "s_adj") %>%
  group_by(s_adj, S_adj) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) print_table(.) else .}
s_adj S_adj Nobs
SCA Seasonally and calendar adjusted data 1580864
NSA Unadjusted data (i.e. neither seasonally adjusted nor calendar adjusted data) 1396793
SA Seasonally adjusted data, not calendar adjusted data 211899
CA Calendar adjusted data, not seasonally adjusted data 162247

geo

Code
namq_10_a10_e %>%
  left_join(geo, by = "geo") %>%
  group_by(geo, Geo) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
         Flag = paste0('<img src="../../icon/flag/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

Industry Share

All

Table

Code
namq_10_a10_e %>%
  filter(na_item == "EMP_DC",
         nace_r2 %in% c("B-E", "TOTAL"),
         s_adj == "SCA",
         unit== "THS_HW",
         time %in% c("2024Q4", "1995Q1", "2024Q3")) %>%
  left_join(geo, by = "geo") %>%
  left_join(nace_r2, by = "nace_r2") %>%
  group_by(time) %>%
  mutate(values = values/ values[nace_r2 == "TOTAL"]) %>%
  filter(nace_r2 != "TOTAL") %>%
  spread(time, values) %>%
  select_if(~ n_distinct(.) > 1) %>%
  mutate(change = `2024Q4`-`1995Q1`) %>%
  arrange(`2024Q3`) %>%
  print_table_conditional()

1995-

Code
options(ggrepel.max.overlaps = Inf)
namq_10_a10_e %>%
  filter(na_item == "EMP_DC",
         nace_r2 %in% c("B-E", "TOTAL"),
         s_adj == "SCA",
         !(geo %in% c("EA12", "EA19", "EA20", "EU27_2020")),
         unit== "THS_HW") %>%
  quarter_to_date() %>%
  left_join(geo, by = "geo") %>%
  left_join(nace_r2, by = "nace_r2") %>%
  group_by(date) %>%
  mutate(values = values/ values[nace_r2 == "TOTAL"]) %>%
  filter(nace_r2 != "TOTAL",
         date >= as.Date("1995-01-01")) %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  mutate(Geo = ifelse(geo == "EA", "Europe", Geo)) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(color = ifelse(geo != "FR", "grey", color)) %>%
  ggplot(.) + geom_line(aes(x = date, y = values, color = color, group = geo)) +
  scale_color_identity() +
  scale_linetype_manual(values = c("solid", "dashed")) +
  theme_minimal() +
  scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.1),
        legend.title = element_blank()) +
  add_flags(5) +
  scale_y_continuous(breaks = 0.01*seq(-60, 60, 1),
                     labels = scales::percent_format(accuracy = 1)) +
  ylab("Emploi Industriel (% de l'Emploi)") + xlab("") +
  geom_line(data = . %>% filter(geo == "FR"),
            aes(x = date, y = values, color = color), size = 2) +
  geom_text_repel(data = . %>% group_by(geo) %>% filter(date %in% c(max(date), min(date))),
            aes(x = date, y = values, color = color, label = geo))

Manufacturing Share

All

Table

Code
namq_10_a10_e %>%
  filter(na_item == "EMP_DC",
         nace_r2 %in% c("C", "TOTAL"),
         s_adj == "SCA",
         unit== "THS_HW",
         time %in% c("2024Q4", "1995Q1", "2024Q3")) %>%
  left_join(geo, by = "geo") %>%
  left_join(nace_r2, by = "nace_r2") %>%
  group_by(time) %>%
  mutate(values = values/ values[nace_r2 == "TOTAL"]) %>%
  filter(nace_r2 != "TOTAL") %>%
  spread(time, values) %>%
  select_if(~ n_distinct(.) > 1) %>%
  mutate(change = `2024Q4`-`1995Q1`) %>%
  arrange(`2024Q3`) %>%
  print_table_conditional()

Table

Code
namq_10_a10_e %>%
  filter(na_item == "EMP_DC",
         nace_r2 %in% c("B-E", "TOTAL"),
         s_adj == "SCA",
         unit== "THS_HW",
         time %in% c("2024Q4", "1995Q1", "2024Q3")) %>%
  left_join(geo, by = "geo") %>%
  left_join(nace_r2, by = "nace_r2") %>%
  group_by(time) %>%
  mutate(values = values/ values[nace_r2 == "TOTAL"]) %>%
  filter(nace_r2 != "TOTAL") %>%
  spread(time, values) %>%
  select_if(~ n_distinct(.) > 1) %>%
  mutate(change = `2024Q4`-`1995Q1`) %>%
  arrange(`2024Q3`) %>%
  print_table_conditional()

