source | dataset | .html | .RData |
---|---|---|---|
insee | CNT-2014-CB | 2025-01-07 | 2025-01-07 |
Comptes des branches
Data - Insee
Info
Données sur la macroéconomie en France
source | dataset | .html | .RData |
---|---|---|---|
bdf | CFT | 2025-01-05 | 2024-12-09 |
insee | CNA-2014-CONSO-SI | 2025-01-07 | 2024-12-29 |
insee | CNA-2014-CSI | 2025-01-07 | 2024-12-29 |
insee | CNA-2014-FBCF-BRANCHE | 2025-01-07 | 2025-01-07 |
insee | CNA-2014-FBCF-SI | 2024-06-07 | 2025-01-05 |
insee | CNA-2014-RDB | 2025-01-07 | 2025-01-05 |
insee | CNA-2020-CONSO-MEN | 2025-01-07 | 2024-09-12 |
insee | CNA-2020-PIB | 2025-01-07 | 2024-09-11 |
insee | CNT-2014-CB | 2025-01-07 | 2025-01-07 |
insee | CNT-2014-CSI | 2025-01-07 | 2025-01-05 |
insee | CNT-2014-OPERATIONS | 2025-01-07 | 2025-01-05 |
insee | CNT-2014-PIB-EQB-RF | 2025-01-07 | 2025-01-05 |
insee | CONSO-MENAGES-2020 | 2025-01-07 | 2025-01-05 |
insee | conso-mensuelle | 2024-06-07 | 2023-07-04 |
insee | ICA-2015-IND-CONS | 2025-01-07 | 2025-01-07 |
insee | t_1101 | 2025-01-07 | 2022-01-02 |
insee | t_1102 | 2025-01-07 | 2020-10-30 |
insee | t_1105 | 2025-01-07 | 2020-10-30 |
LAST_UPDATE
Code
`CNT-2014-CB` %>%
group_by(LAST_UPDATE) %>%
summarise(Nobs = n()) %>%
arrange(desc(LAST_UPDATE)) %>%
print_table_conditional()
LAST_UPDATE | Nobs |
---|---|
2024-04-30 | 178344 |
LAST_COMPILE
LAST_COMPILE |
---|
2025-01-07 |
Last
Code
`CNT-2014-CB` %>%
group_by(TIME_PERIOD) %>%
summarise(Nobs = n()) %>%
arrange(desc(TIME_PERIOD)) %>%
head(2) %>%
print_table_conditional()
TIME_PERIOD | Nobs |
---|---|
2024-Q1 | 144 |
2023-Q4 | 594 |
Le compte de production décrit la relation entre la production et la consommation intermédiaire nécessaire à cette production. Il a pour solde la valeur ajoutée brute qui mesure la richesse créée lors du processus de production.
Le compte d’exploitation décrit comment la valeur ajoutée brute couvre la rémunération versée aux salariés et les impôts sur la production. Il a pour solde l’excédent brut d’exploitation et le revenu mixte brut qui mesurent le profit d’exploitation des branches.
TITLE_FR
Code
`CNT-2014-CB` %>%
group_by(IDBANK, TITLE_FR) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
INDICATEUR
Code
`CNT-2014-CB` %>%
left_join(INDICATEUR, by = "INDICATEUR") %>%
group_by(INDICATEUR, Indicateur) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
INDICATEUR | Indicateur | Nobs |
---|---|---|
CNT-COMPTE_EXPLOITATION_BRANCHES | Compte d'exploitation des branches | 63000 |
CNT-COMPTE_PRODUCTION_BRANCHES | Compte de production des branches | 43344 |
CNT-EMPLOI_INTERIEUR_BRANCHES | Emploi intérieur par branche | 43200 |
CNT-DUREE_VOLUME_TRAVAIL_BRANCHE | Durée hebdomadaire et volume de travail par branche | 28800 |
VALORISATION
Code
`CNT-2014-CB` %>%
left_join(VALORISATION, by = "VALORISATION") %>%
group_by(VALORISATION, Valorisation) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
VALORISATION | Valorisation | Nobs |
---|---|---|
SO | Sans objet | 135000 |
L | Volumes aux prix de l'année précédente chaînés | 21672 |
V | Valeurs aux prix courants | 21672 |
OPERATION
Code
`CNT-2014-CB` %>%
left_join(OPERATION, by = "OPERATION") %>%
group_by(OPERATION, Operation) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
UNIT_MEASURE
Code
`CNT-2014-CB` %>%
group_by(UNIT_MEASURE) %>%
summarise(Nobs = n()) %>%
if (is_html_output()) print_table(.) else .} {
UNIT_MEASURE | Nobs |
---|---|
ETP | 21600 |
EUROS | 106344 |
HEURES | 28800 |
INDIVIDUS | 21600 |
CNA_PRODUIT
Code
`CNT-2014-CB` %>%
left_join(CNA_PRODUIT, by = "CNA_PRODUIT") %>%
group_by(CNA_PRODUIT, Cna_produit) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
TIME_PERIOD
Code
`CNT-2014-CB` %>%
group_by(TIME_PERIOD) %>%
summarise(Nobs = n()) %>%
arrange(desc(TIME_PERIOD)) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
Excédent Brut / PIB par branche
All
Code
`CNT-2014-CB` %>%
filter(TIME_PERIOD %in% c("2022-Q4", "2019-Q4", "2006-Q4")) %>%
filter(OPERATION %in% c("B2"),
#INDICATEUR == "CNT-COMPTE_EXPLOITATION_BRANCHES",
%in% c("V", "SO")) %>%
VALORISATION quarter_to_date() %>%
select(date, OPERATION, CNA_PRODUIT, OBS_VALUE) %>%
left_join(gdp_quarterly, by = "date") %>%
mutate(B2_gdp = round(100*OBS_VALUE/gdp, 1)) %>%
left_join(CNA_PRODUIT, by = "CNA_PRODUIT") %>%
select(CNA_PRODUIT, Cna_produit, date, B2_gdp) %>%
spread(date, B2_gdp) %>%
mutate(change = `2022-10-01`-`2006-10-01`) %>%
arrange(-change) %>%
print_table_conditional()
CNA_PRODUIT | Cna_produit | 2006-10-01 | 2019-10-01 | 2022-10-01 | change |
---|---|---|---|---|---|
A17-HZ | A17-HZ - Transports et entreposage | 1.0 | 1.3 | 1.8 | 0.8 |
A17-AZ | A17-AZ - Agriculture, sylviculture et pêche | 1.5 | 1.3 | 1.9 | 0.4 |
A17-C2 | A17-C2 - Cokéfaction et raffinage | 0.0 | 0.0 | 0.3 | 0.3 |
A17-GZ | A17-GZ - Commerce ; réparation d'automobiles et de motocycles | 3.2 | 3.3 | 3.5 | 0.3 |
A17-C1 | A17-C1 - Fabrication de denrées alimentaires, de boissons et de produits à base de tabac | 0.9 | 0.8 | 0.9 | 0.0 |
A17-OQ | A17-OQ - Administration publique, enseignement, santé humaine et action sociale | 4.3 | 4.5 | 4.3 | 0.0 |
DSN-CNT | Tertiaire principalement non marchand (OQ) | 4.3 | 4.5 | 4.3 | 0.0 |
A17-LZ | A17-LZ - Activités immobilières | 9.7 | 9.6 | 9.6 | -0.1 |
A17-DE | A17-DE - Industries extractives, énergie, eau, gestion des déchets et dépollution | 1.5 | 1.4 | 1.4 | -0.1 |
A17-FZ | A17-FZ - Construction | 1.8 | 1.9 | 1.7 | -0.1 |
A17-C3 | A17-C3 - Fabrication d'équipements électriques, électroniques, informatiques ; fabrication de machines | 0.6 | 0.5 | 0.4 | -0.2 |
A17-C4 | A17-C4 - Fabrication de matériels de transport | 0.6 | 0.7 | 0.4 | -0.2 |
DI-CNT | Industrie (DE, C1, C2, C3, C4, C5) | 5.6 | 5.2 | 5.3 | -0.3 |
A17-C5 | A17-C5 - Fabrication d'autres produits industriels | 2.1 | 1.8 | 1.8 | -0.3 |
DIM-CNT | Industrie manufacturière (C1, C2, C3, C4, C5) | 4.2 | 3.7 | 3.9 | -0.3 |
A17-RU | A17-RU - Autres activités de services | 0.8 | 0.7 | 0.4 | -0.4 |
A17-IZ | A17-IZ - Hébergement et restauration | 0.9 | 0.8 | 0.4 | -0.5 |
A17-JZ | A17-JZ - Information et communication | 2.2 | 1.9 | 1.6 | -0.6 |
A17-KZ | A17-KZ - Activités financières et d'assurance | 0.9 | 0.8 | 0.3 | -0.6 |
A17-MN | A17-MN - Activités scientifiques et techniques ; services administratifs et de soutien | 4.0 | 3.7 | 3.3 | -0.7 |
