source | dataset | .html | .RData |
---|---|---|---|
2024-09-15 | 2024-09-18 |
GDP per capita (constant 2015 USD)
Data - WDI
Info
Data on macro
source | dataset | .html | .RData |
---|---|---|---|
2024-09-15 | 2024-09-15 | ||
2024-09-15 | 2024-09-18 | ||
2024-09-15 | 2024-09-15 | ||
2024-09-15 | 2024-09-15 | ||
2024-09-15 | 2024-09-18 | ||
2024-09-15 | 2024-09-15 | ||
2024-09-04 | 2024-09-15 | ||
2024-09-15 | 2024-09-15 | ||
2024-08-21 | 2024-09-15 | ||
2024-09-15 | 2024-09-15 | ||
2024-09-02 | 2024-09-02 | ||
2024-08-29 | 2024-09-18 | ||
2024-06-06 | 2024-06-30 | ||
2024-09-15 | 2024-06-30 | ||
2024-09-15 | 2024-06-30 | ||
2024-07-01 | 2024-04-11 | ||
2024-07-01 | 2024-06-30 | ||
2024-09-18 | 2024-09-18 | ||
2024-09-18 | 2024-09-18 | ||
2024-09-18 | 2024-09-18 | ||
2024-09-18 | 2024-09-18 | ||
2024-09-15 | 2024-09-18 | ||
2024-09-15 | 2024-09-18 | ||
2024-09-15 | 2024-09-18 |
LAST_COMPILE
LAST_COMPILE |
---|
2024-09-18 |
Last
Code
%>%
NY.GDP.PCAP.KD group_by(year) %>%
summarise(Nobs = n()) %>%
arrange(desc(year)) %>%
head(1) %>%
print_table_conditional()
year | Nobs |
---|---|
2023 | 235 |
Nobs - Javascript
Code
%>%
NY.GDP.PCAP.KD left_join(iso2c, by = "iso2c") %>%
group_by(iso2c, Iso2c) %>%
mutate(value = round(value)) %>%
summarise(Nobs = n(),
`Year 1` = first(year),
`GDP per capita (constant 2010 USD) 1` = first(value) %>% paste0("$ ", .),
`Year 2` = last(year),
`GDP per capita (constant 2010 USD) 2` = last(value) %>% paste0("$ ", .)) %>%
arrange(-Nobs) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
1990, 2019, growth 1990-2019
Code
%>%
NY.GDP.PCAP.KD filter(year %in% c(1990, 2019)) %>%
left_join(iso2c, by = "iso2c") %>%
spread(year, value) %>%
mutate(growth = round(100*(`2019`/`1990`-1),1)) %>%
mutate(`1990` = round(`1990`),
`2019` = round(`2019`)) %>%
arrange(-growth) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(Iso2c)),
Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
Output - Countries
Png
Code
include_graphics3b("bib/wdi/NY.GDP.PCAP.KD_ex1.png")
United States
Code
%>%
NY.GDP.PCAP.KD filter(iso2c %in% c("US")) %>%
left_join(iso2c, by = "iso2c") %>%
%>%
year_to_date filter(date >= as.Date("1971-01-01")) %>%
ggplot(.) + geom_line(aes(x = date, y = value)) +
xlab("") + ylab("GDP per capita (constant 2010 USD)") + theme_minimal() +
theme(legend.title = element_blank(),
legend.position = c(0.2, 0.2)) +
scale_x_date(breaks = seq(1950, 2020, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = c(23670, 30000, 40000, 53748),
labels = dollar_format(a = 1))
Japan
Code
%>%
NY.GDP.PCAP.KD filter(iso2c %in% c("JP")) %>%
left_join(iso2c, by = "iso2c") %>%
%>%
year_to_date ggplot(.) + geom_line(aes(x = date, y = value)) +
xlab("") + ylab("GDP per capita (constant 2010 USD)") + theme_minimal() +
theme(legend.title = element_blank(),
legend.position = c(0.2, 0.2)) +
scale_x_date(breaks = seq(1950, 2020, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 200000, 10000),
labels = dollar_format())
Iceland (1990-2020)
Code
%>%
NY.GDP.PCAP.KD %>%
year_to_date filter(iso2c %in% c("IS"),
>= as.Date("1990-01-01")) %>%
date left_join(iso2c, by = "iso2c") %>%
ggplot(.) + geom_line(aes(x = date, y = value)) +
xlab("") + ylab("GDP per capita (constant 2010 USD)") + theme_minimal() +
theme(legend.title = element_blank(),
legend.position = c(0.2, 0.2)) +
scale_x_date(breaks = seq(1950, 2020, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 200000, 2000),
labels = dollar_format())
Euro Area vs. US
Base 100
Code
%>%