1995-

Code
options(ggrepel.max.overlaps = Inf)
namq_10_a10_e %>%
  filter(na_item == "EMP_DC",
         nace_r2 %in% c("C", "TOTAL"),
         s_adj == "SCA",
         unit== "THS_HW") %>%
  quarter_to_date() %>%
  left_join(geo, by = "geo") %>%
  left_join(nace_r2, by = "nace_r2") %>%
  group_by(date) %>%
  mutate(values = values/ values[nace_r2 == "TOTAL"]) %>%
  filter(nace_r2 != "TOTAL",
         date >= as.Date("1995-01-01")) %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  mutate(Geo = ifelse(geo == "EA", "Europe", Geo)) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  ggplot(.) + geom_line(aes(x = date, y = values, color = color, group = geo)) +
  scale_color_identity() +
  scale_linetype_manual(values = c("solid", "dashed")) +
  theme_minimal() +
  scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.1),
        legend.title = element_blank()) +
  add_flags(5) +
  scale_y_continuous(breaks = 0.01*seq(-60, 60, 1),
                     labels = scales::percent_format(accuracy = 1)) +
  ylab("Emploi Manufacturier (% de l'Emploi)") + xlab("") +
  geom_line(data = . %>% filter(geo == "FR"),
            aes(x = date, y = values, color = color), size = 2) +
  geom_label_repel(data = . %>% group_by(geo) %>% filter(date %in% c(max(date), min(date))),
            aes(x = date, y = values, color = color, label = geo))

Gris

Code
options(ggrepel.max.overlaps = Inf)
namq_10_a10_e %>%
  filter(na_item == "EMP_DC",
         nace_r2 %in% c("C", "TOTAL"),
         s_adj == "SCA",
         !(geo %in% c("EA12", "EA19", "EA20", "EU27_2020")),
         unit== "THS_HW") %>%
  quarter_to_date() %>%
  left_join(geo, by = "geo") %>%
  left_join(nace_r2, by = "nace_r2") %>%
  group_by(date) %>%
  mutate(values = values/ values[nace_r2 == "TOTAL"]) %>%
  filter(nace_r2 != "TOTAL",
         date >= as.Date("1995-01-01")) %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  mutate(Geo = ifelse(geo == "EA", "Europe", Geo)) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(color = ifelse(geo != "FR", "grey", color)) %>%
  ggplot(.) + geom_line(aes(x = date, y = values, color = color, group = geo)) +
  scale_color_identity() +
  scale_linetype_manual(values = c("solid", "dashed")) +
  theme_minimal() +
  scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.1),
        legend.title = element_blank()) +
  add_flags(5) +
  scale_y_continuous(breaks = 0.01*seq(-60, 60, 1),
                     labels = scales::percent_format(accuracy = 1)) +
  ylab("Emploi manufacturier (% de l'Emploi)") + xlab("") +
  geom_line(data = . %>% filter(geo == "FR"),
            aes(x = date, y = values, color = color), size = 2) +
  geom_text_repel(data = . %>% group_by(geo) %>% filter(date %in% c(max(date), min(date))),
            aes(x = date, y = values, color = color, label = geo))

France, Germany, Italy, Spain, Netherlands, Euro area

1995-

Code
namq_10_a10_e %>%
  filter(na_item == "EMP_DC",
         nace_r2 %in% c("C", "TOTAL"),
         geo %in% c("FR", "DE", "IT", "ES", "EA"),
         s_adj == "SCA",
         unit== "THS_HW") %>%
  quarter_to_date() %>%
  left_join(geo, by = "geo") %>%
  left_join(nace_r2, by = "nace_r2") %>%
  group_by(date) %>%
  mutate(values = values/ values[nace_r2 == "TOTAL"]) %>%
  filter(nace_r2 != "TOTAL",
         date >= as.Date("1995-01-01")) %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  mutate(Geo = ifelse(geo == "EA", "Europe", Geo)) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  ggplot(.) + geom_line(aes(x = date, y = values, color = color)) +
  scale_color_identity() +
  scale_linetype_manual(values = c("solid", "dashed")) +
  theme_minimal() +
  scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.1),
        legend.title = element_blank()) +
  add_flags(5) +
  scale_y_continuous(breaks = 0.01*seq(-60, 60, 1),
                     labels = scales::percent_format(accuracy = 1)) +
  ylab("Emploi Manufacturier (% de l'Emploi)") + xlab("")