D-CNT | Ensemble des biens et services | 35.8 | 35.1 | 34.1 | -1.7 |
DS-CNT | Ensemble des services | 28.7 | 28.5 | 27.0 | -1.7 |
DSM-CNT | Tertiaire principalement marchand (GZ, HZ, IZ, JZ, KZ, LZ, MN, RU) | 22.7 | 22.1 | 21.0 | -1.7 |
SMNA-CNT | Ensemble principalement marchand non agricole | 30.1 | 29.2 | 28.0 | -2.1 |
Transports, Energie, Alimentation
All
Code
`CNT-2014-CB` %>%
filter(OPERATION %in% c("B2"),
#INDICATEUR == "CNT-COMPTE_EXPLOITATION_BRANCHES",
%in% c("A17-DE", "A17-HZ", "A17-C1", "A17-C2"),
CNA_PRODUIT %in% c("V", "SO")) %>%
VALORISATION select(OPERATION, CNA_PRODUIT, TIME_PERIOD, OBS_VALUE) %>%
%>%
quarter_to_date spread(OPERATION, OBS_VALUE) %>%
left_join(CNA_PRODUIT, by = "CNA_PRODUIT") %>%
left_join(gdp_quarterly, by = "date") %>%
+ geom_line(aes(x = date, y = B2/gdp, color = Cna_produit)) +
ggplot theme_minimal() +
xlab("") + ylab("Excédent brut d'exploitation (% du PIB)") +
theme(legend.position = c(0.5, 0.9),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-100, 500, 1),
labels = percent_format(accuracy = 1)) +
scale_x_date(breaks = seq(1920, 2100, 10) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y"))
2000-
Code
`CNT-2014-CB` %>%
filter(OPERATION %in% c("B2"),
#INDICATEUR == "CNT-COMPTE_EXPLOITATION_BRANCHES",
%in% c("A17-DE", "A17-HZ", "A17-C1", "A17-C2"),
CNA_PRODUIT %in% c("V", "SO")) %>%
VALORISATION select(OPERATION, CNA_PRODUIT, TIME_PERIOD, OBS_VALUE) %>%
%>%
quarter_to_date filter(date >= as.Date("2000-01-01")) %>%
spread(OPERATION, OBS_VALUE) %>%
left_join(CNA_PRODUIT, by = "CNA_PRODUIT") %>%
left_join(gdp_quarterly, by = "date") %>%
+ geom_line(aes(x = date, y = B2/gdp, color = Cna_produit)) +
ggplot theme_minimal() +
xlab("") + ylab("Excédent brut d'exploitation (% du PIB)") +
theme(legend.position = c(0.5, 0.9),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-100, 500, 1),
labels = percent_format(accuracy = 1)) +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y"))
Industrie
All
Code
`CNT-2014-CB` %>%
filter(OPERATION %in% c("B2"),
#INDICATEUR == "CNT-COMPTE_EXPLOITATION_BRANCHES",
%in% c("A17-C1", "A17-C2", "A17-C3", "A17-C4", "A17-C5"),
CNA_PRODUIT %in% c("V", "SO")) %>%
VALORISATION select(OPERATION, CNA_PRODUIT, TIME_PERIOD, OBS_VALUE) %>%
%>%
quarter_to_date spread(OPERATION, OBS_VALUE) %>%
left_join(CNA_PRODUIT, by = "CNA_PRODUIT") %>%
left_join(gdp_quarterly, by = "date") %>%
+ geom_line(aes(x = date, y = B2/gdp, color = Cna_produit)) +
ggplot theme_minimal() +
xlab("") + ylab("Excédent brut d'exploitation (% du PIB)") +
theme(legend.position = c(0.5, 0.7),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-100, 500, 2),
labels = percent_format(accuracy = 1)) +
scale_x_date(breaks = seq(1920, 2100, 10) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y"))
2000-
Code
`CNT-2014-CB` %>%
filter(OPERATION %in% c("B2"),
#INDICATEUR == "CNT-COMPTE_EXPLOITATION_BRANCHES",
%in% c("A17-C1", "A17-C2", "A17-C3", "A17-C4", "A17-C5"),
CNA_PRODUIT %in% c("V", "SO")) %>%
VALORISATION select(OPERATION, CNA_PRODUIT, TIME_PERIOD, OBS_VALUE) %>%
%>%
quarter_to_date filter(date >= as.Date("2000-01-01")) %>%
spread(OPERATION, OBS_VALUE) %>%
left_join(CNA_PRODUIT, by = "CNA_PRODUIT") %>%
left_join(gdp_quarterly, by = "date") %>%
+ geom_line(aes(x = date, y = B2/gdp, color = Cna_produit)) +
ggplot theme_minimal() +
xlab("") + ylab("Excédent brut d'exploitation (% du PIB)") +
theme(legend.position = c(0.5, 0.5),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-100, 500, 0.5),
labels = percent_format(accuracy = .1)) +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y"))
Grands ensembles
All
Code
`CNT-2014-CB` %>%
filter(OPERATION %in% c("B2"),
#INDICATEUR == "CNT-COMPTE_EXPLOITATION_BRANCHES",
%in% c("DI-CNT", "DIM-CNT", "DS-CNT", "DSM-CNT"),
CNA_PRODUIT %in% c("V", "SO")) %>%
VALORISATION select(OPERATION, CNA_PRODUIT, TIME_PERIOD, OBS_VALUE) %>%
%>%
quarter_to_date spread(OPERATION, OBS_VALUE) %>%
left_join(CNA_PRODUIT, by = "CNA_PRODUIT") %>%
left_join(gdp_quarterly, by = "date") %>%
+ geom_line(aes(x = date, y = B2/gdp, color = Cna_produit)) +
ggplot theme_minimal() +
xlab("") + ylab("Excédent brut d'exploitation (% du PIB)") +
theme(legend.position = c(0.5, 0.9),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-100, 500, 2),
labels = percent_format(accuracy = 1)) +
scale_x_date(breaks = seq(1920, 2100, 10) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y"))
2000-
Code
`CNT-2014-CB` %>%
filter(OPERATION %in% c("B2"),
#INDICATEUR == "CNT-COMPTE_EXPLOITATION_BRANCHES",
%in% c("DI-CNT", "DIM-CNT", "DS-CNT", "DSM-CNT"),
CNA_PRODUIT %in% c("V", "SO")) %>%
VALORISATION select(OPERATION, CNA_PRODUIT, TIME_PERIOD, OBS_VALUE) %>%
%>%
quarter_to_date filter(date >= as.Date("2000-01-01")) %>%
spread(OPERATION, OBS_VALUE) %>%
left_join(CNA_PRODUIT, by = "CNA_PRODUIT") %>%
left_join(gdp_quarterly, by = "date") %>%
+ geom_line(aes(x = date, y = B2/gdp, color = Cna_produit)) +
ggplot theme_minimal() +
xlab("") + ylab("Excédent brut d'exploitation (% du PIB)") +
theme(legend.position = c(0.5, 0.5),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-100, 500, 2),
labels = percent_format(accuracy = 1)) +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y"))
Excédent Brut / VA par branche
All
Code
`CNT-2014-CB` %>%
filter(TIME_PERIOD %in% c("2023-Q1", "2022-Q1")) %>%
filter(OPERATION %in% c("B2", "B1"),
#INDICATEUR == "CNT-COMPTE_EXPLOITATION_BRANCHES",
%in% c("V", "SO")) %>%
VALORISATION select(OPERATION, TIME_PERIOD, CNA_PRODUIT, OBS_VALUE) %>%
spread(OPERATION, OBS_VALUE) %>%
mutate(B2_B1 = round(100*B2/B1, 1)) %>%
left_join(CNA_PRODUIT, by = "CNA_PRODUIT") %>%
select(Cna_produit, TIME_PERIOD, B2_B1) %>%
spread(TIME_PERIOD, B2_B1) %>%
mutate(change = `2023-Q1` - `2022-Q1`) %>%
arrange(change) %>%
print_table_conditional()
Cna_produit | 2022-Q1 | 2023-Q1 | change |
---|---|---|---|
A17-IZ - Hébergement et restauration | 27.2 | 15.2 | -12.0 |
A17-KZ - Activités financières et d'assurance | 17.3 | 9.7 | -7.6 |
A17-HZ - Transports et entreposage | 43.4 | 36.6 | -6.8 |
A17-RU - Autres activités de services | 23.5 | 17.1 | -6.4 |
A17-OQ - Administration publique, enseignement, santé humaine et action sociale | 23.4 | 21.2 | -2.2 |
Tertiaire principalement non marchand (OQ) | 23.4 | 21.2 | -2.2 |