NY.GDP.PCAP.KD left_join(iso2c, by = "iso2c") %>%
%>%
year_to_date filter(iso2c %in% c("XC", "US"),
>= as.Date("2008-01-01")) %>%
date group_by(iso2c) %>%
arrange(date) %>%
mutate(value = 100*value/value[1]) %>%
mutate(Iso2c = ifelse(iso2c == "XC", "Europe", Iso2c)) %>%
left_join(colors, by = c("Iso2c" = "country")) %>%
mutate(color = ifelse(iso2c == "US", color2, color)) %>%
ggplot(.) + theme_minimal() + scale_color_identity() +
geom_line(aes(x = date, y = value, color = color)) +
+
add_2flags scale_x_date(breaks = seq(1950, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(70, 200, 5)) +
xlab("") + ylab("PIB/habitant en $ (100 = 2008)")
Avec dollars
Code
%>%
NY.GDP.PCAP.KD left_join(iso2c, by = "iso2c") %>%
%>%
year_to_date filter(iso2c %in% c("XC", "US"),
>= as.Date("2008-01-01")) %>%
date group_by(iso2c) %>%
arrange(date) %>%
mutate(Iso2c = ifelse(iso2c == "XC", "Europe", Iso2c)) %>%
left_join(colors, by = c("Iso2c" = "country")) %>%
mutate(color = ifelse(iso2c == "US", color2, color)) %>%
%>%
ungroup mutate(dollar = value,
value = 100*value/value[2]) %>%
ggplot(.) + theme_minimal() + scale_color_identity() +
geom_line(aes(x = date, y = value, color = color)) +
+
add_2flags scale_x_date(breaks = seq(1950, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(10, 200, 5)) +
xlab("") + ylab("PIB/habitant en $ (100 = Zone Euro, 2008)") +
geom_text_repel(data = . %>% filter(year(date) %in% seq(2008, 2022, 2)),
aes(x = date, y = value, label = paste0("$", round(dollar, digits = -2), " /hab")))
Euro area vs. US vs. France
Linear
Code
load_data("wdi/Iso2c2.RData")
%>%
NY.GDP.PCAP.KD # XC: Euro area
filter(iso2c %in% c("US", "XC", "FR")) %>%
left_join(iso2c, by = "iso2c") %>%
mutate(Iso2c = ifelse(iso2c == "XC", "Europe", Iso2c)) %>%
%>%
year_to_date left_join(colors, by = c("Iso2c" = "country")) %>%
mutate(color = ifelse(iso2c == "XC", color2, color)) %>%
ggplot(.) + xlab("") + ylab("GDP per capita") +
geom_line(aes(x = date, y = value, color = color)) +
theme_minimal() + scale_color_identity() + add_3flags +
scale_x_date(breaks = seq(1950, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 80000, 5000),
labels = dollar_format(acc = 1))
Base 100 = 1960
Code
%>%
NY.GDP.PCAP.KD filter(iso2c %in% c("US", "XC", "FR")) %>%
left_join(iso2c, by = "iso2c") %>%
mutate(Iso2c = ifelse(iso2c == "XC", "Europe", Iso2c)) %>%
%>%
year_to_date left_join(colors, by = c("Iso2c" = "country")) %>%
mutate(color = ifelse(iso2c == "XC", color2, color)) %>%
group_by(iso2c, Iso2c) %>%
arrange(date) %>%
mutate(value = 100*value/value[1]) %>%
ggplot(.) + xlab("") + ylab("GDP per capita, 100 = 1960") +
geom_line(aes(x = date, y = value, color = color)) +
theme_minimal() + scale_color_identity() + add_3flags +
scale_x_date(breaks = seq(1950, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks =c(100, 200, 400, 800, 1000, 2000, 4000, 8000, 10000, 20000))
Base 100 = 1990
Code
%>%
NY.GDP.PCAP.KD filter(iso2c %in% c("US", "XC", "FR")) %>%
left_join(iso2c, by = "iso2c") %>%
mutate(Iso2c = ifelse(iso2c == "XC", "Europe", Iso2c)) %>%
%>%
year_to_date left_join(colors, by = c("Iso2c" = "country")) %>%
mutate(color = ifelse(iso2c == "XC", color2, color)) %>%
group_by(iso2c, Iso2c) %>%
arrange(date) %>%
filter(date >= as.Date("1990-01-01")) %>%
mutate(value = 100*value/value[1]) %>%
ggplot(.) + xlab("") + ylab("GDP per capita, 100 = 1990") +
geom_line(aes(x = date, y = value, color = color)) +
theme_minimal() + scale_color_identity() + add_3flags +