Industry and Manufacturing Share

France, Germany, Italy, Romania

1995-

Code
load_data("eurostat/nace_r2_fr.RData")
namq_10_a10_e %>%
  filter(na_item == "EMP_DC",
         nace_r2 %in% c("C", "TOTAL", "B-E"),
         geo %in% c("FR", "DE", "IT", "RO"),
         s_adj == "SCA",
         unit== "THS_HW") %>%
  quarter_to_date() %>%
  left_join(geo, by = "geo") %>%
  left_join(nace_r2, by = "nace_r2") %>%
  group_by(date) %>%
  mutate(values = values/ values[nace_r2 == "TOTAL"]) %>%
  filter(nace_r2 != "TOTAL",
         date >= as.Date("1995-01-01")) %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  ggplot(.) + geom_line(aes(x = date, y = values, color = color, linetype = Nace_r2)) +
  scale_color_identity() +
  scale_linetype_manual(values = c("solid", "dashed")) +
  theme_minimal() +
  scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.1),
        legend.title = element_blank()) +
  add_8flags +
  scale_y_continuous(breaks = 0.01*seq(-60, 60, 1),
                     labels = scales::percent_format(accuracy = 1)) +
  ylab("Emploi Manufacturier, Industriel (% de l'Emploi)") + xlab("")

France, Germany, Italy

1995-

Code
load_data("eurostat/nace_r2_fr.RData")
namq_10_a10_e %>%
  filter(na_item == "EMP_DC",
         nace_r2 %in% c("C", "TOTAL", "B-E"),
         geo %in% c("FR", "DE", "IT"),
         s_adj == "SCA",
         unit== "THS_HW") %>%
  quarter_to_date() %>%
  left_join(geo, by = "geo") %>%
  left_join(nace_r2, by = "nace_r2") %>%
  group_by(date) %>%
  mutate(values = values/ values[nace_r2 == "TOTAL"]) %>%
  filter(nace_r2 != "TOTAL",
         date >= as.Date("1995-01-01")) %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  ggplot(.) + geom_line(aes(x = date, y = values, color = color, linetype = Nace_r2)) +
  scale_color_identity() +
  scale_linetype_manual(values = c("solid", "dashed")) +
  theme_minimal() +
  scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.1),
        legend.title = element_blank()) +
  add_6flags +
  scale_y_continuous(breaks = 0.01*seq(-60, 60, 1),
                     labels = scales::percent_format(accuracy = 1)) +
  ylab("Emploi Manufacturier, Industriel (% de l'Emploi)") + xlab("")

2008-

Code
namq_10_a10_e %>%
  filter(na_item == "EMP_DC",
         nace_r2 %in% c("C", "TOTAL", "B-E"),
         geo %in% c("FR", "DE", "IT"),
         s_adj == "SCA",
         unit== "THS_HW") %>%
  quarter_to_date() %>%
  left_join(geo, by = "geo") %>%
  left_join(nace_r2, by = "nace_r2") %>%
  group_by(date) %>%
  mutate(values = values/ values[nace_r2 == "TOTAL"]) %>%
  filter(nace_r2 != "TOTAL",
         date >= as.Date("2008-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  ggplot(.) + geom_line(aes(x = date, y = values, color = color, linetype = Nace_r2)) +
  scale_color_identity() +
  scale_linetype_manual(values = c("solid", "dashed")) +
  theme_minimal() +
  scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.5),
        legend.title = element_blank()) +
  add_6flags +
  scale_y_continuous(breaks = 0.01*seq(-60, 60, 1),
                     labels = scales::percent_format(accuracy = 1)) +
  ylab("Emploi Manufacturier, Industriel (% de l'Emploi)") + xlab("")

France, Germany, Italy, Spain, Netherlands, Euro area

1995-

Code
namq_10_a10_e %>%
  filter(na_item == "EMP_DC",
         nace_r2 %in% c("C", "TOTAL", "B-E"),
         geo %in% c("FR", "DE", "IT", "ES", "EA"),
         s_adj == "SCA",
         unit== "THS_HW") %>%
  quarter_to_date() %>%
  left_join(geo, by = "geo") %>%
  left_join(nace_r2, by = "nace_r2") %>%
  group_by(date) %>%
  mutate(values = values/ values[nace_r2 == "TOTAL"]) %>%
  filter(nace_r2 != "TOTAL",
         date >= as.Date("1995-01-01")) %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  mutate(Geo = ifelse(geo == "EA", "Europe", Geo)) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  ggplot(.) + geom_line(aes(x = date, y = values, color = color, linetype = Nace_r2)) +
  scale_color_identity() +
  scale_linetype_manual(values = c("solid", "dashed")) +
  theme_minimal() +
  scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.1),
        legend.title = element_blank()) +
  add_flags(10) +
  scale_y_continuous(breaks = 0.01*seq(-60, 60, 1),
                     labels = scales::percent_format(accuracy = 1)) +
  ylab("Emploi Manufacturier, Industriel (% de l'Emploi)") + xlab("")