A17-JZ - Information et communication | 34.1 | 32.5 | -1.6 |
Ensemble des services | 36.4 | 35.3 | -1.1 |
Tertiaire principalement marchand (GZ, HZ, IZ, JZ, KZ, LZ, MN, RU) | 42.1 | 41.0 | -1.1 |
A17-AZ - Agriculture, sylviculture et pêche | 92.7 | 92.5 | -0.2 |
A17-MN - Activités scientifiques et techniques ; services administratifs et de soutien | 26.2 | 26.0 | -0.2 |
A17-GZ - Commerce ; réparation d'automobiles et de motocycles | 35.5 | 35.5 | 0.0 |
Ensemble des biens et services | 38.0 | 38.3 | 0.3 |
Ensemble principalement marchand non agricole | 40.9 | 41.6 | 0.7 |
A17-C2 - Cokéfaction et raffinage | 88.3 | 89.2 | 0.9 |
A17-C5 - Fabrication d'autres produits industriels | 34.1 | 35.1 | 1.0 |
A17-LZ - Activités immobilières | 83.0 | 84.3 | 1.3 |
A17-FZ - Construction | 31.4 | 33.9 | 2.5 |
Industrie manufacturière (C1, C2, C3, C4, C5) | 33.5 | 39.8 | 6.3 |
A17-DE - Industries extractives, énergie, eau, gestion des déchets et dépollution | 62.7 | 69.7 | 7.0 |
A17-C3 - Fabrication d'équipements électriques, électroniques, informatiques ; fabrication de machines | 30.1 | 37.2 | 7.1 |
Industrie (DE, C1, C2, C3, C4, C5) | 40.0 | 47.2 | 7.2 |
A17-C4 - Fabrication de matériels de transport | 21.1 | 33.6 | 12.5 |
A17-C1 - Fabrication de denrées alimentaires, de boissons et de produits à base de tabac | 29.1 | 47.9 | 18.8 |
Total VS Energie
Tous
Code
`CNT-2014-CB` %>%
filter(OPERATION %in% c("B2", "B1"),
#INDICATEUR == "CNT-COMPTE_EXPLOITATION_BRANCHES",
%in% c("A17-DE", "D-CNT"),
CNA_PRODUIT %in% c("V", "SO")) %>%
VALORISATION select(OPERATION, CNA_PRODUIT, TIME_PERIOD, OBS_VALUE) %>%
%>%
quarter_to_date spread(OPERATION, OBS_VALUE) %>%
mutate(profit_share = B2/B1) %>%
left_join(CNA_PRODUIT, by = "CNA_PRODUIT") %>%
#filter(date >= as.Date("1990-01-01")) %>%
+ geom_line(aes(x = date, y = B2/B1, color = Cna_produit)) +
ggplot scale_color_manual(values = c("brown", "black")) +
theme_minimal() +
xlab("") + ylab("Taux de marge (% de la VA)") +
theme(legend.position = c(0.4, 0.3),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-100, 500, 5),
labels = percent_format(accuracy = 1)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
labs(title = "Taux de marge (en % de la Valeur Ajoutée)",
caption = "Source: INSEE, Comptes Trimestriels")
1990-
Code
`CNT-2014-CB` %>%
filter(OPERATION %in% c("B2", "B1"),
#INDICATEUR == "CNT-COMPTE_EXPLOITATION_BRANCHES",
%in% c("A17-DE", "D-CNT"),
CNA_PRODUIT %in% c("V", "SO")) %>%
VALORISATION select(OPERATION, CNA_PRODUIT, TIME_PERIOD, OBS_VALUE) %>%
%>%
quarter_to_date spread(OPERATION, OBS_VALUE) %>%
mutate(profit_share = B2/B1) %>%
left_join(CNA_PRODUIT, by = "CNA_PRODUIT") %>%
filter(date >= as.Date("1990-01-01")) %>%
+ geom_line(aes(x = date, y = B2/B1, color = Cna_produit)) +
ggplot scale_color_manual(values = c("brown", "black")) +
theme_minimal() +
xlab("") + ylab("Taux de marge (% de la VA)") +
theme(legend.position = c(0.4, 0.3),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-100, 500, 5),
labels = percent_format(accuracy = 1)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
labs(title = "Taux de marge (en % de la Valeur Ajoutée)",
caption = "Source: INSEE, Comptes Trimestriels")
Total VS Energie VS Total Hors Energie
Tous
Code
`CNT-2014-CB` %>%
filter(OPERATION %in% c("B2", "B1"),
#INDICATEUR == "CNT-COMPTE_EXPLOITATION_BRANCHES",
%in% c("A17-DE", "D-CNT"),
CNA_PRODUIT %in% c("V", "SO")) %>%
VALORISATION select(OPERATION, CNA_PRODUIT, TIME_PERIOD, OBS_VALUE) %>%
%>%
quarter_to_date spread(CNA_PRODUIT, OBS_VALUE) %>%
mutate(`D-CNT-A17-DE` = `D-CNT` - `A17-DE`) %>%
select(-`A17-DE`) %>%
gather(CNA_PRODUIT, OBS_VALUE, -date, -OPERATION) %>%
spread(OPERATION, OBS_VALUE) %>%
mutate(profit_share = B2/B1) %>%
left_join(CNA_PRODUIT, by = "CNA_PRODUIT") %>%
mutate(Cna_produit = ifelse(CNA_PRODUIT == "D-CNT-A17-DE", "Ensemble des biens et services, sans le secteur énergétique", Cna_produit)) %>%
#filter(date >= as.Date("1990-01-01")) %>%
+ geom_line(aes(x = date, y = B2/B1, color = Cna_produit)) +
ggplot theme_minimal() +
xlab("") + ylab("Taux de marge (% de la VA)") +
theme(legend.position = c(0.6, 0.8),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-100, 500, 1),
labels = percent_format(accuracy = 1)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
labs(title = "Taux de marge (en % de la Valeur Ajoutée)",
caption = "Source: INSEE, Comptes Trimestriels")
1970-
Code
`CNT-2014-CB` %>%
filter(OPERATION %in% c("B2", "B1"),
#INDICATEUR == "CNT-COMPTE_EXPLOITATION_BRANCHES",
%in% c("A17-DE", "D-CNT"),
CNA_PRODUIT %in% c("V", "SO")) %>%
VALORISATION select(OPERATION, CNA_PRODUIT, TIME_PERIOD, OBS_VALUE) %>%
%>%
quarter_to_date spread(CNA_PRODUIT, OBS_VALUE) %>%
mutate(`D-CNT-A17-DE` = `D-CNT` - `A17-DE`) %>%
select(-`A17-DE`) %>%
gather(CNA_PRODUIT, OBS_VALUE, -date, -OPERATION) %>%
spread(OPERATION, OBS_VALUE) %>%
mutate(profit_share = B2/B1) %>%
left_join(CNA_PRODUIT, by = "CNA_PRODUIT") %>%
mutate(Cna_produit = ifelse(CNA_PRODUIT == "D-CNT-A17-DE", "Ensemble des biens et services, sans le secteur énergétique", Cna_produit)) %>%
filter(date >= as.Date("1970-01-01")) %>%
+ geom_line(aes(x = date, y = B2/B1, color = Cna_produit)) +
ggplot theme_minimal() +
xlab("") + ylab("Taux de marge (% de la VA)") +
theme(legend.position = c(0.65, 0.2),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-100, 500, 1),
labels = percent_format(accuracy = 1)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
labs(title = "Taux de marge (en % de la Valeur Ajoutée)",
caption = "Source: INSEE, Comptes Trimestriels")
1990-
Code
`CNT-2014-CB` %>%
filter(OPERATION %in% c("B2", "B1"),
#INDICATEUR == "CNT-COMPTE_EXPLOITATION_BRANCHES",
%in% c("A17-DE", "D-CNT"),
CNA_PRODUIT %in% c("V", "SO")) %>%
VALORISATION select(OPERATION, CNA_PRODUIT, TIME_PERIOD, OBS_VALUE) %>%
%>%
quarter_to_date spread(CNA_PRODUIT, OBS_VALUE) %>%
mutate(`D-CNT-A17-DE` = `D-CNT` - `A17-DE`) %>%
select(-`A17-DE`) %>%
gather(CNA_PRODUIT, OBS_VALUE, -date, -OPERATION) %>%
spread(OPERATION, OBS_VALUE) %>%
mutate(profit_share = B2/B1) %>%
left_join(CNA_PRODUIT, by = "CNA_PRODUIT") %>%
mutate(Cna_produit = ifelse(CNA_PRODUIT == "D-CNT-A17-DE", "Ensemble des biens et services, sans le secteur énergétique", Cna_produit)) %>%
