source | dataset | .html | .RData |
---|---|---|---|
eurostat | nasq_10_nf_tr | 2025-01-05 | 2024-10-09 |
Non-financial transactions
Data - Eurostat
Info
Data on europe
source | dataset | .html | .RData |
---|---|---|---|
eurostat | bop_gdp6_q | 2025-01-07 | 2024-10-09 |
eurostat | nama_10_a10 | 2025-01-07 | 2024-10-08 |
eurostat | nama_10_a10_e | 2025-01-07 | 2025-01-07 |
eurostat | nama_10_gdp | 2025-01-07 | 2025-01-07 |
eurostat | nama_10_lp_ulc | 2025-01-07 | 2024-10-08 |
eurostat | namq_10_a10 | 2025-01-07 | 2025-01-07 |
eurostat | namq_10_a10_e | 2025-01-07 | 2025-01-07 |
eurostat | namq_10_gdp | 2025-01-07 | 2025-01-07 |
eurostat | namq_10_lp_ulc | 2025-01-07 | 2024-11-04 |
eurostat | namq_10_pc | 2025-01-07 | 2024-12-29 |
eurostat | nasa_10_nf_tr | 2025-01-07 | 2024-12-14 |
eurostat | nasq_10_nf_tr | 2025-01-05 | 2024-10-09 |
eurostat | tipsii40 | 2025-01-05 | 2024-12-29 |
Info
Exemples
Code
ig_b("eurostat", "nasq_10_nf_tr", "650px-MS_S1M_B6G_20Q4_F")
Last
Code
%>%
nasq_10_nf_tr group_by(time) %>%
summarise(Nobs = n()) %>%
arrange(desc(time)) %>%
head(2) %>%
print_table_conditional()
time | Nobs |
---|---|
2024Q2 | 4188 |
2024Q1 | 25121 |
unit
Code
%>%
nasq_10_nf_tr left_join(unit, by = "unit") %>%
group_by(unit, Unit) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
unit | Unit | Nobs |
---|---|---|
CP_MNAC | Current prices, million units of national currency | 1631014 |
CP_MEUR | Current prices, million euro | 1619900 |
sector
Code
%>%
nasq_10_nf_tr left_join(sector, by = "sector") %>%
group_by(sector, Sector) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
sector | Sector | Nobs |
---|---|---|
S1 | Total economy | 730794 |
S2 | Rest of the world | 586234 |
S13 | General government | 568352 |
S14_S15 | Households; non-profit institutions serving households | 532196 |
S11 | Non-financial corporations | 409822 |
S12 | Financial corporations | 379378 |
S1N | Not Sectorised | 42522 |
S14 | Households | 808 |
S15 | Non-profit institutions serving households | 808 |
direct
Code
%>%
nasq_10_nf_tr left_join(direct, by = "direct") %>%
group_by(direct, Direct) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
direct | Direct | Nobs |
---|---|---|
PAID | Paid | 1745066 |
RECV | Received | 1505848 |
na_item
Code
%>%
nasq_10_nf_tr left_join(na_item, by = "na_item") %>%
group_by(na_item, Na_item) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
s_adj
Code
%>%
nasq_10_nf_tr left_join(s_adj, by = "s_adj") %>%
group_by(s_adj, S_adj) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
s_adj | S_adj | Nobs |
---|---|---|
NSA | Unadjusted data (i.e. neither seasonally adjusted nor calendar adjusted data) | 2878676 |
SCA | Seasonally and calendar adjusted data | 372238 |
geo
Code
%>%
nasq_10_nf_tr left_join(geo, by = "geo") %>%
group_by(geo, Geo) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
Flag = paste0('<img src="../../bib/flags/vsmasll/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
Belgium, Luxembourg
All
Code
%>%
nasq_10_nf_tr filter(geo %in% c("BE", "LU", "FR", "DE", "EA20"),
%in% c("B2A3G", "B1G"),
na_item == "PAID",
direct == "CP_MNAC",
unit == "SCA",
s_adj == "S11") %>%
sector select(geo, time, values, na_item) %>%
spread(na_item, values) %>%
mutate(values = B2A3G/B1G) %>%
%>%
quarter_to_date filter(date >= as.Date("1995-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
%>%
na.omit + theme_minimal() + xlab("") + ylab("% of Gross Value Added") +
ggplot geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_4flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
labels = percent_format(a = 1))
2010
Code
%>%
nasq_10_nf_tr filter(geo %in% c("BE", "LU", "FR", "DE", "EU"),
%in% c("B2A3G", "B1G"),
na_item == "PAID",
direct == "CP_MNAC",
unit == "SCA",
s_adj == "S11") %>%
sector select(geo, time, values, na_item) %>%
spread(na_item, values) %>%
mutate(values = B2A3G/B1G) %>%
%>%
quarter_to_date filter(date >= as.Date("2010-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EU27_2020", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
%>%
na.omit + theme_minimal() + xlab("") + ylab("% of Gross Value Added") +
ggplot geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_3flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 1), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
labels = percent_format(a = 1))
France, Germany, Italy, Spain, Europe
Operating surplus and mixed income, gross - B2A3G, S11
Table
Code
load_data("eurostat/geo.Rdata")
%>%
nasq_10_nf_tr filter(na_item %in% c("B2A3G", "B1G"),
== "PAID",
direct == "CP_MNAC",
unit == "SCA",
s_adj == "S11",
sector %in% c("2022Q4", "2021Q4", "2019Q4")) %>%
time left_join(geo, by = "geo") %>%
select(geo, Geo, time, values, na_item) %>%
spread(na_item, values) %>%
mutate(values = B2A3G/B1G) %>%
select(-B2A3G, -B1G) %>%
spread(time, values) %>%
mutate(`2021Q4-2022Q4` = `2022Q4` - `2021Q4`,
`2019Q4-2022Q4` = `2022Q4` - `2019Q4`) %>%
arrange(-`2019Q4-2022Q4`) %>%
print_table_conditional
geo | Geo | 2019Q4 | 2021Q4 | 2022Q4 | 2021Q4-2022Q4 | 2019Q4-2022Q4 |
---|---|---|---|---|---|---|
NO | Norway | 0.4849330 | 0.6270687 | 0.6506859 | 0.0236173 | 0.1657529 |
EL | Greece | 0.3724988 | 0.4784970 | 0.4920762 | 0.0135792 | 0.1195774 |
DK | Denmark | 0.4165516 | 0.4700756 | 0.4648564 | -0.0052192 | 0.0483048 |
IE | Ireland | 0.7405391 | 0.7683709 | 0.7848684 | 0.0164975 | 0.0443293 |
NL | Netherlands | 0.3996424 | 0.4461210 | 0.4431846 | -0.0029364 | 0.0435423 |
IT | Italy | 0.4293277 | 0.4336255 | 0.4641125 | 0.0304870 | 0.0347848 |
PL | Poland | 0.4634694 | 0.4576226 | 0.4907693 | 0.0331467 | 0.0272999 |
DE | Germany | 0.3741968 | 0.4080551 | 0.3941170 | -0.0139381 | 0.0199202 |
EU27_2020 | European Union - 27 countries (from 2020) | 0.4023438 | 0.4148981 | 0.4181921 | 0.0032940 | 0.0158483 |
CZ | Czechia | 0.4492632 | 0.4336417 | 0.4649583 | 0.0313167 | 0.0156952 |