2008-

Code
namq_10_a10_e %>%
  filter(na_item == "EMP_DC",
         nace_r2 %in% c("C", "TOTAL", "B-E"),
         geo %in% c("FR", "DE", "IT", "ES", "EA"),
         s_adj == "SCA",
         unit== "THS_HW") %>%
  quarter_to_date() %>%
  left_join(geo, by = "geo") %>%
  left_join(nace_r2, by = "nace_r2") %>%
  group_by(date) %>%
  mutate(values = values/ values[nace_r2 == "TOTAL"]) %>%
  filter(nace_r2 != "TOTAL",
         date >= as.Date("2008-01-01")) %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  mutate(Geo = ifelse(geo == "EA", "Europe", Geo)) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  ggplot(.) + geom_line(aes(x = date, y = values, color = color, linetype = Nace_r2)) +
  scale_color_identity() +
  scale_linetype_manual(values = c("solid", "dashed")) +
  theme_minimal() +
  scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.3, 0.9),
        legend.title = element_blank()) +
  add_flags(10) +
  scale_y_continuous(breaks = 0.01*seq(-60, 60, 1),
                     labels = scales::percent_format(accuracy = 1)) +
  ylab("Emploi Manufacturier, Industriel (% de l'Emploi)") + xlab("")

2017-

Code
namq_10_a10_e %>%
  filter(na_item == "EMP_DC",
         nace_r2 %in% c("C", "TOTAL", "B-E"),
         geo %in% c("FR", "DE", "IT", "ES", "EA"),
         s_adj == "SCA",
         unit== "THS_HW") %>%
  quarter_to_date() %>%
  left_join(geo, by = "geo") %>%
  left_join(nace_r2, by = "nace_r2") %>%
  group_by(date) %>%
  mutate(values = values/ values[nace_r2 == "TOTAL"]) %>%
  filter(nace_r2 != "TOTAL",
         date >= as.Date("2017-01-01")) %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  mutate(Geo = ifelse(geo == "EA", "Europe", Geo)) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  ggplot(.) + geom_line(aes(x = date, y = values, color = color, linetype = Nace_r2)) +
  scale_color_identity() +
  scale_linetype_manual(values = c("solid", "dashed")) +
  theme_minimal() +
  scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.3, 0.9),
        legend.title = element_blank()) +
  add_flags(10) +
  scale_y_continuous(breaks = 0.01*seq(-60, 60, 1),
                     labels = scales::percent_format(accuracy = 1)) +
  ylab("Emploi Manufacturier, Industriel (% de l'Emploi)") + xlab("")

Spain, Netherlands, Portugal

1995-

Code
namq_10_a10_e %>%
  filter(na_item == "EMP_DC",
         nace_r2 %in% c("C", "TOTAL", "B-E"),
         geo %in% c("ES", "NL", "PT"),
         s_adj == "SCA",
         unit== "THS_HW") %>%
  quarter_to_date() %>%
  left_join(geo, by = "geo") %>%
  left_join(nace_r2, by = "nace_r2") %>%
  group_by(date) %>%
  mutate(values = values/ values[nace_r2 == "TOTAL"]) %>%
  filter(nace_r2 != "TOTAL",
         date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  ggplot(.) + geom_line(aes(x = date, y = values, color = color, linetype = Nace_r2)) +
  scale_color_identity() +
  scale_linetype_manual(values = c("solid", "dashed")) +
  theme_minimal() +
  scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.7, 0.8),
        legend.title = element_blank()) +
  add_6flags +
  scale_y_continuous(breaks = 0.01*seq(-60, 60, 2),
                     labels = scales::percent_format(accuracy = 1)) +
  ylab("Emploi Manufacturier, Industriel (% de l'Emploi)") + xlab("")

2008-

Code
namq_10_a10_e %>%
  filter(na_item == "EMP_DC",
         nace_r2 %in% c("C", "TOTAL", "B-E"),
         geo %in% c("ES", "NL", "PT"),
         s_adj == "SCA",
         unit== "THS_HW") %>%
  quarter_to_date() %>%
  left_join(geo, by = "geo") %>%
  left_join(nace_r2, by = "nace_r2") %>%
  group_by(date) %>%
  mutate(values = values/ values[nace_r2 == "TOTAL"]) %>%
  filter(nace_r2 != "TOTAL",
         date >= as.Date("2008-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  ggplot(.) + geom_line(aes(x = date, y = values, color = color, linetype = Nace_r2)) +
  scale_color_identity() +
  scale_linetype_manual(values = c("solid", "dashed")) +
  theme_minimal() +
  scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.5),
        legend.title = element_blank()) +
  add_6flags +
  scale_y_continuous(breaks = 0.01*seq(-60, 60, 1),
                     labels = scales::percent_format(accuracy = 1)) +
  ylab("Emploi Manufacturier, Industriel (% de l'Emploi)") + xlab("")