filter(date >= as.Date("1990-01-01")) %>%
+ geom_line(aes(x = date, y = B2/B1, color = Cna_produit)) +
ggplot theme_minimal() +
xlab("") + ylab("Taux de marge (% de la VA)") +
theme(legend.position = c(0.3, 0.2),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-100, 500, 1),
labels = percent_format(accuracy = 1)) +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
labs(title = "Taux de marge (en % de la Valeur Ajoutée)",
caption = "Source: INSEE, Comptes Trimestriels")
2010-
Code
`CNT-2014-CB` %>%
filter(OPERATION %in% c("B2", "B1"),
#INDICATEUR == "CNT-COMPTE_EXPLOITATION_BRANCHES",
%in% c("A17-DE", "D-CNT"),
CNA_PRODUIT %in% c("V", "SO")) %>%
VALORISATION select(OPERATION, CNA_PRODUIT, TIME_PERIOD, OBS_VALUE) %>%
%>%
quarter_to_date spread(CNA_PRODUIT, OBS_VALUE) %>%
mutate(`D-CNT-A17-DE` = `D-CNT` - `A17-DE`) %>%
select(-`A17-DE`) %>%
gather(CNA_PRODUIT, OBS_VALUE, -date, -OPERATION) %>%
spread(OPERATION, OBS_VALUE) %>%
mutate(profit_share = B2/B1) %>%
left_join(CNA_PRODUIT, by = "CNA_PRODUIT") %>%
mutate(Cna_produit = ifelse(CNA_PRODUIT == "D-CNT-A17-DE", "Ensemble des biens et services, sans le secteur énergétique", Cna_produit)) %>%
filter(date >= as.Date("2010-01-01")) %>%
+ geom_line(aes(x = date, y = B2/B1, color = Cna_produit)) +
ggplot theme_minimal() +
xlab("") + ylab("Taux de marge (% de la VA)") +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-100, 500, 1),
labels = percent_format(accuracy = 1)) +
scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
labs(title = "Taux de marge (en % de la Valeur Ajoutée)",
caption = "Source: INSEE, Comptes Trimestriels")
Total VS Energie VS Agro-Alimentaire
Tous
% de la branche
Code
`CNT-2014-CB` %>%
filter(OPERATION %in% c("B2", "B1"),
#INDICATEUR == "CNT-COMPTE_EXPLOITATION_BRANCHES",
%in% c("A17-DE", "D-CNT", "A17-C1"),
CNA_PRODUIT %in% c("V", "SO")) %>%
VALORISATION select(OPERATION, CNA_PRODUIT, TIME_PERIOD, OBS_VALUE) %>%
%>%
quarter_to_date spread(OPERATION, OBS_VALUE) %>%
mutate(profit_share = B2/B1) %>%
left_join(CNA_PRODUIT, by = "CNA_PRODUIT") %>%
filter(date >= as.Date("1990-01-01")) %>%
+ geom_line(aes(x = date, y = B2/B1, color = Cna_produit)) +
ggplot scale_color_manual(values = c("forestgreen", "brown", "black")) +
theme_minimal() +
xlab("") + ylab("Taux de marge (% de la VA)") +
theme(legend.position = c(0.5, 0.2),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-100, 500, 5),
labels = percent_format(accuracy = 1),
limits = c(0, 0.85)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
labs(title = "Taux de marge (en % de la Valeur Ajoutée)",
caption = "Source: INSEE, Comptes Trimestriels")
% de la VA
Code
`CNT-2014-CB` %>%
filter(OPERATION %in% c("B1", "B2"),
#INDICATEUR == "CNT-COMPTE_EXPLOITATION_BRANCHES",
%in% c("A17-DE", "A17-C1"),
CNA_PRODUIT %in% c("V", "SO")) %>%
VALORISATION select(OPERATION, CNA_PRODUIT, TIME_PERIOD, OBS_VALUE) %>%
%>%
quarter_to_date spread(OPERATION, OBS_VALUE) %>%
mutate(profit_share = B2/B1) %>%
left_join(CNA_PRODUIT, by = "CNA_PRODUIT") %>%
left_join(gdp_quarterly, by = "date") %>%
+ geom_line(aes(x = date, y = B2/gdp, color = Cna_produit)) +
ggplot theme_minimal() +
xlab("") + ylab("Excédent brut d'Exploitation (% du PIB)") +
theme(legend.position = c(0.5, 0.9),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-100, 500, 0.5),
labels = percent_format(accuracy = .1)) +
scale_x_date(breaks = seq(1920, 2100, 10) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y"))
% de la VA
Code
`CNT-2014-CB` %>%
filter(OPERATION %in% c("B1", "B2"),
#INDICATEUR == "CNT-COMPTE_EXPLOITATION_BRANCHES",
%in% c("A17-DE"),
CNA_PRODUIT %in% c("V", "SO")) %>%
VALORISATION select(OPERATION, CNA_PRODUIT, TIME_PERIOD, OBS_VALUE) %>%
%>%
quarter_to_date spread(OPERATION, OBS_VALUE) %>%
left_join(CNA_PRODUIT, by = "CNA_PRODUIT") %>%
left_join(gdp_quarterly, by = "date") %>%
+ geom_line(aes(x = date, y = B2/gdp)) +
ggplot theme_minimal() +
xlab("") + ylab("Excédent brut d'Exploitation (% du PIB)") +
theme(legend.position = c(0.5, 0.9),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-100, 500, 0.5),
labels = percent_format(accuracy = .1)) +
scale_x_date(breaks = seq(1920, 2100, 10) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y"))
2010-
% of B1 de la branche
avec 0
Code
`CNT-2014-CB` %>%
filter(OPERATION %in% c("B2", "B1"),
#INDICATEUR == "CNT-COMPTE_EXPLOITATION_BRANCHES",
%in% c("A17-DE", "D-CNT", "A17-C1"),
CNA_PRODUIT %in% c("V", "SO")) %>%
VALORISATION select(OPERATION, CNA_PRODUIT, TIME_PERIOD, OBS_VALUE) %>%
%>%
quarter_to_date spread(OPERATION, OBS_VALUE) %>%
mutate(profit_share = B2/B1) %>%
left_join(CNA_PRODUIT, by = "CNA_PRODUIT") %>%
filter(date >= as.Date("2010-01-01")) %>%
+ geom_line(aes(x = date, y = B2/B1, color = Cna_produit)) +
ggplot scale_color_manual(values = c("forestgreen", "brown", "black")) +
theme_minimal() +
xlab("") + ylab("Taux de marge (% de la VA)") +
theme(legend.position = c(0.5, 0.2),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-100, 500, 5),
labels = percent_format(accuracy = 1),
limits = c(0, 0.75)) +
scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
labs(title = "Taux de marge (en % de la Valeur Ajoutée)",
caption = "Source: INSEE, Comptes Trimestriels")
sans 0
Code
`CNT-2014-CB` %>%
filter(OPERATION %in% c("B2", "B1"),
#INDICATEUR == "CNT-COMPTE_EXPLOITATION_BRANCHES",
%in% c("A17-DE", "D-CNT", "A17-C1"),
CNA_PRODUIT %in% c("V", "SO")) %>%
VALORISATION select(OPERATION, CNA_PRODUIT, TIME_PERIOD, OBS_VALUE) %>%
%>%
quarter_to_date spread(OPERATION, OBS_VALUE) %>%
mutate(profit_share = B2/B1) %>%
left_join(CNA_PRODUIT, by = "CNA_PRODUIT") %>%
filter(date >= as.Date("2010-01-01")) %>%
arrange(desc(date)) %>%
+ geom_line(aes(x = date, y = B2/B1, color = Cna_produit)) +
ggplot scale_color_manual(values = c("forestgreen", "brown", "black")) +
theme_minimal() +
xlab("") + ylab("Taux de marge (% de la VA)") +
theme(legend.position = c(0.5, 0.8),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-100, 500, 5),
labels = percent_format(accuracy = 1)) +
scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
labs(title = "Taux de marge (en % de la Valeur Ajoutée)",
caption = "Source: INSEE, Comptes Trimestriels") +
geom_text(data = . %>%
filter(date == as.Date("2023-10-01")), aes(x = date, y = B2/B1, label = percent(B2/B1)))