EA20 | Euro area – 20 countries (from 2023) | 0.3969854 | 0.4103196 | 0.4121270 | 0.0018074 | 0.0151416 |
HU | Hungary | 0.4584003 | 0.4732205 | 0.4691625 | -0.0040580 | 0.0107622 |
FI | Finland | 0.4344735 | 0.4488574 | 0.4449644 | -0.0038930 | 0.0104909 |
EE | Estonia | 0.4403670 | 0.4579710 | 0.4495842 | -0.0083868 | 0.0092172 |
FR | France | 0.3019122 | 0.3176104 | 0.3088310 | -0.0087793 | 0.0069189 |
BE | Belgium | 0.4286057 | 0.4502323 | 0.4346782 | -0.0155541 | 0.0060725 |
SE | Sweden | 0.3725062 | 0.3996176 | 0.3725036 | -0.0271140 | -0.0000026 |
ES | Spain | 0.4116541 | 0.3847911 | 0.4086185 | 0.0238274 | -0.0030357 |
AT | Austria | 0.4119117 | 0.4031868 | 0.4073947 | 0.0042079 | -0.0045171 |
PT | Portugal | 0.3888253 | 0.3431072 | 0.3814885 | 0.0383813 | -0.0073368 |
EU28 | European Union - 28 countries (2013-2020) | 0.3912343 | NA | NA | NA | NA |
RO | Romania | 0.5392315 | NA | NA | NA | NA |
UK | United Kingdom | 0.3694683 | NA | NA | NA | NA |
All
Code
%>%
nasq_10_nf_tr filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
== "B2A3G",
na_item == "PAID",
direct == "CP_MNAC",
unit == "NSA",
s_adj == "S11") %>%
sector select(geo, time, values, sector) %>%
left_join(gdp, by = c("geo", "time")) %>%
mutate(values = values/gdp) %>%
%>%
quarter_to_date left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
%>%
na.omit + theme_minimal() + xlab("") + ylab("") +
ggplot geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 10), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
labels = percent_format(a = 1))
1998-
Code
%>%
nasq_10_nf_tr filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
== "B2A3G",
na_item == "PAID",
direct == "CP_MNAC",
unit == "NSA",
s_adj == "S11") %>%
sector select(geo, time, values, sector) %>%
left_join(gdp, by = c("geo", "time")) %>%
mutate(values = values/gdp) %>%
%>%
quarter_to_date filter(date >= as.Date("1998-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
%>%
na.omit + theme_minimal() + xlab("") + ylab("") +
ggplot geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
labels = percent_format(a = 1))
2010-
NSA
Code
%>%
nasq_10_nf_tr filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
== "B2A3G",
na_item == "PAID",
direct == "CP_MNAC",
unit == "NSA",
s_adj == "S11") %>%
sector select(geo, time, values, sector) %>%
left_join(gdp, by = c("geo", "time")) %>%
mutate(values = values/gdp) %>%
%>%
quarter_to_date filter(date >= as.Date("2010-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
%>%
na.omit + theme_minimal() + xlab("") + ylab("") +
ggplot geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 1), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
labels = percent_format(a = 1))
SCA
PAID
% of GDP
Code
%>%
nasq_10_nf_tr filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
== "B2A3G",
na_item == "PAID",
direct == "CP_MNAC",
unit == "SCA",
s_adj == "S11") %>%
sector select(geo, time, values, sector) %>%
left_join(gdp, by = c("geo", "time")) %>%
mutate(values = values/gdp) %>%
%>%
quarter_to_date filter(date >= as.Date("2010-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
%>%
na.omit + theme_minimal() + xlab("") + ylab("% of GDP") +
ggplot geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 1), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
labels = percent_format(a = 1))
% of Gross Value Added (GVA)
All
Code
%>%
nasq_10_nf_tr filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
%in% c("B2A3G", "B1G"),
na_item == "PAID",
direct == "CP_MNAC",
unit == "SCA",
s_adj == "S11") %>%
sector select(geo, time, values, na_item) %>%
spread(na_item, values) %>%
mutate(values = B2A3G/B1G) %>%
%>%
quarter_to_date filter(date >= as.Date("1995-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
%>%
na.omit + theme_minimal() + xlab("") + ylab("% of Gross Value Added") +
ggplot geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
labels = percent_format(a = 1))
2010-
Code
%>%
nasq_10_nf_tr filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
%in% c("B2A3G", "B1G"),
na_item == "PAID",
direct == "CP_MNAC",
unit == "SCA",
s_adj == "S11") %>%
sector select(geo, time, values, na_item) %>%
spread(na_item, values) %>%
mutate(values = B2A3G/B1G) %>%
%>%
quarter_to_date filter(date >= as.Date("2010-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
# na.omit %>%
+ theme_minimal() + xlab("") + ylab("% of GDP") +
ggplot geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 1), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
labels = percent_format(a = 1))
2014-
Code
load_data("eurostat/geo_fr.Rdata")
<- geo %>%
geo_fr setNames(c("geo", "Geo_fr"))
load_data("eurostat/geo.Rdata")
%>%
nasq_10_nf_tr filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
%in% c("B2A3G", "B1G"),
na_item == "PAID",
direct == "CP_MNAC",
unit == "SCA",
s_adj == "S11") %>%
sector select(geo, time, values, na_item) %>%
spread(na_item, values) %>%
mutate(values = B2A3G/B1G) %>%
%>%
quarter_to_date filter(date >= as.Date("2014-01-01")) %>%
left_join(geo, by = "geo") %>%
left_join(geo_fr, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
%>%
na.omit + theme_minimal() + xlab("") + ylab("% of GDP") +
ggplot geom_line(aes(x = date, y = values, color = color, linetype = Geo_fr)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 1), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
labels = percent_format(a = 1)) +
theme(legend.position = c(0.55, 0.50),
legend.title = element_blank())
2017-
Code
load_data("eurostat/geo_fr.Rdata")
<- geo %>%
geo_fr setNames(c("geo", "Geo_fr"))
load_data("eurostat/geo.Rdata")
%>%
nasq_10_nf_tr filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
%in% c("B2A3G", "B1G"),
na_item == "PAID",
direct == "CP_MNAC",
unit == "SCA",
s_adj == "S11") %>%
sector select(geo, time, values, na_item) %>%
spread(na_item, values) %>%
mutate(values = B2A3G/B1G) %>%
%>%