% of Total Employment

France

Code
load_data("eurostat/nace_r2.RData")
namq_10_a10_e %>%
  filter(na_item == "EMP_DC",
         nace_r2 %in% c("C", "TOTAL", "L", "F"),
         geo %in% c("FR"),
         s_adj == "SCA",
         unit== "THS_HW") %>%
  quarter_to_date() %>%
  left_join(nace_r2, by = "nace_r2") %>%
  select(nace_r2, Nace_r2, date, values) %>%
  group_by(date) %>%
  mutate(values = values/ values[nace_r2 == "TOTAL"]) %>%
  filter(nace_r2 != "TOTAL")  %>%
  ggplot(.) + geom_line(aes(x = date, y = values, color = Nace_r2)) + 
  theme_minimal() + xlab("") + ylab("% of Employment") +
  scale_color_manual(values = viridis(4)[1:3]) +
  scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-500, 200, 1),
                     labels = percent_format(accuracy = 1)) +
  theme(legend.position = c(0.75, 0.85),
        legend.title = element_blank())

Germany

Code
namq_10_a10_e %>%
  filter(na_item == "EMP_DC",
         nace_r2 %in% c("C", "TOTAL", "L", "F"),
         geo %in% c("DE"),
         s_adj == "SCA",
         unit== "THS_HW") %>%
  quarter_to_date() %>%
  left_join(nace_r2, by = "nace_r2") %>%
  select(nace_r2, Nace_r2, date, values) %>%
  group_by(date) %>%
  mutate(values = values/ values[nace_r2 == "TOTAL"]) %>%
  filter(nace_r2 != "TOTAL")  %>%
  ggplot(.) + geom_line(aes(x = date, y = values, color = Nace_r2)) + 
  theme_minimal() + xlab("") + ylab("% of Employment") +
  scale_color_manual(values = viridis(4)[1:3]) +
  scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-500, 200, 1),
                     labels = percent_format(accuracy = 1)) +
  theme(legend.position = c(0.75, 0.85),
        legend.title = element_blank())

Italy

Code
namq_10_a10_e %>%
  filter(na_item == "EMP_DC",
         nace_r2 %in% c("C", "TOTAL", "L", "F"),
         geo %in% c("IT"),
         s_adj == "SCA",
         unit== "THS_HW") %>%
  quarter_to_date() %>%
  left_join(nace_r2, by = "nace_r2") %>%
  select(nace_r2, Nace_r2, date, values) %>%
  group_by(date) %>%
  mutate(values = values/ values[nace_r2 == "TOTAL"]) %>%
  filter(nace_r2 != "TOTAL")  %>%
  ggplot(.) + geom_line(aes(x = date, y = values, color = Nace_r2)) + 
  theme_minimal() + xlab("") + ylab("% of Employment") +
  scale_color_manual(values = viridis(4)[1:3]) +
  scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-500, 200, 1),
                     labels = percent_format(accuracy = 1)) +
  theme(legend.position = c(0.75, 0.85),
        legend.title = element_blank())

Spain

Code
namq_10_a10_e %>%
  filter(na_item == "EMP_DC",
         nace_r2 %in% c("C", "TOTAL", "L", "F"),
         geo %in% c("ES"),
         s_adj == "SCA",
         unit== "THS_HW") %>%
  quarter_to_date() %>%
  left_join(nace_r2, by = "nace_r2") %>%
  select(nace_r2, Nace_r2, date, values) %>%
  group_by(date) %>%
  mutate(values = values/ values[nace_r2 == "TOTAL"]) %>%
  filter(nace_r2 != "TOTAL")  %>%
  ggplot(.) + geom_line(aes(x = date, y = values, color = Nace_r2)) + 
  theme_minimal() + xlab("") + ylab("% of Employment") +
  scale_color_manual(values = viridis(4)[1:3]) +
  scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-500, 200, 1),
                     labels = percent_format(accuracy = 1)) +
  theme(legend.position = c(0.75, 0.85),
        legend.title = element_blank())

Greece

Code
namq_10_a10_e %>%
  filter(na_item == "EMP_DC",
         nace_r2 %in% c("C", "TOTAL", "L", "F"),
         geo %in% c("EL"),
         s_adj == "SCA",
         unit== "THS_HW") %>%
  quarter_to_date() %>%
  left_join(nace_r2, by = "nace_r2") %>%
  select(nace_r2, Nace_r2, date, values) %>%
  group_by(date) %>%
  mutate(values = values/ values[nace_r2 == "TOTAL"]) %>%
  filter(nace_r2 != "TOTAL")  %>%
  ggplot(.) + geom_line(aes(x = date, y = values, color = Nace_r2)) + 
  theme_minimal() + xlab("") + ylab("% of Employment") +
  scale_color_manual(values = viridis(4)[1:3]) +
  scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-500, 200, 1),
                     labels = percent_format(accuracy = 1)) +
  theme(legend.position = c(0.8, 0.9),
        legend.title = element_blank())