% de la production (définition finance entreprise)
Code
`CNT-2014-CB` %>%
filter(OPERATION %in% c("B2", "P1E"),
#INDICATEUR == "CNT-COMPTE_EXPLOITATION_BRANCHES",
%in% c("A17-DE", "D-CNT", "A17-C1"),
CNA_PRODUIT %in% c("V", "SO")) %>%
VALORISATION select(OPERATION, CNA_PRODUIT, TIME_PERIOD, OBS_VALUE) %>%
%>%
quarter_to_date spread(OPERATION, OBS_VALUE) %>%
mutate(profit_share = B2/P1E) %>%
left_join(CNA_PRODUIT, by = "CNA_PRODUIT") %>%
filter(date >= as.Date("2010-01-01")) %>%
arrange(desc(date)) %>%
+ geom_line(aes(x = date, y = B2/P1E, color = Cna_produit)) +
ggplot scale_color_manual(values = c("forestgreen", "brown", "black")) +
theme_minimal() +
xlab("") + ylab("Taux de marge (% de la production)") +
theme(legend.position = c(0.5, 0.8),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-100, 500, 2),
labels = percent_format(accuracy = 1)) +
scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
labs(title = "Taux de marge (en % de la Production)",
caption = "Source: INSEE, Comptes Trimestriels") +
geom_text(data = . %>%
filter(date == as.Date("2023-10-01")), aes(x = date, y = B2/P1E, label = percent(B2/P1E)))
sans 0
Code
`CNT-2014-CB` %>%
filter(OPERATION %in% c("B2", "B1"),
#INDICATEUR == "CNT-COMPTE_EXPLOITATION_BRANCHES",
%in% c("A17-DE", "D-CNT", "A17-C1"),
CNA_PRODUIT %in% c("V", "SO")) %>%
VALORISATION select(OPERATION, CNA_PRODUIT, TIME_PERIOD, OBS_VALUE) %>%
%>%
quarter_to_date spread(OPERATION, OBS_VALUE) %>%
mutate(profit_share = B2/B1) %>%
left_join(CNA_PRODUIT, by = "CNA_PRODUIT") %>%
filter(date >= as.Date("2017-01-01")) %>%
arrange(desc(date)) %>%
+ geom_line(aes(x = date, y = B2/B1, color = Cna_produit)) +
ggplot scale_color_manual(values = c("forestgreen", "brown", "black")) +
theme_minimal() +
xlab("") + ylab("Taux de marge (% de la VA)") +
theme(legend.position = c(0.45, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-100, 500, 5),
labels = percent_format(accuracy = 1)) +
scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
labs(title = "Taux de marge (en % de la Valeur Ajoutée)",
caption = "Source: INSEE, Comptes Trimestriels") +
geom_text(data = . %>%
filter(date == as.Date("2023-10-01")), aes(x = date, y = B2/B1, label = percent(B2/B1)))
% of B1 de la branche
Code
`CNT-2014-CB` %>%
filter(OPERATION %in% c("B2", "B1"),
#INDICATEUR == "CNT-COMPTE_EXPLOITATION_BRANCHES",
%in% c( "D-CNT", "A17-C1"),
CNA_PRODUIT %in% c("V", "SO")) %>%
VALORISATION select(OPERATION, CNA_PRODUIT, TIME_PERIOD, OBS_VALUE) %>%
%>%
quarter_to_date spread(OPERATION, OBS_VALUE) %>%
mutate(profit_share = B2/B1) %>%
left_join(CNA_PRODUIT, by = "CNA_PRODUIT") %>%
filter(date >= as.Date("2010-01-01")) %>%
+ geom_line(aes(x = date, y = B2/B1, color = Cna_produit)) +
ggplot scale_color_manual(values = c("forestgreen", "black")) +
theme_minimal() +
xlab("") + ylab("Taux de marge (% de la VA)") +
theme(legend.position = c(0.5, 0.2),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-100, 500, 2),
labels = percent_format(accuracy = 1)) +
scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
labs(title = "Taux de marge (en % de la Valeur Ajoutée)",
caption = "Source: INSEE, Comptes Trimestriels") +
geom_text(data = . %>%
filter(date == as.Date("2023-10-01")), aes(x = date, y = B2/B1, label = percent(B2/B1), color = Cna_produit))
Avec les biens et services
Code
`CNT-2014-CB` %>%
filter(OPERATION %in% c("B2", "B1"),
#INDICATEUR == "CNT-COMPTE_EXPLOITATION_BRANCHES",
%in% c( "D-CNT", "A17-C1", "A17-GZ"),
CNA_PRODUIT %in% c("V", "SO")) %>%
VALORISATION select(OPERATION, CNA_PRODUIT, TIME_PERIOD, OBS_VALUE) %>%
%>%
quarter_to_date spread(OPERATION, OBS_VALUE) %>%
mutate(profit_share = B2/B1) %>%
left_join(CNA_PRODUIT, by = "CNA_PRODUIT") %>%
filter(date >= as.Date("2010-01-01")) %>%
+ geom_line(aes(x = date, y = B2/B1, color = Cna_produit, linetype = Cna_produit)) +
ggplot scale_color_manual(values = c("forestgreen", "brown", "black")) +
theme_minimal() +
xlab("") + ylab("Taux de marge (% de la VA)") +
theme(legend.position = c(0.5, 0.9),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-100, 500, 2),
labels = percent_format(accuracy = 1)) +
scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
labs(title = "Taux de marge (en % de la Valeur Ajoutée)",
caption = "Source: INSEE, Comptes Trimestriels du 1er trimestre 2023")
% de la VA
Code
`CNT-2014-CB` %>%
filter(OPERATION %in% c("B1", "B2"),
#INDICATEUR == "CNT-COMPTE_EXPLOITATION_BRANCHES",
%in% c("A17-DE", "A17-C1"),
CNA_PRODUIT %in% c("V", "SO")) %>%
VALORISATION select(OPERATION, CNA_PRODUIT, TIME_PERIOD, OBS_VALUE) %>%
%>%
quarter_to_date spread(OPERATION, OBS_VALUE) %>%
mutate(profit_share = B2/B1) %>%
left_join(CNA_PRODUIT, by = "CNA_PRODUIT") %>%
filter(date >= as.Date("2010-01-01")) %>%
left_join(gdp_quarterly, by = "date") %>%
+ geom_line(aes(x = date, y = B2/gdp, color = Cna_produit)) +
ggplot scale_color_manual(values = c("forestgreen", "brown", "black")) +
theme_minimal() +
xlab("") + ylab("Taux de marge (% de la VA)") +
theme(legend.position = c(0.5, 0.2),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-100, 500, 5),
labels = percent_format(accuracy = 1)) +
scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
labs(title = "Taux de marge (en % de la Valeur Ajoutée)",
caption = "Source: INSEE, Comptes Trimestriels")
Total VS Raffinerie
Code
`CNT-2014-CB` %>%
filter(OPERATION %in% c("B2", "B1"),
#INDICATEUR == "CNT-COMPTE_EXPLOITATION_BRANCHES",
%in% c("A17-C2", "D-CNT"),
CNA_PRODUIT %in% c("V", "SO")) %>%
VALORISATION select(OPERATION, CNA_PRODUIT, TIME_PERIOD, OBS_VALUE) %>%
%>%
quarter_to_date spread(OPERATION, OBS_VALUE) %>%
mutate(profit_share = B2/B1) %>%
left_join(CNA_PRODUIT, by = "CNA_PRODUIT") %>%
filter(date >= as.Date("1990-01-01")) %>%
+ geom_line(aes(x = date, y = B2/B1, color = Cna_produit)) +
ggplot scale_color_manual(values = c("brown", "black")) +
theme_minimal() +
xlab("") + ylab("Taux de marge (% de la VA)") +
theme(legend.position = c(0.4, 0.3),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-100, 500, 5),
labels = percent_format(accuracy = 1),
limits = c(0, 0.75)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y"))
Total VS Services de Transport
Code
`CNT-2014-CB` %>%
filter(OPERATION %in% c("B2", "B1"),
#INDICATEUR == "CNT-COMPTE_EXPLOITATION_BRANCHES",