quarter_to_date filter(date >= as.Date("2017-01-01")) %>%
left_join(geo, by = "geo") %>%
left_join(geo_fr, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
%>%
na.omit ggplot(.) + theme_minimal() + xlab("") + ylab("B2A3G/B1G (% of GDP)") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 1), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
labels = percent_format(a = 1)) +
theme(legend.position = c(0.55, 0.50),
legend.title = element_blank()) +
geom_text_repel(data = . %>%
group_by(geo) %>%
filter(date %in% c(as.Date("2017-01-01"),
as.Date("2020-01-01"),
max(date))),
aes(x = date, y = values, color = color, label = percent(values, acc = 0.01)))
2017-
Code
load_data("eurostat/geo_fr.Rdata")
<- geo %>%
geo_fr setNames(c("geo", "Geo_fr")) %>%
mutate(Geo_fr = ifelse(geo == "DE", "Allemagne", Geo_fr),
Geo_fr = ifelse(geo == "EA20", "Zone Euro", Geo_fr))
load_data("eurostat/geo.Rdata")
load_data("eurostat/na_item_fr.Rdata")
%>%
nasq_10_nf_tr filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
%in% c("B2A3G", "B1G"),
na_item == "PAID",
direct == "CP_MNAC",
unit == "SCA",
s_adj == "S11") %>%
sector select(geo, time, values, na_item) %>%
spread(na_item, values) %>%
mutate(values = B2A3G/B1G) %>%
%>%
quarter_to_date filter(date >= as.Date("2017-01-01")) %>%
left_join(geo, by = "geo") %>%
left_join(geo_fr, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
%>%
na.omit + theme_minimal() + xlab("") + ylab("Excédent d'exploitation et revenu mixte (% du PIB)") +
ggplot geom_line(aes(x = date, y = values, color = color, linetype = Geo_fr)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 1), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
labels = percent_format(a = 1)) +
theme(legend.position = c(0.1, 0.4),
legend.title = element_blank())
RECV
Code
%>%
nasq_10_nf_tr filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
== "B2A3G",
na_item == "RECV",
direct == "CP_MNAC",
unit == "SCA",
s_adj == "S11") %>%
sector select(geo, time, values, sector) %>%
left_join(gdp, by = c("geo", "time")) %>%
mutate(values = values/gdp) %>%
%>%
quarter_to_date filter(date >= as.Date("2010-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
%>%
na.omit + theme_minimal() + xlab("") + ylab("% of GDP") +
ggplot geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 1), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
labels = percent_format(a = 1))
2017-
Code
%>%
nasq_10_nf_tr filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
== "B2A3G",
na_item == "PAID",
direct == "CP_MNAC",
unit == "NSA",
s_adj == "S11") %>%
sector select(geo, time, values, sector) %>%
left_join(gdp, by = c("geo", "time")) %>%
mutate(values = values/gdp) %>%
%>%
quarter_to_date filter(date >= as.Date("2017-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
%>%
na.omit + theme_minimal() + xlab("") + ylab("") +
ggplot geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 1), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
labels = percent_format(a = 1))
Net lending / Borrowing: financial saving rate
France, Germany, Italy, Spain
B9
B9
Code
%>%
nasq_10_nf_tr filter(geo %in% c("FR"),
== "B9",
na_item == "NSA",
s_adj #direct == "PAID",
== "CP_MNAC") %>%
unit left_join(sector, by = "sector") %>%
left_join(gdp_adj, by = c("geo", "time", "s_adj")) %>%
mutate(values = values/gdp) %>%
%>%
quarter_to_date left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
filter(date >= as.Date("1999-01-01")) %>%
+ theme_minimal() + xlab("") + ylab("% of GDP") +
ggplot geom_line(aes(x = date, y = values, color = Sector)) +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank()) +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
labels = percent_format(a = 1))
1999-
% of GDP
Code
%>%
nasq_10_nf_tr filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
== "B9",
na_item #s_adj == "SCA",
#direct == "PAID",
== "CP_MNAC",
unit %in% c("S14_S15")) %>%
sector select(geo, time, values, sector) %>%
left_join(namq_10_gdp_B1GQ_NSA_CPMNAC, by = c("geo", "time")) %>%
mutate(values = values/B1GQ_NSA_CPMNAC) %>%
%>%
quarter_to_date left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
filter(date >= as.Date("1999-01-01")) %>%
+ theme_minimal() + xlab("") + ylab("% of GDP") +
ggplot geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
labels = percent_format(a = 1))
1999-
% of GDP
Code
%>%
nasq_10_nf_tr filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
== "B9",
na_item == "SCA",
s_adj #direct == "PAID",
== "CP_MNAC",
unit %in% c("S13")) %>%
sector select(geo, time, values, sector) %>%
left_join(namq_10_gdp_B1GQ_NSA_CPMNAC, by = c("geo", "time")) %>%
mutate(values = values/B1GQ_NSA_CPMNAC) %>%
%>%
quarter_to_date left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
filter(date >= as.Date("1999-01-01")) %>%
+ theme_minimal() + xlab("") + ylab("% of GDP") +
ggplot geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
labels = percent_format(a = 1))
Saving Rate (B8G)
France, Germany, Italy, Spain
All
Code
%>%
nasq_10_nf_tr filter(geo %in% c("FR", "DE", "IT", "ES"),
== "B8G",
na_item == "SCA",
s_adj == "PAID",
direct == "CP_MNAC",
unit == "S14_S15") %>%
sector select(geo, time, values, sector) %>%
left_join(namq_10_gdp_B1GQ_NSA_CPMNAC, by = c("geo", "time")) %>%
mutate(values = values/B1GQ_NSA_CPMNAC) %>%
%>%
quarter_to_date left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
+ theme_minimal() + xlab("") + ylab("% of GDP") +
ggplot geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_4flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 10), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
labels = percent_format(a = 1))
1999-
% of GDP
Code
%>%
nasq_10_nf_tr filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
== "B8G",
na_item == "SCA",
s_adj == "PAID",
direct == "CP_MNAC",
unit == "S14_S15") %>%
sector select(geo, time, values, sector) %>%