Netherlands

Code
namq_10_a10_e %>%
  filter(na_item == "EMP_DC",
         nace_r2 %in% c("C", "TOTAL", "L", "F"),
         geo %in% c("NL"),
         s_adj == "SCA",
         unit== "THS_HW") %>%
  quarter_to_date() %>%
  left_join(nace_r2, by = "nace_r2") %>%
  select(nace_r2, Nace_r2, date, values) %>%
  group_by(date) %>%
  mutate(values = values/ values[nace_r2 == "TOTAL"]) %>%
  filter(nace_r2 != "TOTAL")  %>%
  ggplot(.) + geom_line(aes(x = date, y = values, color = Nace_r2)) + 
  theme_minimal() + xlab("") + ylab("% of Employment") +
  scale_color_manual(values = viridis(4)[1:3]) +
  scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-500, 200, 1),
                     labels = percent_format(accuracy = 1)) +
  theme(legend.position = c(0.8, 0.9),
        legend.title = element_blank())

Denmark

Code
namq_10_a10_e %>%
  filter(na_item == "EMP_DC",
         nace_r2 %in% c("C", "TOTAL", "L", "F"),
         geo %in% c("DK"),
         s_adj == "SCA",
         unit== "THS_HW") %>%
  quarter_to_date() %>%
  left_join(nace_r2, by = "nace_r2") %>%
  select(nace_r2, Nace_r2, date, values) %>%
  group_by(date) %>%
  mutate(values = values/ values[nace_r2 == "TOTAL"]) %>%
  filter(nace_r2 != "TOTAL")  %>%
  ggplot(.) + geom_line(aes(x = date, y = values, color = Nace_r2)) + 
  theme_minimal() + xlab("") + ylab("% of Employment") +
  scale_color_manual(values = viridis(4)[1:3]) +
  scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-500, 200, 1),
                     labels = percent_format(accuracy = 1)) +
  theme(legend.position = c(0.8, 0.9),
        legend.title = element_blank())

Finland

Code
namq_10_a10_e %>%
  filter(na_item == "EMP_DC",
         nace_r2 %in% c("C", "TOTAL", "L", "F"),
         geo %in% c("FI"),
         s_adj == "SCA",
         unit== "THS_HW") %>%
  quarter_to_date() %>%
  left_join(nace_r2, by = "nace_r2") %>%
  select(nace_r2, Nace_r2, date, values) %>%
  group_by(date) %>%
  mutate(values = values/ values[nace_r2 == "TOTAL"]) %>%
  filter(nace_r2 != "TOTAL")  %>%
  ggplot(.) + geom_line(aes(x = date, y = values, color = Nace_r2)) + 
  theme_minimal() + xlab("") + ylab("% of Employment") +
  scale_color_manual(values = viridis(4)[1:3]) +
  scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-500, 200, 1),
                     labels = percent_format(accuracy = 1)) +
  theme(legend.position = c(0.8, 0.9),
        legend.title = element_blank())

Poland

Code
namq_10_a10_e %>%
  filter(na_item == "EMP_DC",
         nace_r2 %in% c("C", "TOTAL", "L", "F"),
         geo %in% c("PL"),
         s_adj == "SCA",
         unit== "THS_HW") %>%
  quarter_to_date() %>%
  left_join(nace_r2, by = "nace_r2") %>%
  select(nace_r2, Nace_r2, date, values) %>%
  group_by(date) %>%
  mutate(values = values/ values[nace_r2 == "TOTAL"]) %>%
  filter(nace_r2 != "TOTAL")  %>%
  ggplot(.) + geom_line(aes(x = date, y = values, color = Nace_r2)) + 
  theme_minimal() + xlab("") + ylab("% of Employment") +
  scale_color_manual(values = viridis(4)[1:3]) +
  scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-500, 200, 1),
                     labels = percent_format(accuracy = 1)) +
  theme(legend.position = c(0.8, 0.9),
        legend.title = element_blank())

Hungary

Code
namq_10_a10_e %>%
  filter(na_item == "EMP_DC",
         nace_r2 %in% c("C", "TOTAL", "L", "F"),
         geo %in% c("HU"),
         s_adj == "SCA",
         unit== "THS_HW") %>%
  quarter_to_date() %>%
  left_join(nace_r2, by = "nace_r2") %>%
  select(nace_r2, Nace_r2, date, values) %>%
  group_by(date) %>%
  mutate(values = values/ values[nace_r2 == "TOTAL"]) %>%
  filter(nace_r2 != "TOTAL")  %>%
  ggplot(.) + geom_line(aes(x = date, y = values, color = Nace_r2)) + 
  theme_minimal() + xlab("") + ylab("% of Employment") +
  scale_color_manual(values = viridis(4)[1:3]) +
  scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-500, 200, 1),
                     labels = percent_format(accuracy = 1)) +
  theme(legend.position = c(0.8, 0.9),
        legend.title = element_blank())