%in% c("A17-HZ", "D-CNT"),
CNA_PRODUIT %in% c("V", "SO")) %>%
VALORISATION select(OPERATION, CNA_PRODUIT, TIME_PERIOD, OBS_VALUE) %>%
%>%
quarter_to_date spread(OPERATION, OBS_VALUE) %>%
mutate(profit_share = B2/B1) %>%
left_join(CNA_PRODUIT, by = "CNA_PRODUIT") %>%
filter(date >= as.Date("1990-01-01")) %>%
+ geom_line(aes(x = date, y = B2/B1, color = Cna_produit)) +
ggplot scale_color_manual(values = c("brown", "black")) +
theme_minimal() +
xlab("") + ylab("Taux de marge (% de la VA)") +
theme(legend.position = c(0.4, 0.9),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-100, 500, 5),
labels = percent_format(accuracy = 1),
limits = c(0, 0.75)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y"))
Transports, Energie, Alimentation
Code
`CNT-2014-CB` %>%
filter(OPERATION %in% c("B1", "B2"),
#INDICATEUR == "CNT-COMPTE_EXPLOITATION_BRANCHES",
%in% c("A17-DE", "A17-HZ", "A17-C1"),
CNA_PRODUIT %in% c("V", "SO")) %>%
VALORISATION select(OPERATION, CNA_PRODUIT, TIME_PERIOD, OBS_VALUE) %>%
%>%
quarter_to_date spread(OPERATION, OBS_VALUE) %>%
mutate(profit_share = B2/B1) %>%
left_join(CNA_PRODUIT, by = "CNA_PRODUIT") %>%
left_join(gdp_quarterly, by = "date") %>%
+ geom_line(aes(x = date, y = B2/gdp, color = Cna_produit)) +
ggplot theme_minimal() +
xlab("") + ylab("Excédent brut d'exploitation (% du PIB)") +
theme(legend.position = c(0.5, 0.9),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-100, 500, 1),
labels = percent_format(accuracy = 1)) +
scale_x_date(breaks = seq(1920, 2100, 10) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y"))
Services: IZ, KZ, HZ, RU, JZ
All
Code
`CNT-2014-CB` %>%
filter(OPERATION %in% c("B2", "B1"),
#INDICATEUR == "CNT-COMPTE_EXPLOITATION_BRANCHES",
%in% c("A17-IZ", "A17-KZ", "A17-HZ", "A17-RU", "A17-JZ"),
CNA_PRODUIT %in% c("V", "SO")) %>%
VALORISATION select(OPERATION, CNA_PRODUIT, TIME_PERIOD, OBS_VALUE) %>%
%>%
quarter_to_date spread(OPERATION, OBS_VALUE) %>%
mutate(profit_share = B2/B1) %>%
left_join(CNA_PRODUIT, by = "CNA_PRODUIT") %>%
+ geom_line(aes(x = date, y = B2/B1, color = Cna_produit)) +
ggplot theme_minimal() +
xlab("") + ylab("") +
theme(legend.position = c(0.5, 0.8),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-100, 500, 10),
labels = percent_format(accuracy = 1)) +
scale_x_date(breaks = seq(1920, 2100, 10) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y"))
2010-
Code
`CNT-2014-CB` %>%
filter(OPERATION %in% c("B2", "B1"),
#INDICATEUR == "CNT-COMPTE_EXPLOITATION_BRANCHES",
%in% c("A17-IZ", "A17-KZ", "A17-HZ", "A17-RU", "A17-JZ"),
CNA_PRODUIT %in% c("V", "SO")) %>%
VALORISATION select(OPERATION, CNA_PRODUIT, TIME_PERIOD, OBS_VALUE) %>%
%>%
quarter_to_date filter(date >= as.Date("2010-01-01")) %>%
spread(OPERATION, OBS_VALUE) %>%
mutate(profit_share = B2/B1) %>%
left_join(CNA_PRODUIT, by = "CNA_PRODUIT") %>%
+ geom_line(aes(x = date, y = B2/B1, color = Cna_produit)) +
ggplot theme_minimal() +
xlab("") + ylab("") +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-100, 500, 10),
labels = percent_format(accuracy = 1)) +
scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y"))
DE, AZ, C1
Code
`CNT-2014-CB` %>%
filter(OPERATION %in% c("B2", "B1"),
#INDICATEUR == "CNT-COMPTE_EXPLOITATION_BRANCHES",
%in% c("A17-DE", "A17-AZ", "A17-C1"),
CNA_PRODUIT %in% c("V", "SO")) %>%
VALORISATION select(OPERATION, CNA_PRODUIT, TIME_PERIOD, OBS_VALUE) %>%
%>%
quarter_to_date spread(OPERATION, OBS_VALUE) %>%
mutate(profit_share = B2/B1) %>%
left_join(CNA_PRODUIT, by = "CNA_PRODUIT") %>%
+ geom_line(aes(x = date, y = B2/B1, color = Cna_produit)) +
ggplot theme_minimal() +
xlab("") + ylab("") +
theme(legend.position = c(0.5, 0.2),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-100, 500, 10),
labels = percent_format(accuracy = 1)) +
scale_x_date(breaks = seq(1920, 2100, 10) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y"))
C2, C3, C5
All
Code
`CNT-2014-CB` %>%
filter(OPERATION %in% c("B2", "B1"),
#INDICATEUR == "CNT-COMPTE_EXPLOITATION_BRANCHES",
%in% c("A17-C5", "A17-C3", "A17-C4"),
CNA_PRODUIT %in% c("V", "SO")) %>%
VALORISATION select(OPERATION, CNA_PRODUIT, TIME_PERIOD, OBS_VALUE) %>%
%>%
quarter_to_date spread(OPERATION, OBS_VALUE) %>%
mutate(profit_share = B2/B1) %>%
left_join(CNA_PRODUIT, by = "CNA_PRODUIT") %>%
+ geom_line(aes(x = date, y = B2/B1, color = Cna_produit)) +
ggplot theme_minimal() +
xlab("") + ylab("") +
theme(legend.position = c(0.5, 0.2),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-100, 500, 10),
labels = percent_format(accuracy = 1)) +
scale_x_date(breaks = seq(1920, 2100, 10) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y"))
2010-
Code
`CNT-2014-CB` %>%
filter(OPERATION %in% c("B2", "B1"),
#INDICATEUR == "CNT-COMPTE_EXPLOITATION_BRANCHES",
%in% c("A17-C5", "A17-C3", "A17-C4"),
CNA_PRODUIT %in% c("V", "SO")) %>%
VALORISATION select(OPERATION, CNA_PRODUIT, TIME_PERIOD, OBS_VALUE) %>%
%>%
quarter_to_date filter(date >= as.Date("2010-01-01")) %>%
spread(OPERATION, OBS_VALUE) %>%
mutate(profit_share = B2/B1) %>%
left_join(CNA_PRODUIT, by = "CNA_PRODUIT") %>%
+ geom_line(aes(x = date, y = B2/B1, color = Cna_produit)) +
ggplot theme_minimal() +
xlab("") + ylab("") +
theme(legend.position = c(0.5, 0.2),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-100, 500, 10),
labels = percent_format(accuracy = 1)) +
scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y"))
DI-CNT, DIM-CNT, DS-CNT
All
Code
`CNT-2014-CB` %>%
filter(OPERATION %in% c("B2", "B1"),
#INDICATEUR == "CNT-COMPTE_EXPLOITATION_BRANCHES",
%in% c("DI-CNT", "DIM-CNT", "DS-CNT"),
CNA_PRODUIT %in% c("V", "SO")) %>%
VALORISATION select(OPERATION, CNA_PRODUIT, TIME_PERIOD, OBS_VALUE) %>%
%>%
quarter_to_date spread(OPERATION, OBS_VALUE) %>%
mutate(profit_share = B2/B1) %>%
left_join(CNA_PRODUIT, by = "CNA_PRODUIT") %>%
+ geom_line(aes(x = date, y = B2/B1, color = Cna_produit)) +
ggplot theme_minimal() +
xlab("") + ylab("") +
theme(legend.position = c(0.6, 0.8),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-100, 500, 5),
labels = percent_format(accuracy = 1)) +
scale_x_date(breaks = seq(1920, 2100, 10) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y"))
2010-
Code
`CNT-2014-CB` %>%
filter(OPERATION %in% c("B2", "B1"),
#INDICATEUR == "CNT-COMPTE_EXPLOITATION_BRANCHES",
