source | dataset | .html | .RData |
---|---|---|---|
oecd | QNA | 2024-06-06 | 2024-06-05 |
Quarterly National Accounts
Data - OECD
Info
Last
obsTime | Nobs |
---|---|
2024-Q1 | 13258 |
TRANSACTION
Code
%>%
QNA left_join(TRANSACTION, by = "TRANSACTION") %>%
group_by(TRANSACTION, Transaction) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
ACTIVITY
Code
%>%
QNA left_join(ACTIVITY, by = "ACTIVITY") %>%
group_by(ACTIVITY, Activity) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
ACTIVITY | Activity | Nobs |
---|---|---|
_Z | Not applicable | 1582096 |
_T | Total - All activities | 649068 |
A | Agriculture, forestry and fishing | 114976 |
F | Construction | 114472 |
C | Manufacturing | 113763 |
BTE | Industry (except construction) | 113540 |
J | Information and communication | 113457 |
K | Financial and insurance activities | 113296 |
GTI | Wholesale and retail trade; repair of motor vehicles and motorcycles; transportation and storage; accommodation and food service activities | 112926 |
L | Real estate activities | 112831 |
OTQ | Public administration, defence, education, human health and social work activities | 112798 |
RTU | Arts, entertainment and recreation; other service activities; activities of household and extra-territorial organizations and bodies | 112697 |
M_N | Professional, scientific and technical activities; administrative and support service activities | 111932 |
GTU | Services | 24940 |
CURRENCY
Code
%>%
QNA group_by(CURRENCY) %>%
summarise(Nobs = n()) %>%
print_table_conditional()
SECTOR
Code
%>%
QNA left_join(SECTOR, by = "SECTOR") %>%
group_by(SECTOR, Sector) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
SECTOR | Sector | Nobs |
---|---|---|
S1 | Total economy | 2971920 |
S13 | General government | 193274 |
S14 | Households | 159059 |
S1M | Households and non-profit institutions serving households (NPISH) | 144476 |
S15 | Non-profit institutions serving households | 25827 |
S1W | Other sectors than general government | 8236 |
PRICE_BASE
Code
%>%
QNA left_join(PRICE_BASE, by = "PRICE_BASE") %>%
group_by(PRICE_BASE, Price_base) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
PRICE_BASE | Price_base | Nobs |
---|---|---|
V | Current prices | 1476805 |
L | Chain linked volume | 865262 |
_Z | Not applicable | 752829 |
LR | Chain linked volume (rebased) | 226188 |
DR | Deflator (rebased) | 64571 |
D | Deflator | 60550 |
Q | Constant prices | 44770 |
QR | Constant prices (rebased) | 11817 |
REF_AREA
Code
%>%
QNA left_join(REF_AREA, by = "REF_AREA") %>%
group_by(REF_AREA, Ref_area) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
TABLE_IDENTIFIER
Code
%>%
QNA left_join(TABLE_IDENTIFIER, by = "TABLE_IDENTIFIER") %>%
group_by(TABLE_IDENTIFIER, Table_identifier) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
TABLE_IDENTIFIER | Table_identifier | Nobs |
---|---|---|
T0102 | Table 0102 - GDP identity from the expenditure side | 1602703 |
T0111 | Table 0111 - Employment by industry | 708355 |
T0101 | Table 0101 - Gross value added at basic prices and gross domestic product at market prices | 442085 |
T0103 | Table 0103 - GDP identity from the income side | 406927 |
T0107 | Table 0107 - Disposable income, saving, net lending / borrowing | 165174 |
T0117 | Table 0117 - Final consumption expenditure of households by durability | 133074 |
T0110 | Table 0110 - Population and employment | 44474 |
UNIT_MEASURE
Code
%>%
QNA left_join(UNIT_MEASURE, by = "UNIT_MEASURE") %>%
group_by(UNIT_MEASURE, Unit_measure) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
UNIT_MEASURE | Unit_measure | Nobs |
---|---|---|
XDC | National currency | 2183213 |
PS | Persons | 400258 |
H | Hours | 337199 |
IX | Index | 188600 |
PC | Percentage change | 166737 |
USD_PPP | US dollars, PPP converted | 166459 |
PD | Percentage points | 18152 |
JB | Jobs | 15372 |
USD_PPP_PS | US dollars per person, PPP converted | 14519 |
XDC_USD | National currency per US dollar | 12283 |
TRANSFORMATION
Code
%>%
QNA left_join(TRANSFORMATION, by = "TRANSFORMATION") %>%
group_by(TRANSFORMATION, Transformation) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
TRANSFORMATION | Transformation | Nobs |
---|---|---|
N | Non transformed data | 2865541 |
LA | Annual levels | 452362 |
G1 | Growth rate, period on period | 81181 |
GY | Growth rate, over 1 year | 80239 |
GO1 | Contribution to growth rate, period on period | 18152 |