Portugal

Code
namq_10_a10_e %>%
  filter(na_item == "EMP_DC",
         nace_r2 %in% c("C", "TOTAL", "L", "F"),
         geo %in% c("PT"),
         s_adj == "SCA",
         unit== "THS_HW") %>%
  quarter_to_date() %>%
  left_join(nace_r2, by = "nace_r2") %>%
  select(nace_r2, Nace_r2, date, values) %>%
  group_by(date) %>%
  mutate(values = values/ values[nace_r2 == "TOTAL"]) %>%
  filter(nace_r2 != "TOTAL")  %>%
  ggplot(.) + geom_line(aes(x = date, y = values, color = Nace_r2)) + 
  theme_minimal() + xlab("") + ylab("% of Employment") +
  scale_color_manual(values = viridis(4)[1:3]) +
  scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-500, 200, 1),
                     labels = percent_format(accuracy = 1)) +
  theme(legend.position = c(0.8, 0.9),
        legend.title = element_blank())

Austria

Code
namq_10_a10_e %>%
  filter(na_item == "EMP_DC",
         nace_r2 %in% c("C", "TOTAL", "L", "F"),
         geo %in% c("AT"),
         s_adj == "SCA",
         unit== "THS_HW") %>%
  quarter_to_date() %>%
  left_join(nace_r2, by = "nace_r2") %>%
  select(nace_r2, Nace_r2, date, values) %>%
  group_by(date) %>%
  mutate(values = values/ values[nace_r2 == "TOTAL"]) %>%
  filter(nace_r2 != "TOTAL")  %>%
  ggplot(.) + geom_line(aes(x = date, y = values, color = Nace_r2)) + 
  theme_minimal() + xlab("") + ylab("% of Employment") +
  scale_color_manual(values = viridis(4)[1:3]) +
  scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-500, 200, 1),
                     labels = percent_format(accuracy = 1)) +
  theme(legend.position = c(0.8, 0.9),
        legend.title = element_blank())

Sweden

Code
namq_10_a10_e %>%
  filter(na_item == "EMP_DC",
         nace_r2 %in% c("C", "TOTAL", "L", "F"),
         geo %in% c("SE"),
         s_adj == "SCA",
         unit== "THS_HW") %>%
  quarter_to_date() %>%
  left_join(nace_r2, by = "nace_r2") %>%
  select(nace_r2, Nace_r2, date, values) %>%
  group_by(date) %>%
  mutate(values = values/ values[nace_r2 == "TOTAL"]) %>%
  filter(nace_r2 != "TOTAL")  %>%
  ggplot(.) + geom_line(aes(x = date, y = values, color = Nace_r2)) + 
  theme_minimal() + xlab("") + ylab("% of Employment") +
  scale_color_manual(values = viridis(4)[1:3]) +
  scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-500, 200, 1),
                     labels = percent_format(accuracy = 1)) +
  theme(legend.position = c(0.8, 0.9),
        legend.title = element_blank())

United Kingdom

Code
namq_10_a10_e %>%
  filter(na_item == "EMP_DC",
         nace_r2 %in% c("C", "TOTAL", "L", "F"),
         geo %in% c("UK"),
         s_adj == "SCA",
         unit== "THS_HW") %>%
  quarter_to_date() %>%
  left_join(nace_r2, by = "nace_r2") %>%
  select(nace_r2, Nace_r2, date, values) %>%
  group_by(date) %>%
  mutate(values = values/ values[nace_r2 == "TOTAL"]) %>%
  filter(nace_r2 != "TOTAL")  %>%
  ggplot(.) + geom_line(aes(x = date, y = values, color = Nace_r2)) + 
  theme_minimal() + xlab("") + ylab("% of Employment") +
  scale_color_manual(values = viridis(4)[1:3]) +
  scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-500, 200, 1),
                     labels = percent_format(accuracy = 1)) +
  theme(legend.position = c(0.8, 0.9),
        legend.title = element_blank())

France, Germany, Italy

Number of hours worked

  • La durée individuelle du travail. html

  • Durée du travail. pdf

All

Code
namq_10_a10_e %>%
  left_join(geo, by = "geo") %>%
  filter(geo %in% c("FR", "DE", "IT"),
         nace_r2 == "C",
         s_adj == "SCA",
         unit == "THS_HW",
         na_item == "EMP_DC") %>%
  quarter_to_date() %>%
  arrange(date) %>%
  mutate(values = values/1000) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  ggplot(.) + geom_line(aes(x = date, y = values, color = color)) + 
  theme_minimal() + xlab("") + ylab("Number of Hours Worked, Millions") +
  scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = seq(0, 1000000, 500),
                     labels = dollar_format(accuracy = 1, prefix = "", suffix = "M")) +
  scale_color_identity() + add_3flags +
  theme(legend.position = c(0.2, 0.80),
        legend.title = element_blank())