scale_x_date(breaks = seq(1950, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 400, 10))
Base 100 = 2006
Code
%>%
NY.GDP.PCAP.KD filter(iso2c %in% c("US", "XC", "FR")) %>%
left_join(iso2c, by = "iso2c") %>%
mutate(Iso2c = ifelse(iso2c == "XC", "Europe", Iso2c)) %>%
%>%
year_to_date left_join(colors, by = c("Iso2c" = "country")) %>%
mutate(color = ifelse(iso2c == "XC", color2, color)) %>%
group_by(iso2c, Iso2c) %>%
arrange(date) %>%
filter(date >= as.Date("2006-01-01")) %>%
mutate(value = 100*value/value[1]) %>%
ggplot(.) + xlab("") + ylab("GDP per capita, 100 = 2006") +
geom_line(aes(x = date, y = value, color = color)) +
theme_minimal() + scale_color_identity() + add_3flags +
scale_x_date(breaks = seq(1950, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(10, 400, 5))
Base 100 = 2007
Code
%>%
NY.GDP.PCAP.KD filter(iso2c %in% c("US", "XC", "FR")) %>%
left_join(iso2c, by = "iso2c") %>%
mutate(Iso2c = ifelse(iso2c == "XC", "Europe", Iso2c)) %>%
%>%
year_to_date left_join(colors, by = c("Iso2c" = "country")) %>%
mutate(color = ifelse(iso2c == "XC", color2, color)) %>%
group_by(iso2c, Iso2c) %>%
arrange(date) %>%
filter(date >= as.Date("2007-01-01")) %>%
mutate(value = 100*value/value[1]) %>%
ggplot(.) + xlab("") + ylab("GDP per capita, 100 = 2007") +
geom_line(aes(x = date, y = value, color = color)) +
theme_minimal() + scale_color_identity() + add_3flags +
scale_x_date(breaks = seq(1950, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(10, 400, 5))
Base 100 = 2008
Code
%>%
NY.GDP.PCAP.KD filter(iso2c %in% c("US", "XC", "FR")) %>%
left_join(iso2c, by = "iso2c") %>%
mutate(Iso2c = ifelse(iso2c == "XC", "Europe", Iso2c)) %>%
%>%
year_to_date left_join(colors, by = c("Iso2c" = "country")) %>%
mutate(color = ifelse(iso2c == "XC", color2, color)) %>%
group_by(iso2c, Iso2c) %>%
arrange(date) %>%
filter(date >= as.Date("2008-01-01")) %>%
mutate(value = 100*value/value[1]) %>%
ggplot(.) + xlab("") + ylab("GDP per capita, 100 = 2008") +
geom_line(aes(x = date, y = value, color = color)) +
theme_minimal() + scale_color_identity() + add_3flags +
scale_x_date(breaks = seq(1950, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(10, 400, 5))
Switzerland, France, Germany
Linear
Code
%>%
NY.GDP.PCAP.KD filter(iso2c %in% c("CH", "FR", "DE")) %>%
left_join(iso2c, by = "iso2c") %>%
%>%
year_to_date left_join(colors, by = c("Iso2c" = "country")) %>%
ggplot(.) + xlab("") + ylab("GDP per capita") +
geom_line(aes(x = date, y = value, color = color)) +
theme_minimal() + scale_color_identity() + add_3flags +
scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 80000, 5000),
labels = dollar_format(acc = 1))
Log
Code
%>%
NY.GDP.PCAP.KD filter(iso2c %in% c("CH", "FR", "DE")) %>%
left_join(iso2c, by = "iso2c") %>%
%>%
year_to_date left_join(colors, by = c("Iso2c" = "country")) %>%
filter(date >= as.Date("1980-01-01")) %>%
ggplot(.) + xlab("") + ylab("GDP per capita") +
geom_line(aes(x = date, y = value, color = color)) +
theme_minimal() + scale_color_identity() + add_3flags +
scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(10000, 90000, 10000),
labels = dollar_format(acc = 1))
China, France, Germany
Linear
Code
load_data("wdi/iso2c.RData")
%>%
NY.GDP.PCAP.KD filter(iso2c %in% c("CN", "FR", "DE")) %>%
left_join(iso2c, by = "iso2c") %>%
%>%
year_to_date left_join(colors, by = c("Iso2c" = "country")) %>%
ggplot(.) + xlab("") + ylab("GDP per capita") +
geom_line(aes(x = date, y = value, color = color)) +
theme_minimal() + scale_color_identity() + add_3flags +
scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 80000, 5000),
labels = dollar_format(acc = 1))
Log
Code
%>%
NY.GDP.PCAP.KD filter(iso2c %in% c("CN", "FR", "DE")) %>%
left_join(iso2c, by = "iso2c") %>%
%>%
year_to_date left_join(colors, by = c("Iso2c" = "country")) %>%
ggplot(.) + xlab("") + ylab("GDP per capita") +
geom_line(aes(x = date, y = value, color = color)) +
theme_minimal() + scale_color_identity() + add_3flags +
scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = c(100, 200, 500, 1000, 2000, 5000, 10000, 20000, 50000, 100000),
labels = dollar_format(acc = 1))
Spain, Italy, France, Germany, United States
Log
All
Code
%>%
NY.GDP.PCAP.KD filter(iso2c %in% c("ES", "FR", "DE", "IT", "US")) %>%
left_join(iso2c, by = "iso2c") %>%
%>%
year_to_date left_join(colors, by = c("Iso2c" = "country")) %>%
ggplot(.) + xlab("") + ylab("GDP per capita") +
geom_line(aes(x = date, y = value, color = color)) +
theme_minimal() + scale_color_identity() + add_5flags +
scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(5000, 50000, 5000),
labels = dollar_format(acc = 1))
1990-
Code
%>%
NY.GDP.PCAP.KD filter(iso2c %in% c("ES", "FR", "DE", "IT", "US")) %>%
left_join(iso2c, by = "iso2c") %>%
%>%
year_to_date filter(date >= as.Date("1990-01-01")) %>%
left_join(colors, by = c("Iso2c" = "country")) %>%
ggplot(.) + xlab("") + ylab("GDP per capita") +
geom_line(aes(x = date, y = value, color = color)) +
theme_minimal() + scale_color_identity() + add_5flags +
scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(5000, 50000, 5000),
labels = dollar_format(acc = 1))
Spain, Italy, France, Germany
Linear
Code
load_data("wdi/iso2c.RData")
%>%
NY.GDP.PCAP.KD filter(iso2c %in% c("ES", "FR", "DE", "IT")) %>%
left_join(iso2c, by = "iso2c") %>%
%>%
year_to_date left_join(colors, by = c("Iso2c" = "country")) %>%
ggplot(.) + xlab("") + ylab("GDP per capita") +
geom_line(aes(x = date, y = value, color = color)) +
theme_minimal() + scale_color_identity() + add_4flags +
scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 80000, 5000),
labels = dollar_format(acc = 1))
Log
All
Code
%>%
NY.GDP.PCAP.KD filter(iso2c %in% c("ES", "FR", "DE", "IT")) %>%
left_join(iso2c, by = "iso2c") %>%
%>%
year_to_date left_join(colors, by = c("Iso2c" = "country")) %>%
ggplot(.) + xlab("") + ylab("GDP per capita") +
geom_line(aes(x = date, y = value, color = color)) +
theme_minimal() + scale_color_identity() + add_4flags +
scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(5000, 50000, 5000),
labels = dollar_format(acc = 1))
1990-
Code
%>%
NY.GDP.PCAP.KD filter(iso2c %in% c("ES", "FR", "DE", "IT")) %>%
left_join(iso2c, by = "iso2c") %>%
%>%
year_to_date filter(date >= as.Date("1990-01-01")) %>%
left_join(colors, by = c("Iso2c" = "country")) %>%
ggplot(.) + xlab("") + ylab("GDP per capita") +
geom_line(aes(x = date, y = value, color = color)) +
theme_minimal() + scale_color_identity() + add_4flags +
scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(5000, 50000, 5000),
labels = dollar_format(acc = 1))
Poland, Portugal, Spain
Linear
Code
%>%
NY.GDP.PCAP.KD filter(iso2c %in% c("PL", "CZ", "FR")) %>%
left_join(iso2c, by = "iso2c") %>%
%>%
year_to_date left_join(colors, by = c("Iso2c" = "country")) %>%
ggplot(.) + xlab("") + ylab("GDP per capita") +
geom_line(aes(x = date, y = value, color = color)) +
theme_minimal() + scale_color_identity() + add_3flags +
scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 80000, 5000),
labels = dollar_format(acc = 1))
Log
Code
%>%
NY.GDP.PCAP.KD filter(iso2c %in% c("PL", "CZ", "FR")) %>%
left_join(iso2c, by = "iso2c") %>%
%>%
year_to_date left_join(colors, by = c("Iso2c" = "country")) %>%
ggplot(.) + xlab("") + ylab("GDP per capita") +
geom_line(aes(x = date, y = value, color = color)) +
theme_minimal() + scale_color_identity() + add_3flags +
scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 80000, 5000),
labels = dollar_format(acc = 1))
Italy, Portugal, Spain
Linear
Code
%>%
NY.GDP.PCAP.KD filter(iso2c %in% c("ES", "IT", "PT")) %>%
left_join(iso2c, by = "iso2c") %>%
%>%
year_to_date left_join(colors, by = c("Iso2c" = "country")) %>%
ggplot(.) + xlab("") + ylab("GDP per capita") +
geom_line(aes(x = date, y = value, color = color)) +
theme_minimal() + scale_color_identity() + add_3flags +
scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 80000, 5000),
labels = dollar_format(acc = 1))
Log
Code
%>%
NY.GDP.PCAP.KD filter(iso2c %in% c("ES", "IT", "PT")) %>%
left_join(iso2c, by = "iso2c") %>%
%>%
year_to_date left_join(colors, by = c("Iso2c" = "country")) %>%
ggplot(.) + xlab("") + ylab("GDP per capita") +
geom_line(aes(x = date, y = value, color = color)) +
theme_minimal() + scale_color_identity() + add_3flags +
scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 80000, 5000),
labels = dollar_format(acc = 1))
Spain, United Kingdom, United States
Linear
Code
%>%
NY.GDP.PCAP.KD filter(iso2c %in% c("US", "GB", "ES")) %>%
left_join(iso2c, by = "iso2c") %>%
%>%
year_to_date left_join(colors, by = c("Iso2c" = "country")) %>%
ggplot(.) + xlab("") + ylab("GDP per capita") +
geom_line(aes(x = date, y = value, color = color)) +
theme_minimal() + scale_color_identity() + add_3flags +
scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 80000, 5000),
labels = dollar_format(acc = 1))
Log
Code
%>%
NY.GDP.PCAP.KD filter(iso2c %in% c("US", "GB", "ES")) %>%
left_join(iso2c, by = "iso2c") %>%
%>%
year_to_date left_join(colors, by = c("Iso2c" = "country")) %>%
ggplot(.) + xlab("") + ylab("GDP per capita") +
geom_line(aes(x = date, y = value, color = color)) +
theme_minimal() + scale_color_identity() + add_3flags +
scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 80000, 5000),
labels = dollar_format(acc = 1))
Argentina, Chile, Venezuela
Linear
Code
%>%
NY.GDP.PCAP.KD filter(iso2c %in% c("AR", "CL", "VE")) %>%
left_join(iso2c, by = "iso2c") %>%
mutate(Iso2c = ifelse(iso2c == "VE", "Venezuela", Iso2c)) %>%
%>%
year_to_date left_join(colors, by = c("Iso2c" = "country")) %>%
ggplot(.) + xlab("") + ylab("GDP per capita") +
geom_line(aes(x = date, y = value, color = color)) +
theme_minimal() + scale_color_identity() + add_3flags +
scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 80000, 2000),
labels = dollar_format(acc = 1))
Log
Code
%>%
NY.GDP.PCAP.KD filter(iso2c %in% c("AR", "CL", "VE")) %>%
left_join(iso2c, by = "iso2c") %>%
mutate(Iso2c = ifelse(iso2c == "VE", "Venezuela", Iso2c)) %>%
%>%
year_to_date left_join(colors, by = c("Iso2c" = "country")) %>%
ggplot(.) + xlab("") + ylab("GDP per capita") +
geom_line(aes(x = date, y = value, color = color)) +
theme_minimal() + scale_color_identity() + add_3flags +
scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 80000, 1000),
labels = dollar_format(acc = 1))
Argentina
Log
Code
%>%
NY.GDP.PCAP.KD filter(iso2c %in% c("AR")) %>%
left_join(iso2c, by = "iso2c") %>%
mutate(Iso2c = ifelse(iso2c == "VE", "Venezuela", Iso2c)) %>%
%>%