%in% c("DI-CNT", "DIM-CNT", "DS-CNT"),
CNA_PRODUIT %in% c("V", "SO")) %>%
VALORISATION select(OPERATION, CNA_PRODUIT, TIME_PERIOD, OBS_VALUE) %>%
%>%
quarter_to_date filter(date >= as.Date("2010-01-01")) %>%
spread(OPERATION, OBS_VALUE) %>%
mutate(profit_share = B2/B1) %>%
left_join(CNA_PRODUIT, by = "CNA_PRODUIT") %>%
+ geom_line(aes(x = date, y = B2/B1, color = Cna_produit)) +
ggplot theme_minimal() +
xlab("") + ylab("") +
theme(legend.position = c(0.6, 0.8),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-100, 500, 1),
labels = percent_format(accuracy = 1)) +
scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y"))
C1, C2, C3, C4, C5
2017T2-
Code
`CNT-2014-CB` %>%
filter(CNA_PRODUIT %in% c("A17-C1", "A17-C2", "A17-C3", "A17-C4", "A17-C5"),
== "B1",
OPERATION == "L") %>%
VALORISATION select_if(~ n_distinct(.) > 1) %>%
%>%
quarter_to_date left_join(CNA_PRODUIT, by = "CNA_PRODUIT") %>%
filter(date >= as.Date("2017-04-01")) %>%
group_by(CNA_PRODUIT) %>%
mutate(OBS_VALUE = 100*OBS_VALUE / OBS_VALUE[date == as.Date("2017-04-01")]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = Cna_produit)) +
ggplot xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("2017-04-01"), to = as.Date("2023-10-01"), by = "6 months"),
labels = date_format("%b %y")) +
scale_y_log10(breaks = seq(0, 400, 20)) +
theme(legend.position = c(0.5, 0.8),
legend.title = element_blank())
2019T4-
Code
`CNT-2014-CB` %>%
filter(CNA_PRODUIT %in% c("A17-C1", "A17-C2", "A17-C3", "A17-C4", "A17-C5"),
== "B1",
OPERATION == "L") %>%
VALORISATION select_if(~ n_distinct(.) > 1) %>%
%>%
quarter_to_date left_join(CNA_PRODUIT, by = "CNA_PRODUIT") %>%
filter(date >= as.Date("2019-10-01")) %>%
group_by(CNA_PRODUIT) %>%
mutate(OBS_VALUE = 100*OBS_VALUE / OBS_VALUE[date == as.Date("2019-10-01")]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = Cna_produit)) +
ggplot xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("2019-10-01"), to = as.Date("2023-10-01"), by = "quarter"),
labels = date_format("%b %y")) +
scale_y_log10(breaks = seq(0, 400, 20)) +
theme(legend.position = c(0.5, 0.8),
legend.title = element_blank())
Volume des Branches: Services Non Marchands, Marchands, Industrie
2011T1-
Code
`CNT-2014-CB` %>%
filter(CNA_PRODUIT %in% c("DSN-CNT", "DSM-CNT", "DIM-CNT", "A17-FZ"),
== "B1",
OPERATION == "L") %>%
VALORISATION select_if(~ n_distinct(.) > 1) %>%
%>%
quarter_to_date left_join(CNA_PRODUIT, by = "CNA_PRODUIT") %>%
filter(date >= as.Date("2011-01-01")) %>%
group_by(CNA_PRODUIT) %>%
mutate(OBS_VALUE = 100*OBS_VALUE / OBS_VALUE[date == as.Date("2017-04-01")]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = Cna_produit)) +
ggplot xlab("") + ylab("Emploi Trimestriel (100 = 2017T2)") + theme_minimal() +
scale_x_date(breaks = seq(1960, 2023, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 120, 2)) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank())
2017T2-
Code
`CNT-2014-CB` %>%
filter(CNA_PRODUIT %in% c("DSN-CNT", "DSM-CNT", "DIM-CNT", "A17-FZ"),
== "B1",
OPERATION == "L") %>%
VALORISATION select_if(~ n_distinct(.) > 1) %>%
%>%
quarter_to_date left_join(CNA_PRODUIT, by = "CNA_PRODUIT") %>%
filter(date >= as.Date("2017-04-01")) %>%
group_by(CNA_PRODUIT) %>%
mutate(OBS_VALUE = 100*OBS_VALUE / OBS_VALUE[date == as.Date("2017-04-01")]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = Cna_produit)) +
ggplot xlab("") + ylab("Emploi Trimestriel (100 = 2017T2)") + theme_minimal() +
scale_x_date(breaks = seq(1960, 2023, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 120, 2)) +
theme(legend.position = c(0.32, 0.2),
legend.title = element_blank())
2019T4-
Code
`CNT-2014-CB` %>%
filter(CNA_PRODUIT %in% c("DSN-CNT", "DSM-CNT", "DIM-CNT", "A17-FZ"),
== "B1",
OPERATION == "L") %>%
VALORISATION select_if(~ n_distinct(.) > 1) %>%
%>%
quarter_to_date left_join(CNA_PRODUIT, by = "CNA_PRODUIT") %>%
filter(date >= as.Date("2019-10-01")) %>%
arrange(date) %>%
group_by(CNA_PRODUIT) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == as.Date("2019-10-01")]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = Cna_produit)) +
ggplot xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("2019-10-01"), to = as.Date("2023-10-01"), by = "quarter"),
labels = date_format("%b %y")) +
scale_y_log10(breaks = seq(0, 120, 5)) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank())
Valeur VS Volume
C1 - Fabrication de denrées alimentaires, de boissons et de produits à base de tabac
Code
`CNT-2014-CB` %>%
filter(INDICATEUR == "CNT-COMPTE_PRODUCTION_BRANCHES",
== "A17-C1",
CNA_PRODUIT == "B1") %>%
OPERATION select(VALORISATION, OBS_VALUE, TIME_PERIOD) %>%
%>%
quarter_to_date left_join(VALORISATION, by = "VALORISATION") %>%
ggplot() + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/10^3, color = Valorisation, linetype = Valorisation)) +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.position = c(0.5, 0.2),
legend.title = element_blank()) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
scale_y_log10(breaks = c(0.1, 0.2, 0.3, 0.5, 0.8, 1, 2, 3, 5, 10, 20, 50),
labels = dollar_format(accuracy = 0.1, prefix = "", suffix = "M"))
C2 - Cokéfaction et raffinage
Code
`CNT-2014-CB` %>%
filter(INDICATEUR == "CNT-COMPTE_PRODUCTION_BRANCHES",
== "A17-C2",
CNA_PRODUIT == "B1") %>%
OPERATION select(VALORISATION, OBS_VALUE, TIME_PERIOD) %>%
%>%
quarter_to_date left_join(VALORISATION, by = "VALORISATION") %>%
ggplot() + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/10^3, color = Valorisation, linetype = Valorisation)) +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.position = c(0.5, 0.2),
legend.title = element_blank()) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
scale_y_log10(breaks = c(0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5, 0.8, 1, 2, 3, 5, 10, 20, 50),
labels = dollar_format(accuracy = 0.01, prefix = "", suffix = "M"))
C3 - Fabrication d’équipements électriques, électroniques, informatiques ; fabrication de machines
Code
`CNT-2014-CB` %>%
filter(INDICATEUR == "CNT-COMPTE_PRODUCTION_BRANCHES",
== "A17-C3",
CNA_PRODUIT == "B1") %>%
OPERATION select(VALORISATION, OBS_VALUE, TIME_PERIOD) %>%
%>%
quarter_to_date left_join(VALORISATION, by = "VALORISATION") %>%
ggplot() + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/10^3, color = Valorisation, linetype = Valorisation)) +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.position = c(0.5, 0.2),