2000-

Code
namq_10_a10_e %>%
  left_join(geo, by = "geo") %>%
  filter(geo %in% c("FR", "DE", "IT"),
         nace_r2 == "C",
         s_adj == "SCA",
         unit == "THS_HW",
         na_item == "EMP_DC") %>%
  quarter_to_date() %>%
  filter(date >= as.Date("2000-01-01")) %>%
  arrange(date) %>%
  mutate(values = values/1000) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  ggplot(.) + geom_line(aes(x = date, y = values, color = color)) + 
  theme_minimal() + xlab("") + ylab("Number of Hours Worked, Millions") +
  scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = seq(0, 1000000, 500),
                     labels = dollar_format(accuracy = 1, prefix = "", suffix = "M")) +
  scale_color_identity() + add_3flags +
  theme(legend.position = c(0.2, 0.80),
        legend.title = element_blank())

Number of employees

France, Germany, Italy

All

All

Code
namq_10_a10_e %>%
  left_join(geo, by = "geo") %>%
  filter(geo %in% c("FR", "DE", "IT"),
         nace_r2 == "C",
         s_adj == "NSA",
         unit == "THS_PER",
         na_item == "EMP_DC") %>%
  quarter_to_date() %>%
  arrange(date) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  ggplot(.) + geom_line(aes(x = date, y = values, color = color)) + 
  theme_minimal() + xlab("") + ylab("Number of Employees, '000") +
  scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = seq(0, 1000000, 1000),
                     labels = dollar_format(accuracy = 1, prefix = "", suffix = "M")) +
  scale_color_identity() + add_3flags +
  theme(legend.position = c(0.2, 0.80),
        legend.title = element_blank())

1995-

Code
namq_10_a10_e %>%
  left_join(geo, by = "geo") %>%
  filter(geo %in% c("FR", "DE", "IT"),
         nace_r2 == "C",
         s_adj == "NSA",
         unit == "THS_PER",
         na_item == "EMP_DC") %>%
  quarter_to_date() %>%
  arrange(date) %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  ggplot(.) + geom_line(aes(x = date, y = values, color = color)) + 
  theme_minimal() + xlab("") + ylab("Number of Employees, '000") +
  scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = seq(0, 1000000, 1000),
                     labels = dollar_format(accuracy = 1, prefix = "", suffix = "M")) +
  scale_color_identity() + add_3flags +
  theme(legend.position = c(0.2, 0.80),
        legend.title = element_blank())

All

All

Code
namq_10_a10_e %>%
  left_join(geo, by = "geo") %>%
  filter(geo %in% c("FR", "DE", "IT"),
         nace_r2 == "TOTAL",
         s_adj == "NSA",
         unit == "THS_PER",
         na_item == "EMP_DC") %>%
  quarter_to_date() %>%
  arrange(date) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  ggplot(.) + geom_line(aes(x = date, y = values, color = color)) + 
  theme_minimal() + xlab("") + ylab("Number of Employees, '000") +
  scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = seq(0, 1000000, 5000),
                     labels = dollar_format(accuracy = 1, prefix = "", suffix = "M")) +
  scale_color_identity() + add_3flags +
  theme(legend.position = c(0.2, 0.80),
        legend.title = element_blank())

2000-

Code
namq_10_a10_e %>%
  left_join(geo, by = "geo") %>%
  filter(geo %in% c("FR", "DE", "IT"),
         nace_r2 == "TOTAL",
         s_adj == "NSA",
         unit == "THS_PER",
         na_item == "EMP_DC") %>%
  quarter_to_date() %>%
  filter(date >= as.Date("2000-01-01")) %>%
  arrange(date) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  ggplot(.) + geom_line(aes(x = date, y = values, color = color)) + 
  theme_minimal() + xlab("") + ylab("Number of Employees, '000") +
  scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = seq(0, 1000000, 5000),
                     labels = dollar_format(accuracy = 1, prefix = "", suffix = "M")) +
  scale_color_identity() + add_3flags +
  theme(legend.position = c(0.2, 0.80),
        legend.title = element_blank())

2010-

Code
namq_10_a10_e %>%
  left_join(geo, by = "geo") %>%
  filter(geo %in% c("FR", "DE", "IT"),
         nace_r2 == "TOTAL",
         s_adj == "NSA",
         unit == "THS_PER",
         na_item == "EMP_DC") %>%
  quarter_to_date() %>%
  filter(date >= as.Date("2010-01-01")) %>%
  arrange(date) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  ggplot(.) + geom_line(aes(x = date, y = values, color = color)) + 
  theme_minimal() + xlab("") + ylab("Number of Employees, '000") +
  scale_x_date(breaks = seq(1960, 2026, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = seq(0, 1000000, 5000),
                     labels = dollar_format(accuracy = 1, prefix = "", suffix = "M")) +
  scale_color_identity() + add_3flags +
  theme(legend.position = c(0.2, 0.80),
        legend.title = element_blank())