left_join(namq_10_gdp_B1GQ_NSA_CPMNAC, by = c("geo", "time")) %>%
mutate(values = values/B1GQ_NSA_CPMNAC) %>%
%>%
quarter_to_date left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
filter(date >= as.Date("1999-01-01")) %>%
+ theme_minimal() + xlab("") + ylab("% of GDP") +
ggplot geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
labels = percent_format(a = 1))
% of Disposable income
Code
%>%
nasq_10_nf_tr filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
%in% c("B8G", "B6G"),
na_item == "SCA",
s_adj == "PAID",
direct == "CP_MNAC",
unit == "S14_S15") %>%
sector select(geo, time, values, sector, na_item) %>%
spread(na_item, values) %>%
mutate(values = B8G/B6G) %>%
%>%
quarter_to_date left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
filter(date >= as.Date("1999-01-01")) %>%
+ theme_minimal() + xlab("") + ylab("B8G/B6G (% of Disposable income)") +
ggplot geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 2),
labels = percent_format(a = 1))
2000-
% of GDP
Code
%>%
nasq_10_nf_tr filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
== "B8G",
na_item == "SCA",
s_adj == "PAID",
direct == "CP_MNAC",
unit == "S14_S15") %>%
sector select(geo, time, values, sector) %>%
left_join(namq_10_gdp_B1GQ_NSA_CPMNAC, by = c("geo", "time")) %>%
mutate(values = values/B1GQ_NSA_CPMNAC) %>%
%>%
quarter_to_date left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
filter(date >= as.Date("2000-01-01")) %>%
+ theme_minimal() + xlab("") + ylab("% of GDP") +
ggplot geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
labels = percent_format(a = 1))
% of Disposable income
Code
%>%
nasq_10_nf_tr filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
%in% c("B8G", "B6G"),
na_item == "SCA",
s_adj == "PAID",
direct == "CP_MNAC",
unit == "S14_S15") %>%
sector select(geo, time, values, sector, na_item) %>%
spread(na_item, values) %>%
mutate(values = B8G/B6G) %>%
%>%
quarter_to_date left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
filter(date >= as.Date("2000-01-01")) %>%
+ theme_minimal() + xlab("") + ylab("B8G/B6G (% of Disposable income)") +
ggplot geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 2),
labels = percent_format(a = 1))
2015-
Code
%>%
nasq_10_nf_tr filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
== "B8G",
na_item == "SCA",
s_adj == "PAID",
direct == "CP_MNAC",
unit == "S14_S15") %>%
sector select(geo, time, values, sector) %>%
left_join(namq_10_gdp_B1GQ_NSA_CPMNAC, by = c("geo", "time")) %>%
mutate(values = values/B1GQ_NSA_CPMNAC) %>%
%>%
quarter_to_date left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
filter(date >= as.Date("2015-01-01")) %>%
+ theme_minimal() + xlab("") + ylab("% of GDP") +
ggplot geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 1), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
labels = percent_format(a = 1))
Operating surplus and mixed income, gross
Code
%>%
nasq_10_nf_tr filter(geo %in% c("FR", "DE", "IT"),
# B2A3G: Operating surplus and mixed income, gross
== "B2A3G",
na_item # SCA: Seasonally and calendar adjusted data
== "SCA",
s_adj # PAID: Paid
== "PAID",
direct # CP_MNAC: Current prices, million units of national currency
== "CP_MNAC",
unit # S1: Total economy
== "S1") %>%
sector %>%
quarter_to_date left_join(geo, by = "geo") %>%
+ geom_line(aes(x = date, y = values/1000, color = Geo, linetype = Geo)) +
ggplot scale_color_manual(values = viridis(4)[1:3]) +
theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("") +
scale_y_log10(breaks = c(c(1, 2, 3, 5, 8, 10), 10*c(1, 2, 3, 5, 8, 10), 100*c(1, 2, 3, 5, 8, 10)),
labels = dollar_format(suffix = " Bn€", prefix = "", accuracy = 1))
Tables
France
Code
%>%
nasq_10_nf_tr filter(geo == "FR",
== "2019Q1",
time == "NSA",
s_adj == "PAID",
direct == "CP_MNAC") %>%
unit left_join(namq_10_gdp_B1GQ_NSA_CPMNAC, by = c("geo", "time")) %>%
mutate(values = round(100*values/B1GQ_NSA_CPMNAC, 1) %>% paste0("%")) %>%
left_join(na_item, by = "na_item") %>%
select(na_item, Na_item, sector, values) %>%
spread(sector, values) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
Germany
Code
%>%
nasq_10_nf_tr filter(geo == "DE",
== "2019Q1",
time == "NSA",
s_adj == "PAID",
direct == "CP_MNAC") %>%
unit left_join(namq_10_gdp_B1GQ_NSA_CPMNAC, by = c("geo", "time")) %>%
mutate(values = round(100*values/B1GQ_NSA_CPMNAC, 1) %>% paste0("%")) %>%
left_join(na_item, by = "na_item") %>%
select(na_item, Na_item, sector, values) %>%
spread(sector, values) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
Italy
Code
%>%
nasq_10_nf_tr filter(geo == "IT",
== "2019Q1",
time == "NSA",
s_adj == "PAID",
direct == "CP_MNAC") %>%
unit left_join(namq_10_gdp_B1GQ_NSA_CPMNAC, by = c("geo", "time")) %>%
mutate(values = round(100*values/B1GQ_NSA_CPMNAC, 1) %>% paste0("%")) %>%
left_join(na_item, by = "na_item") %>%
select(na_item, Na_item, sector, values) %>%
spread(sector, values) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
B8G
France
Code
%>%
nasq_10_nf_tr filter(geo == "FR",
== "2019Q1",
time == "NSA",
s_adj == "PAID",
direct == "CP_MNAC") %>%
unit left_join(namq_10_gdp_B1GQ_NSA_CPMNAC, by = c("geo", "time")) %>%
mutate(values = round(100*values/B1GQ_NSA_CPMNAC, 1) %>% paste0("%")) %>%
left_join(na_item, by = "na_item") %>%
select(na_item, Na_item, sector, values) %>%
spread(sector, values) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
France
Code
%>%
nasq_10_nf_tr filter(geo == "FR",
== "B8G",
na_item == "SCA",
s_adj #direct == "PAID",
== "CP_MNAC") %>%
unit select(geo, time, values, sector, direct) %>%
left_join(namq_10_gdp_B1GQ_NSA_CPMNAC, by = c("geo", "time")) %>%
mutate(values = values/B1GQ_NSA_CPMNAC) %>%
%>%
quarter_to_date left_join(sector, by = "sector") %>%
+ theme_minimal() + xlab("") + ylab("") +
ggplot geom_line(aes(x = date, y = values, color = Sector, linetype = direct)) +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.4, 0.7),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
labels = percent_format(a = 1))
Germany
Code
%>%
nasq_10_nf_tr filter(geo == "DE",
== "B8G",
na_item == "SCA",
s_adj == "PAID",
direct == "CP_MNAC") %>%
unit select(geo, time, values, sector) %>%
left_join(namq_10_gdp_B1GQ_NSA_CPMNAC, by = c("geo", "time")) %>%
mutate(values = values/B1GQ_NSA_CPMNAC) %>%
%>%
quarter_to_date left_join(sector, by = "sector") %>%
+ theme_minimal() + xlab("") + ylab("") +
ggplot geom_line(aes(x = date, y = values, color = Sector)) +
scale_color_manual(values = viridis(4)[1:3]) +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
labels = percent_format(a = 1))
France, Germany, Italy
B8G - Saving, Gross
Code
%>%
nasq_10_nf_tr filter(geo %in% c("FR", "DE", "IT", "ES", "NL"),
# B2A3G: Operating surplus and mixed income, gross
== "B8G",
na_item # SCA: Seasonally and calendar adjusted data
== "SCA",
s_adj # PAID: Paid
== "PAID",
direct # CP_MNAC: Current prices, million units of national currency
== "CP_MNAC",
unit # S1: Total economy
== "S1") %>%
sector %>%
quarter_to_date left_join(geo, by = "geo") %>%
mutate(values = values/1000) %>%
left_join(colors, by = c( "Geo" = "country")) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot scale_color_identity() + theme_minimal() + xlab("") + ylab("") + add_4flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_log10(breaks = c(c(1, 2, 3, 5, 8, 10),
10*c(1, 2, 3, 5, 8, 10),
100*c(1, 2, 3, 5, 8, 10)),
labels = dollar_format(suffix = " Bn€", prefix = "", accuracy = 1))
B6G_R_HAB - GDI of households in real terms per capita
1999-
Value
Code
%>%
nasq_10_nf_tr filter(geo %in% c("FR", "DE", "IT", "ES", "NL"),
# B2A3G: Operating surplus and mixed income, gross
== "B6G_R_HAB",
na_item # SCA: Seasonally and calendar adjusted data
== "SCA",
s_adj # PAID: Paid
== "PAID",
direct # CP_MNAC: Current prices, million units of national currency
== "CP_MNAC") %>%
unit %>%
quarter_to_date filter(date >= as.Date("1999-01-01")) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c( "Geo" = "country")) %>%
+ geom_line(aes(x = date, y = values, color = color, linetype = direct)) +
ggplot scale_color_identity() + theme_minimal() + xlab("") + ylab("") + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank())
Index = 1999
These
Code
%>%
nasq_10_nf_tr filter(geo %in% c("FR", "DE", "IT", "ES", "EA"),
# B2A3G: Operating surplus and mixed income, gross
== "B6G_R_HAB",
na_item # SCA: Seasonally and calendar adjusted data
== "SCA",
s_adj # PAID: Paid
== "PAID",
direct # CP_MNAC: Current prices, million units of national currency
== "CP_MNAC") %>%
unit %>%
quarter_to_date filter(date >= as.Date("1999-01-01")) %>%
left_join(geo, by = "geo") %>%
group_by(geo) %>%
arrange(date) %>%
mutate(values = 100*values/values[1]) %>%
left_join(colors, by = c( "Geo" = "country")) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot scale_color_identity() + theme_minimal() + xlab("") + ylab("GDI of households in real terms per capita") + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1999, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 200, 2)) +
geom_label_repel(data = . %>% filter(date == max(date)), aes(x = date, y = values, label = round(values, 1), color = color))
Index = 1999
These
Code
%>%
nasq_10_nf_tr filter(geo %in% c("FR", "DE", "IT", "ES", "NL"),
# B2A3G: Operating surplus and mixed income, gross
== "B6G_R_HAB",
na_item # SCA: Seasonally and calendar adjusted data
== "SCA",
s_adj # PAID: Paid
== "PAID",
direct # CP_MNAC: Current prices, million units of national currency
== "CP_MNAC") %>%
unit %>%
quarter_to_date filter(date >= as.Date("1999-01-01")) %>%
left_join(geo, by = "geo") %>%
group_by(geo) %>%
arrange(date) %>%
mutate(values = 100*values/values[1]) %>%
left_join(colors, by = c( "Geo" = "country")) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot scale_color_identity() + theme_minimal() + xlab("") + ylab("GDI of households in real terms per capita") + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1999, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 200, 2)) +
geom_label_repel(data = . %>% filter(date == max(date)), aes(x = date, y = values, label = round(values, 1), color = color))
All
Code
%>%
nasq_10_nf_tr filter(na_item == "B6G_R_HAB",
# SCA: Seasonally and calendar adjusted data
== "SCA",
s_adj # PAID: Paid
== "PAID",
direct # CP_MNAC: Current prices, million units of national currency
== "CP_MNAC") %>%
unit %>%
quarter_to_date filter(date >= as.Date("1999-01-01")) %>%
left_join(geo, by = "geo") %>%
group_by(geo) %>%
arrange(date) %>%
mutate(values = 100*values/values[1]) %>%
left_join(colors, by = c( "Geo" = "country")) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot scale_color_identity() + theme_minimal() + xlab("") + ylab("GDI of households in real terms per capita") +
scale_x_date(breaks = as.Date(paste0(seq(1999, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 200, 2)) +
geom_label_repel(data = . %>% filter(date == max(date)), aes(x = date, y = values, label = paste0(Geo, ": ", round(values, 1)), color = color))
2017-
Code
%>%
nasq_10_nf_tr filter(geo %in% c("FR", "DE", "IT", "ES", "NL"),
# B2A3G: Operating surplus and mixed income, gross
== "B6G_R_HAB",
na_item # SCA: Seasonally and calendar adjusted data
== "SCA",
s_adj # PAID: Paid
== "PAID",
direct # CP_MNAC: Current prices, million units of national currency
== "CP_MNAC") %>%
unit %>%
quarter_to_date filter(date >= as.Date("2017-01-01")) %>%
left_join(geo, by = "geo") %>%
group_by(geo) %>%
arrange(date) %>%
mutate(values = 100*values/values[1]) %>%
left_join(colors, by = c( "Geo" = "country")) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot scale_color_identity() + theme_minimal() + xlab("") + ylab("B6G - Disposable income, Gross") + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 1), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 200, 2))
Implicit price index in it
B6G/POP/B6G_R_HAB
Code
%>%
nasq_10_nf_tr filter(geo %in% c("FR", "DE", "IT", "ES", "NL"),
# B2A3G: Operating surplus and mixed income, gross
%in% c("B6G_R_HAB", "B6G"),
na_item == "S14_S15",
sector # SCA: Seasonally and calendar adjusted data
== "SCA",
s_adj # PAID: Paid
== "PAID",
direct # CP_MNAC: Current prices, million units of national currency
== "CP_MNAC") %>%
unit select(time, geo, na_item, values) %>%
spread(na_item, values) %>%
left_join(POP, by = c("geo", "time")) %>%
transmute(time, geo, values = B6G/NSA/B6G_R_HAB) %>%
%>%
quarter_to_date filter(date >= as.Date("1999-01-01")) %>%
left_join(geo, by = "geo") %>%
group_by(geo) %>%
arrange(date) %>%
mutate(values = 100*values/values[1]) %>%
left_join(colors, by = c( "Geo" = "country")) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot scale_color_identity() + theme_minimal() + xlab("") + ylab("Implicit price index") + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1999, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 200, 2)) +
geom_label_repel(data = . %>% filter(date == max(date)), aes(x = date, y = values, label = paste0(date, " : ", round(values, 1)), color = color))
B6G - Disposable income, Gross
All
Code
%>%
nasq_10_nf_tr filter(geo %in% c("FR", "DE", "IT", "ES", "NL"),
# B2A3G: Operating surplus and mixed income, gross
== "B6G",
na_item # SCA: Seasonally and calendar adjusted data
== "SCA",
s_adj # PAID: Paid
== "PAID",
direct # CP_MNAC: Current prices, million units of national currency
== "CP_MNAC",
unit # S1: Total economy
== "S1") %>%
sector %>%
quarter_to_date left_join(geo, by = "geo") %>%
mutate(values = values/1000) %>%
left_join(colors, by = c( "Geo" = "country")) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot scale_color_identity() + theme_minimal() + xlab("") + ylab("") + add_4flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_log10(breaks = c(c(1, 2, 3, 5, 8, 10),
10*c(1, 2, 3, 5, 8, 10),
100*c(1, 2, 3, 5, 8, 10)),
labels = dollar_format(suffix = " Bn€", prefix = "", accuracy = 1))
1996-
Code
%>%
nasq_10_nf_tr filter(geo %in% c("FR", "DE", "IT", "ES", "NL"),
# B2A3G: Operating surplus and mixed income, gross
== "B6G",
na_item # SCA: Seasonally and calendar adjusted data
== "SCA",
s_adj # PAID: Paid
== "PAID",
direct # CP_MNAC: Current prices, million units of national currency
== "CP_MNAC",
unit # S1: Total economy
== "S1") %>%
sector %>%
quarter_to_date filter(date >= as.Date("1996-01-01")) %>%
left_join(geo, by = "geo") %>%
group_by(geo) %>%
arrange(date) %>%
mutate(values = 100*values/values[1]) %>%
left_join(colors, by = c( "Geo" = "country")) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot scale_color_identity() + theme_minimal() + xlab("") + ylab("B6G - Disposable income, Gross") + add_4flags +
scale_x_date(breaks = as.Date(paste0(seq(1995, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 1000, 5)) +
geom_label_repel(data = . %>% filter(date == max(date)), aes(x = date, y = values, label = round(values, 1), color = color))
1999-
These
Code
%>%
nasq_10_nf_tr filter(geo %in% c("FR", "DE", "IT", "ES", "NL"),
# B2A3G: Operating surplus and mixed income, gross
== "B6G",
na_item # SCA: Seasonally and calendar adjusted data
== "SCA",
s_adj # PAID: Paid
== "PAID",
direct # CP_MNAC: Current prices, million units of national currency
== "CP_MNAC",
unit # S1: Total economy
== "S1") %>%
sector %>%
quarter_to_date filter(date >= as.Date("1999-01-01")) %>%
left_join(geo, by = "geo") %>%
group_by(geo) %>%
arrange(date) %>%
mutate(values = 100*values/values[1]) %>%
left_join(colors, by = c( "Geo" = "country")) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot scale_color_identity() + theme_minimal() + xlab("") + ylab("B6G - Disposable income, Gross") + add_4flags +
scale_x_date(breaks = as.Date(paste0(seq(1999, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 1000, 5)) +
geom_label_repel(data = . %>% filter(date == max(date)), aes(x = date, y = values, label = paste0(Geo, ": ", round(values, 1)), color = color))
Population
Code
%>%
nasq_10_nf_tr filter(geo %in% c("FR", "DE", "IT", "ES", "NL"),
# B2A3G: Operating surplus and mixed income, gross
== "B6G",
na_item # SCA: Seasonally and calendar adjusted data
== "NSA",
s_adj # PAID: Paid
== "PAID",
direct # CP_MNAC: Current prices, million units of national currency
== "CP_MNAC",
unit # S1: Total economy
== "S1") %>%
sector left_join(POP, by = c("geo", "time")) %>%
%>%
quarter_to_date filter(date >= as.Date("1999-01-01")) %>%
left_join(geo, by = "geo") %>%
group_by(geo) %>%
arrange(date) %>%
mutate(values = values/NSA) %>%
mutate(values = 100*values/values[1]) %>%
left_join(colors, by = c( "Geo" = "country")) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot scale_color_identity() + theme_minimal() + xlab("") + ylab("B6G - Disposable income, Gross/Population") + add_4flags +
scale_x_date(breaks = as.Date(paste0(seq(1999, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 1000, 5)) +
geom_label_repel(data = . %>% filter(date == max(date)), aes(x = date, y = values, label = paste0(Geo, ": ", round(values, 1)), color = color))
All
Code
%>%
nasq_10_nf_tr filter(na_item == "B6G",
!= "RO",
geo # SCA: Seasonally and calendar adjusted data
== "SCA",
s_adj # PAID: Paid
== "PAID",
direct # CP_MNAC: Current prices, million units of national currency
== "CP_MNAC",
unit # S1: Total economy
== "S1") %>%
sector %>%
quarter_to_date filter(date >= as.Date("1999-01-01")) %>%
left_join(geo, by = "geo") %>%
group_by(geo) %>%
arrange(date) %>%
mutate(values = 100*values/values[1]) %>%
left_join(colors, by = c( "Geo" = "country")) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot scale_color_identity() + theme_minimal() + xlab("") + ylab("B6G - Disposable income, Gross") + add_4flags +
scale_x_date(breaks = as.Date(paste0(seq(1999, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 1000, 5)) +
geom_label_repel(data = . %>% filter(date == max(date)), aes(x = date, y = values, label = paste0(Geo, ": ", round(values, 1)), color = color))
2017-
Nominal
Code
%>%
nasq_10_nf_tr filter(geo %in% c("FR", "DE", "IT", "ES", "NL"),
# B2A3G: Operating surplus and mixed income, gross
== "B6G",
na_item # SCA: Seasonally and calendar adjusted data
== "SCA",
s_adj # PAID: Paid
== "PAID",
direct # CP_MNAC: Current prices, million units of national currency
== "CP_MNAC",
unit # S1: Total economy
== "S1") %>%
sector %>%
quarter_to_date filter(date >= as.Date("2017-01-01")) %>%
left_join(geo, by = "geo") %>%
group_by(geo) %>%
arrange(date) %>%
mutate(values = 100*values/values[1]) %>%
left_join(colors, by = c( "Geo" = "country")) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot scale_color_identity() + theme_minimal() + xlab("") + ylab("B6G - Disposable income, Gross") + add_4flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 1), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 200, 5))
Households
Code
%>%
nasq_10_nf_tr filter(geo %in% c("FR", "DE", "IT", "ES", "NL"),
# B2A3G: Operating surplus and mixed income, gross
== "B6G",
na_item # SCA: Seasonally and calendar adjusted data
== "SCA",
s_adj # PAID: Paid
== "PAID",
direct # CP_MNAC: Current prices, million units of national currency
== "CP_MNAC",
unit # S1: Total economy
== "S14_S15") %>%
sector %>%
quarter_to_date left_join(geo, by = "geo") %>%
mutate(values = values/1000) %>%
left_join(colors, by = c( "Geo" = "country")) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot scale_color_identity() + theme_minimal() + xlab("") + ylab("") + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_log10(breaks = c(c(1, 2, 3, 5, 8, 10),
10*c(1, 2, 3, 5, 8, 10),
100*c(1, 2, 3, 5, 8, 10)),
labels = dollar_format(suffix = " Bn€", prefix = "", accuracy = 1))
B2A3G - Operating surplus and mixed income, gross
All
Code
%>%
nasq_10_nf_tr filter(geo %in% c("FR", "DE", "IT", "ES", "NL"),
== "B2A3G",
na_item == "SCA",
s_adj == "PAID",
direct == "CP_MNAC",
unit == "S1") %>%
sector %>%
quarter_to_date left_join(geo, by = "geo") %>%
mutate(values = values/1000) %>%
left_join(colors, by = c( "Geo" = "country")) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot scale_color_identity() + theme_minimal() + xlab("") + ylab("") + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_log10(breaks = c(c(1, 2, 3, 5, 8, 10),
10*c(1, 2, 3, 5, 8, 10),
100*c(1, 2, 3, 5, 8, 10)),
labels = dollar_format(suffix = " Bn€", prefix = "", accuracy = 1))
2000-
Code
%>%
nasq_10_nf_tr filter(geo %in% c("FR", "DE", "IT", "ES", "NL"),
== "B2A3G",
na_item == "SCA",
s_adj == "PAID",
direct == "CP_MNAC",
unit == "S1") %>%
sector %>%
quarter_to_date left_join(geo, by = "geo") %>%
mutate(values = values/1000) %>%
left_join(colors, by = c( "Geo" = "country")) %>%
filter(date >= as.Date("2000-01-01")) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot scale_color_identity() + theme_minimal() + xlab("") + ylab("") + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_log10(breaks = c(c(1, 2, 3, 5, 8, 10),
10*c(1, 2, 3, 5, 8, 10),
100*c(1, 2, 3, 5, 8, 10)),
labels = dollar_format(suffix = " Bn€", prefix = "", accuracy = 1))
D4 - Property income
1999-
Code
%>%
nasq_10_nf_tr filter(geo %in% c("FR", "DE", "IT", "ES", "NL"),
# B2A3G: Operating surplus and mixed income, gross
== "D4",
na_item # SCA: Seasonally and calendar adjusted data
== "SCA",
s_adj # PAID: Paid
== "PAID",
direct # CP_MNAC: Current prices, million units of national currency
== "CP_MNAC",
unit # S1: Total economy
== "S14_S15") %>%
sector %>%
quarter_to_date filter(date >= as.Date("1999-01-01")) %>%
left_join(geo, by = "geo") %>%
group_by(geo) %>%
arrange(date) %>%
mutate(values = 100*values/values[1]) %>%
left_join(colors, by = c( "Geo" = "country")) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot scale_color_identity() + theme_minimal() + xlab("") + ylab("Households, D4 - Property Income") + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1999, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(20, 1000, 20))
2017-
Code
%>%
nasq_10_nf_tr filter(geo %in% c("FR", "DE", "IT", "ES", "NL"),
# B2A3G: Operating surplus and mixed income, gross
== "D4",
na_item # SCA: Seasonally and calendar adjusted data
== "SCA",
s_adj # PAID: Paid
== "PAID",
direct # CP_MNAC: Current prices, million units of national currency
== "CP_MNAC",
unit # S1: Total economy
== "S14_S15") %>%
sector %>%
quarter_to_date filter(date >= as.Date("2017-01-01")) %>%
left_join(geo, by = "geo") %>%
group_by(geo) %>%
arrange(date) %>%
mutate(values = 100*values/values[1]) %>%
left_join(colors, by = c( "Geo" = "country")) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot scale_color_identity() + theme_minimal() + xlab("") + ylab("Households, D4 - Property Income") + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 1), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(20, 1000, 20))
D41
1999-
Code
%>%
nasq_10_nf_tr filter(geo %in% c("FR", "DE", "IT", "ES", "NL"),
# B2A3G: Operating surplus and mixed income, gross
== "D41",
na_item # SCA: Seasonally and calendar adjusted data
== "NSA",
s_adj # PAID: Paid
== "PAID",
direct # CP_MNAC: Current prices, million units of national currency
== "CP_MNAC",
unit # S1: Total economy
== "S14_S15") %>%
sector %>%
quarter_to_date filter(date >= as.Date("1999-01-01")) %>%
left_join(geo, by = "geo") %>%
group_by(geo) %>%
arrange(date) %>%
mutate(values = 100*values/values[1]) %>%
left_join(colors, by = c( "Geo" = "country")) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot scale_color_identity() + theme_minimal() + xlab("") + ylab("D41") + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1999, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(20, 1000, 20))
2017-
Code
%>%
nasq_10_nf_tr filter(geo %in% c("FR", "DE", "IT", "ES", "NL"),
# B2A3G: Operating surplus and mixed income, gross
== "D4",
na_item # SCA: Seasonally and calendar adjusted data
== "NSA",
s_adj # PAID: Paid
== "PAID",
direct # CP_MNAC: Current prices, million units of national currency
== "CP_MNAC",
unit # S1: Total economy
== "S14_S15") %>%
sector %>%
quarter_to_date filter(date >= as.Date("2017-01-01")) %>%
left_join(geo, by = "geo") %>%
group_by(geo) %>%
arrange(date) %>%
mutate(values = 100*values/values[1]) %>%
left_join(colors, by = c( "Geo" = "country")) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot scale_color_identity() + theme_minimal() + xlab("") + ylab("Households, D4 - Property Income") + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 1), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(20, 1000, 20))
France
2017-
Table
PAID
Code
%>%
nasq_10_nf_tr filter(geo %in% c("FR"),
== "NSA",
s_adj # PAID: Paid
== "PAID",
direct # CP_MNAC: Current prices, million units of national currency
== "CP_MNAC",
unit # S1: Total economy
== "S14_S15",
sector %in% c("2017Q1", "2023Q3")) %>%
time left_join(na_item, by = "na_item") %>%
select_if(~ n_distinct(.) > 1) %>%
spread(time, values) %>%
mutate(growth = 100*(.[[4]]/.[[3]]-1)) %>%
#arrange(-growth) %>%
print_table_conditional()
RECV
Code
%>%
nasq_10_nf_tr filter(geo %in% c("FR"),
== "NSA",
s_adj # PAID: Paid
== "RECV",
direct # CP_MNAC: Current prices, million units of national currency
== "CP_MNAC",
unit # S1: Total economy
== "S14_S15",
sector %in% c("2017Q1", "2023Q3")) %>%
time left_join(na_item, by = "na_item") %>%
select_if(~ n_distinct(.) > 1) %>%
spread(time, values) %>%
mutate(growth = 100*(.[[4]]/.[[3]]-1)) %>%
#arrange(-growth) %>%
print_table_conditional()
Compensation of employees
Paid
Code
%>%
nasq_10_nf_tr filter(geo %in% c("FR"),
# B2A3G: Operating surplus and mixed income, gross
%in% c("D1"),
na_item # SCA: Seasonally and calendar adjusted data
== "NSA",
s_adj # PAID: Paid
== "PAID",
direct # CP_MNAC: Current prices, million units of national currency
== "CP_MNAC",
unit # S1: Total economy
== "S14_S15") %>%
sector %>%
quarter_to_date left_join(na_item, by = "na_item") %>%
filter(date >= as.Date("2017-01-01")) %>%
+ geom_line(aes(x = date, y = values, color = Na_item)) +
ggplot theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 1), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = seq(0000, 30000, 1000))
Received
Code
%>%
nasq_10_nf_tr filter(geo %in% c("FR"),
# B2A3G: Operating surplus and mixed income, gross
%in% c("D1"),
na_item # SCA: Seasonally and calendar adjusted data
== "NSA",
s_adj # PAID: Paid
== "RECV",
direct # CP_MNAC: Current prices, million units of national currency
== "CP_MNAC",
unit # S1: Total economy
== "S14_S15") %>%
sector %>%
quarter_to_date left_join(na_item, by = "na_item") %>%
filter(date >= as.Date("2017-01-01")) %>%
+ geom_line(aes(x = date, y = values, color = Na_item)) +
ggplot theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 1), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = seq(0000, 1000000, 10000))
Interest
Paid
Code
%>%
nasq_10_nf_tr filter(geo %in% c("FR"),
# B2A3G: Operating surplus and mixed income, gross
%in% c("D4", "D41", "D41G"),
na_item # SCA: Seasonally and calendar adjusted data
== "NSA",
s_adj # PAID: Paid
== "PAID",
direct # CP_MNAC: Current prices, million units of national currency
== "CP_MNAC",
unit # S1: Total economy
== "S14_S15") %>%
sector %>%
quarter_to_date left_join(na_item, by = "na_item") %>%
filter(date >= as.Date("2017-01-01")) %>%
+ geom_line(aes(x = date, y = values, color = Na_item)) +
ggplot theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 1), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = seq(0000, 30000, 1000))
Received
Code
%>%
nasq_10_nf_tr filter(geo %in% c("FR"),
# B2A3G: Operating surplus and mixed income, gross
%in% c("D4", "D41", "D41G"),
na_item # SCA: Seasonally and calendar adjusted data
== "NSA",
s_adj # PAID: Paid
== "RECV",
direct # CP_MNAC: Current prices, million units of national currency
== "CP_MNAC",
unit # S1: Total economy
== "S14_S15") %>%
sector %>%
quarter_to_date left_join(na_item, by = "na_item") %>%
filter(date >= as.Date("2017-01-01")) %>%
+ geom_line(aes(x = date, y = values, color = Na_item)) +
ggplot theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 1), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = seq(0000, 100000, 5000))
Rents
Paid
Code
%>%
nasq_10_nf_tr filter(geo %in% c("FR"),
# B2A3G: Operating surplus and mixed income, gross
%in% c("D42", "D43", "D44", "D45", "D42_TO_D45"),
na_item # SCA: Seasonally and calendar adjusted data
== "NSA",
s_adj # PAID: Paid
== "PAID",
direct # CP_MNAC: Current prices, million units of national currency
== "CP_MNAC",
unit # S1: Total economy
== "S14_S15") %>%
sector %>%
quarter_to_date left_join(na_item, by = "na_item") %>%
filter(date >= as.Date("2017-01-01")) %>%
arrange(date) %>%
+ geom_line(aes(x = date, y = values, color = Na_item)) +
ggplot theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 1), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = seq(0000, 30000, 50))
Received
Code
%>%
nasq_10_nf_tr filter(geo %in% c("FR"),
# B2A3G: Operating surplus and mixed income, gross
%in% c("D42", "D43", "D44", "D45", "D42_TO_D45"),
na_item # SCA: Seasonally and calendar adjusted data
== "NSA",
s_adj # PAID: Paid
== "RECV",
direct # CP_MNAC: Current prices, million units of national currency
== "CP_MNAC",
unit # S1: Total economy
== "S14_S15") %>%
sector %>%
quarter_to_date left_join(na_item, by = "na_item") %>%
filter(date >= as.Date("2017-01-01")) %>%
arrange(date) %>%
+ geom_line(aes(x = date, y = values, color = Na_item)) +
ggplot theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 1), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = seq(0000, 100000, 10000))