year_to_date left_join(colors, by = c("Iso2c" = "country")) %>%
ggplot(.) + xlab("") + ylab("GDP per capita") +
geom_line(aes(x = date, y = value)) +
theme_minimal() + scale_color_identity() + add_3flags +
scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 80000, 1000),
labels = dollar_format(acc = 1))
Argentina, Zimbabwe, Cuba
Log
Code
%>%
NY.GDP.PCAP.KD filter(iso2c %in% c("AR", "ZW", "CU")) %>%
left_join(iso2c, by = "iso2c") %>%
mutate(Iso2c = ifelse(iso2c == "VE", "Venezuela", Iso2c)) %>%
%>%
year_to_date left_join(colors, by = c("Iso2c" = "country")) %>%
ggplot(.) + xlab("") + ylab("GDP per capita") +
geom_line(aes(x = date, y = value, color = color)) +
theme_minimal() + scale_color_identity() + add_3flags +
scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 80000, 1000),
labels = dollar_format(acc = 1))
Base 100
Code
%>%
NY.GDP.PCAP.KD filter(iso2c %in% c("AR", "ZW", "CU")) %>%
left_join(iso2c, by = "iso2c") %>%
mutate(Iso2c = ifelse(iso2c == "VE", "Venezuela", Iso2c)) %>%
%>%
year_to_date left_join(colors, by = c("Iso2c" = "country")) %>%
group_by(iso2c) %>%
mutate(value = 100*value/value[date == as.Date("1970-01-01")]) %>%
filter(date >= as.Date("1970-01-01")) %>%
ggplot(.) + xlab("") + ylab("GDP per capita") +
geom_line(aes(x = date, y = value, color = color)) +
theme_minimal() + scale_color_identity() + add_3flags +
scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(40, 2000, 20))
Greece, Hong Kong, Mexico
Linear
Code
%>%
NY.GDP.PCAP.KD filter(iso2c %in% c("GR", "HK", "MX")) %>%
left_join(iso2c, by = "iso2c") %>%
mutate(Iso2c = ifelse(iso2c == "HK", "Hong Kong", Iso2c)) %>%
%>%
year_to_date left_join(colors, by = c("Iso2c" = "country")) %>%
ggplot(.) + xlab("") + ylab("GDP per capita") +
geom_line(aes(x = date, y = value, color = color)) +
theme_minimal() + scale_color_identity() + add_3flags +
scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 80000, 5000),
labels = dollar_format(acc = 1))
Log
Code
%>%
NY.GDP.PCAP.KD filter(iso2c %in% c("GR", "HK", "MX")) %>%
left_join(iso2c, by = "iso2c") %>%
mutate(Iso2c = ifelse(iso2c == "HK", "Hong Kong", Iso2c)) %>%
%>%
year_to_date left_join(colors, by = c("Iso2c" = "country")) %>%
ggplot(.) + xlab("") + ylab("GDP per capita") +
geom_line(aes(x = date, y = value, color = color)) +
theme_minimal() + scale_color_identity() + add_3flags +
scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 80000, 5000),
labels = dollar_format(acc = 1))
Singapore, South Korea, Mexico
Linear
Code
%>%
NY.GDP.PCAP.KD filter(iso2c %in% c("KR", "SG", "CH")) %>%
left_join(iso2c, by = "iso2c") %>%
mutate(Iso2c = ifelse(iso2c == "KR", "Korea", Iso2c)) %>%
%>%
year_to_date left_join(colors, by = c("Iso2c" = "country")) %>%
ggplot(.) + xlab("") + ylab("GDP per capita") +
geom_line(aes(x = date, y = value, color = color)) +
theme_minimal() + scale_color_identity() + add_3flags +
scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 80000, 5000),
labels = dollar_format(acc = 1))
Log
Code
%>%
NY.GDP.PCAP.KD filter(iso2c %in% c("KR", "SG", "CH")) %>%
left_join(iso2c, by = "iso2c") %>%
mutate(Iso2c = ifelse(iso2c == "KR", "Korea", Iso2c)) %>%
%>%
year_to_date left_join(colors, by = c("Iso2c" = "country")) %>%
ggplot(.) + xlab("") + ylab("GDP per capita") +
geom_line(aes(x = date, y = value, color = color)) +
theme_minimal() + scale_color_identity() + add_3flags +
scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = c(1000, 2000, 3000, 5000, 8000, seq(0, 80000, 10000)),
labels = dollar_format(acc = 1))