GCM | Cumulative growth rate since base period | 5317 |
U.S., Europe
B1GQ_POP
1995-
Code
%>%
QNA filter(REF_AREA %in% c("USA", "EA20"),
== "Q",
FREQ == "B1GQ_POP",
TRANSACTION == "LR") %>%
PRICE_BASE %>%
quarter_to_date filter(date >= as.Date("1995-01-01")) %>%
mutate(Location = ifelse(REF_AREA == "USA", "United States", "Europe")) %>%
group_by(Location) %>%
arrange(date) %>%
mutate(obsValue = 100 * obsValue / obsValue[1]) %>%
left_join(colors, by = c("Location" = "country")) %>%
mutate(color = ifelse(REF_AREA == "USA", color2, color)) %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("PIB par habitant (1995 = 100)") +
geom_line(aes(x = date, y = obsValue, color = color)) + add_2flags +
scale_color_identity() +
scale_x_date(breaks = seq(1960, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_log10(breaks = seq(50, 200, 5))
1999-
Code
<- QNA %>%
plot filter(REF_AREA %in% c("USA", "EA20"),
== "Q",
FREQ == "B1GQ_POP",
TRANSACTION == "LR") %>%
PRICE_BASE %>%
quarter_to_date filter(date >= as.Date("1999-01-01")) %>%
mutate(Location = ifelse(REF_AREA == "USA", "United States", "Europe")) %>%
group_by(Location) %>%
arrange(date) %>%
mutate(obsValue = 100 * obsValue / obsValue[1]) %>%
left_join(colors, by = c("Location" = "country")) %>%
mutate(color = ifelse(REF_AREA == "USA", color2, color)) %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("PIB par habitant (1999T1 = 100)") +
geom_line(aes(x = date, y = obsValue, color = color)) + add_2flags +
scale_color_identity() +
scale_x_date(breaks = c(seq(1999, 2100, 5), seq(1997, 2100, 5)) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_log10(breaks = seq(50, 200, 5))
plot
Code
save(plot, file = "QNA_files/figure-html/USA-EA20-1999-1.RData")
2000-
Code
%>%
QNA filter(REF_AREA %in% c("USA", "EA20"),
== "Q",
FREQ == "B1GQ_POP",
TRANSACTION == "LR") %>%
PRICE_BASE %>%
quarter_to_date filter(date >= as.Date("2000-01-01")) %>%
mutate(Location = ifelse(REF_AREA == "USA", "United States", "Europe")) %>%
group_by(Location) %>%
arrange(date) %>%
mutate(obsValue = 100 * obsValue / obsValue[1]) %>%
left_join(colors, by = c("Location" = "country")) %>%
mutate(color = ifelse(REF_AREA == "USA", color2, color)) %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("PIB par habitant (2000 = 100)") +
geom_line(aes(x = date, y = obsValue, color = color)) + add_2flags +
scale_color_identity() +
scale_x_date(breaks = seq(1960, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_log10(breaks = seq(50, 200, 5))
B1GQ
1999-
Absolute
Code
%>%
QNA filter(REF_AREA %in% c("USA", "EA20"),
== "Q",
FREQ == "B1GQ",
TRANSACTION == "N",
TRANSFORMATION == "Y") %>%
ADJUSTMENT %>%
quarter_to_date filter(date >= as.Date("1999-01-01")) %>%
arrange(desc(date)) %>%
mutate(Location = ifelse(REF_AREA == "USA", "United States", "Europe")) %>%
group_by(Location, PRICE_BASE) %>%
arrange(date) %>%
mutate(obsValue = 100 * obsValue / obsValue[1]) %>%
left_join(colors, by = c("Location" = "country")) %>%
mutate(color = ifelse(REF_AREA == "USA", color2, color)) %>%
left_join(PRICE_BASE, by = "PRICE_BASE") %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("PIB par habitant (1999T1 = 100)") +
geom_line(aes(x = date, y = obsValue, color = color, linetype = Price_base)) + add_2flags +
scale_color_identity() +
scale_x_date(breaks = c(seq(1999, 2100, 5), seq(1997, 2100, 5)) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.2, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(50, 500, 10))
Per capita
Code
%>%
QNA filter(REF_AREA %in% c("USA", "EA20"),
== "Q",
FREQ == c("B1GQ", "POP"),
TRANSACTION == "N",
TRANSFORMATION == "Y") %>%
ADJUSTMENT %>%
quarter_to_date filter(date >= as.Date("1999-01-01")) %>%
arrange(desc(date)) %>%
mutate(Location = ifelse(REF_AREA == "USA", "United States", "Europe")) %>%
group_by(Location, PRICE_BASE) %>%
arrange(date) %>%
mutate(obsValue = 100 * obsValue / obsValue[1]) %>%
left_join(colors, by = c("Location" = "country")) %>%
mutate(color = ifelse(REF_AREA == "USA", color2, color)) %>%
left_join(PRICE_BASE, by = "PRICE_BASE") %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("PIB par habitant (1999T1 = 100)") +
geom_line(aes(x = date, y = obsValue, color = color, linetype = Price_base)) + add_2flags +
scale_color_identity() +
scale_x_date(breaks = c(seq(1999, 2100, 5), seq(1997, 2100, 5)) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.2, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(50, 500, 10))