legend.title = element_blank()) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
scale_y_log10(breaks = c(0.1, 0.2, 0.3, 0.5, 0.8, 1, 2, 3, 5, 10, 20, 50),
labels = dollar_format(accuracy = 0.1, prefix = "", suffix = "M"))
C4 - Fabrication de matériels de transport
Code
`CNT-2014-CB` %>%
filter(INDICATEUR == "CNT-COMPTE_PRODUCTION_BRANCHES",
== "A17-C4",
CNA_PRODUIT == "B1") %>%
OPERATION select(VALORISATION, OBS_VALUE, TIME_PERIOD) %>%
%>%
quarter_to_date left_join(VALORISATION, by = "VALORISATION") %>%
ggplot() + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/10^3, color = Valorisation, linetype = Valorisation)) +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.position = c(0.5, 0.2),
legend.title = element_blank()) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
scale_y_log10(breaks = c(0.1, 0.2, 0.3, 0.5, 0.8, 1, 2, 3, 5, 10, 20, 50),
labels = dollar_format(accuracy = 0.1, prefix = "", suffix = "M"))
C5 - Fabrication d’autres produits industriels
Code
`CNT-2014-CB` %>%
filter(INDICATEUR == "CNT-COMPTE_PRODUCTION_BRANCHES",
== "A17-C5",
CNA_PRODUIT == "B1") %>%
OPERATION select(VALORISATION, OBS_VALUE, TIME_PERIOD) %>%
%>%
quarter_to_date left_join(VALORISATION, by = "VALORISATION") %>%
ggplot() + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/10^3, color = Valorisation, linetype = Valorisation)) +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.position = c(0.5, 0.2),
legend.title = element_blank()) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
scale_y_log10(breaks = c(0.1, 0.2, 0.3, 0.5, 0.8, 1, 2, 3, 5, 10, 20, 50),
labels = dollar_format(accuracy = 0.1, prefix = "", suffix = "M"))
DIM-CNT - C1+C2+C3+C4+C5 - Industrie manuf.
Code
`CNT-2014-CB` %>%
filter(INDICATEUR == "CNT-COMPTE_PRODUCTION_BRANCHES",
== "DIM-CNT",
CNA_PRODUIT == "B1") %>%
OPERATION select(VALORISATION, OBS_VALUE, TIME_PERIOD) %>%
%>%
quarter_to_date left_join(VALORISATION, by = "VALORISATION") %>%
ggplot() + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/10^3, color = Valorisation, linetype = Valorisation)) +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.position = c(0.5, 0.2),
legend.title = element_blank()) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
scale_y_log10(breaks = c(0.1, 0.2, 0.3, 0.5, 0.8, 1, 2, 3, 5, 10, 20, 50),
labels = dollar_format(accuracy = 0.1, prefix = "", suffix = "M"))
DI-CNT
Code
`CNT-2014-CB` %>%
filter(INDICATEUR == "CNT-COMPTE_PRODUCTION_BRANCHES",
== "DI-CNT",
CNA_PRODUIT == "B1") %>%
OPERATION select(VALORISATION, OBS_VALUE, TIME_PERIOD) %>%
%>%
quarter_to_date left_join(VALORISATION, by = "VALORISATION") %>%
ggplot() + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/10^3, color = Valorisation, linetype = Valorisation)) +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.position = c(0.5, 0.2),
legend.title = element_blank()) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
scale_y_log10(breaks = c(0.1, 0.2, 0.3, 0.5, 0.8, 1, 2, 3, 5, 10, 20, 50),
labels = dollar_format(accuracy = 0.1, prefix = "", suffix = "M"))
DS-CNT
Code
`CNT-2014-CB` %>%
filter(INDICATEUR == "CNT-COMPTE_PRODUCTION_BRANCHES",
== "DS-CNT",
CNA_PRODUIT == "B1") %>%
OPERATION select(VALORISATION, OBS_VALUE, TIME_PERIOD) %>%
%>%
quarter_to_date left_join(VALORISATION, by = "VALORISATION") %>%
ggplot() + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/10^3, color = Valorisation, linetype = Valorisation)) +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.position = c(0.5, 0.2),
legend.title = element_blank()) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
scale_y_log10(breaks = c(0.1, 0.2, 0.3, 0.5, 0.8, 1, 2, 3, 5, 10, 20, 50, 100, 200, 500),
labels = dollar_format(accuracy = 0.1, prefix = "", suffix = "M"))
GZ
Code
`CNT-2014-CB` %>%
filter(INDICATEUR == "CNT-COMPTE_PRODUCTION_BRANCHES",
== "A17-GZ",
CNA_PRODUIT == "B1") %>%
OPERATION select(VALORISATION, OBS_VALUE, TIME_PERIOD) %>%
%>%
quarter_to_date left_join(VALORISATION, by = "VALORISATION") %>%
ggplot() + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/10^3, color = Valorisation, linetype = Valorisation)) +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.position = c(0.5, 0.2),
legend.title = element_blank()) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
scale_y_log10(breaks = c(0.1, 0.2, 0.3, 0.5, 0.8, 1, 2, 3, 5, 10, 20, 50),
labels = dollar_format(accuracy = 0.1, prefix = "", suffix = "M"))
Emploi Total 1995-
Industrie, Construction
Code
`CNT-2014-CB` %>%
filter(OPERATION == "EMPS",
%in% c("A17-FZ", "DIM-CNT", ""),
CNA_PRODUIT == "INDIVIDUS") %>%
UNIT_MEASURE %>%
quarter_to_date left_join(CNA_PRODUIT, by = "CNA_PRODUIT") %>%
arrange(CNA_PRODUIT, date) %>%
filter(date >= as.Date("2011-01-01")) %>%
ggplot() + theme_minimal() + ylab("Nombre d'actifs occupés") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/10^3, color = Cna_produit, linetype = Cna_produit)) +
scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.5, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = c(seq(0, 40, 0.1), seq(0, 1, 0.1), seq(0, 0.1, 0.01)),
labels = dollar_format(accuracy = 0.1, prefix = "", suffix = "M"))
Services
Code
`CNT-2014-CB` %>%
filter(OPERATION == "EMPS",
%in% c("DSM-CNT", "DSN-CNT ", ""),
CNA_PRODUIT == "INDIVIDUS") %>%
UNIT_MEASURE %>%
quarter_to_date left_join(CNA_PRODUIT, by = "CNA_PRODUIT") %>%
arrange(CNA_PRODUIT, date) %>%
filter(date >= as.Date("2011-01-01")) %>%
ggplot() + theme_minimal() + ylab("Nombre d'actifs occupés") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/10^3, color = Cna_produit, linetype = Cna_produit)) +
scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.5, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = c(seq(0, 40, 0.1), seq(0, 1, 0.1), seq(0, 0.1, 0.01)),
labels = dollar_format(accuracy = 0.1, prefix = "", suffix = "M"))
Taux de marge par branches
Code
`CNT-2014-CB` %>%
filter(OPERATION %in% c("B1", "B2"),
grepl("A17", CNA_PRODUIT)) %>%
mutate(variable = paste0(OPERATION, "_", VALORISATION)) %>%
quarterend_to_date() %>%
arrange(CNA_PRODUIT, date, variable) %>%
select(CNA_PRODUIT, date, variable, OBS_VALUE) %>%
spread(variable, OBS_VALUE) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {