| source | dataset | Title | .html | .rData |
|---|---|---|---|---|
| eurostat | nasa_10_nf_tr | Non-financial transactions | 2026-01-10 | 2026-01-07 |
| eurostat | nasq_10_nf_tr | Non-financial transactions | 2026-01-10 | 2026-01-07 |
Non-financial transactions
Data - Eurostat
Info
Data on europe
Code
load_data("europe.RData")
europe %>%
arrange(-(dataset == "nasa_10_nf_tr")) %>%
source_dataset_file_updates()| source | dataset | Title | .html | .rData |
|---|---|---|---|---|
| eurostat | nasa_10_nf_tr | Non-financial transactions | 2026-01-10 | 2026-01-07 |
| eurostat | bop_gdp6_q | Main Balance of Payments and International Investment Position items as share of GDP (BPM6) | 2026-01-11 | 2026-01-07 |
| eurostat | nama_10_a10 | Gross value added and income by A*10 industry breakdowns | 2026-01-09 | 2026-01-07 |
| eurostat | nama_10_a10_e | Employment by A*10 industry breakdowns | 2026-01-09 | 2026-01-09 |
| eurostat | nama_10_gdp | GDP and main components (output, expenditure and income) | 2026-01-09 | 2026-01-09 |
| eurostat | nama_10_lp_ulc | Labour productivity and unit labour costs | 2026-01-09 | 2026-01-07 |
| eurostat | namq_10_a10 | Gross value added and income A*10 industry breakdowns | 2026-01-10 | 2026-01-09 |
| eurostat | namq_10_a10_e | Employment A*10 industry breakdowns | 2025-05-24 | 2026-01-07 |
| eurostat | namq_10_gdp | GDP and main components (output, expenditure and income) | 2025-10-27 | 2026-01-07 |
| eurostat | namq_10_lp_ulc | Labour productivity and unit labour costs | 2026-01-10 | 2026-01-07 |
| eurostat | namq_10_pc | Main GDP aggregates per capita | 2026-01-10 | 2026-01-09 |
| eurostat | nasq_10_nf_tr | Non-financial transactions | 2026-01-10 | 2026-01-07 |
| eurostat | tipsii40 | Net international investment position - quarterly data, % of GDP | 2026-01-10 | 2026-01-09 |
Info
Code
include_graphics("https://ec.europa.eu/eurostat/statistics-explained/images/e/e1/Overall_change_in_profit_share_of_non-financial_corporations%2C_2011–2021_%28percentage_points%29_NA2022_II.png")
LAST_COMPILE
| LAST_COMPILE |
|---|
| 2026-01-16 |
Last
Code
nasa_10_nf_tr %>%
group_by(time) %>%
summarise(Nobs = n()) %>%
arrange(desc(time)) %>%
head(1) %>%
print_table_conditional()| time | Nobs |
|---|---|
| 2024 | 57419 |
unit
Code
nasa_10_nf_tr %>%
left_join(unit, by = "unit") %>%
group_by(unit, Unit) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) print_table(.) else .}| unit | Unit | Nobs |
|---|---|---|
| CP_MNAC | Current prices, million units of national currency | 1061735 |
| CP_MEUR | Current prices, million euro | 1031856 |
| PPS_EU27_2020_HAB | Purchasing power standard (PPS, EU27 from 2020), per inhabitant | 1944 |
sector
Code
nasa_10_nf_tr %>%
left_join(sector, by = "sector") %>%
group_by(sector, Sector) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) print_table(.) else .}| sector | Sector | Nobs |
|---|---|---|
| S1 | Total economy | 331218 |
| S14_S15 | Households; non-profit institutions serving households | 271780 |
| S13 | General government | 257067 |
| S12 | Financial corporations | 228346 |
| S11 | Non-financial corporations | 223657 |
| S2 | Rest of the world | 218052 |
| S14 | Households | 216120 |
| S15 | Non-profit institutions serving households | 185960 |
| S128_S129 | Insurance corporations and Pension Funds | 44734 |
| S121_S122_S123 | Monetary financial institutions | 44598 |
| S124_TO_S127 | Other financial institutions (Financial corporations other than MFIs, insurance corporations and pension funds) | 39354 |
| S1N | Not Sectorised | 18769 |
| S11001 | Public non-financial corporations | 12266 |
| S12001 | Public financial corporations | 3614 |
direct
Code
nasa_10_nf_tr %>%
left_join(direct, by = "direct") %>%
group_by(direct, Direct) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) print_table(.) else .}| direct | Direct | Nobs |
|---|---|---|
| PAID | Paid | 1095391 |
| RECV | Received | 1000144 |
na_item
Code
nasa_10_nf_tr %>%
left_join(na_item, by = "na_item") %>%
group_by(na_item, Na_item) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}geo
Code
nasa_10_nf_tr %>%
left_join(geo, by = "geo") %>%
group_by(geo, Geo) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}Operating surplus and mixed income, gross
Code
nasa_10_nf_tr %>%
filter(geo %in% c("FR", "DE", "IT"),
# B2A3G: Operating surplus and mixed income, gross
na_item == "B2A3G",
# PAID: Paid
direct == "PAID",
# CP_MNAC: Current prices, million units of national currency
unit == "CP_MNAC",
# S1: Total economy
sector == "S1") %>%
year_to_date %>%
ggplot + geom_line(aes(x = date, y = values/1000, color = geo, linetype = geo)) +
scale_color_manual(values = viridis(4)[1:3]) +
theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
labels = date_format("%y")) +
theme(legend.position = c(0.2, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("") +
scale_y_log10(breaks = seq(0, 1000, 100),
labels = dollar_format(suffix = " Bn€", prefix = "", accuracy = 1))
France
France, Germany, Italy, Spain, Europe
B6G_R_HAB
All
Code
nasa_10_nf_tr %>%
filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
na_item == "B6G_R_HAB",
direct == "PAID",
unit == "CP_MNAC",
sector == "S14_S15") %>%
select(geo, time, values, sector) %>%
year_to_date %>%
filter(date >= as.Date("1995-01-01")) %>%
group_by(geo) %>%
arrange(date) %>%
mutate(values = 100*values/values[1]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
na.omit %>%
ggplot + theme_minimal() + xlab("") + ylab("") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1995, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(100, 500, 5))
1999-
Code
nasa_10_nf_tr %>%
filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
na_item == "B6G_R_HAB",
direct == "PAID",
unit == "CP_MNAC",
sector == "S14_S15") %>%
select(geo, time, values, sector) %>%
year_to_date %>%
filter(date >= as.Date("1999-01-01")) %>%
group_by(geo) %>%
arrange(date) %>%
mutate(values = 100*values/values[1]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
na.omit %>%
ggplot + theme_minimal() + xlab("") + ylab("") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1995, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(10, 500, 5))
Code
#geom_label(data = . %>% filter(date == max(date)), aes(x = date, y = values, label = round(values, 1), color = color))1999- (LAbels)
Code
nasa_10_nf_tr %>%
filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
na_item == "B6G_R_HAB",
direct == "PAID",
unit == "CP_MNAC",
sector == "S14_S15") %>%
select(geo, time, values, sector) %>%
year_to_date %>%
filter(date >= as.Date("1999-01-01")) %>%
group_by(geo) %>%
arrange(date) %>%
mutate(values = 100*values/values[1]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
na.omit %>%
ggplot + theme_minimal() + xlab("") + ylab("") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1995, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(10, 500, 5)) +
geom_label(data = . %>% filter(date == max(date)), aes(x = date, y = values, label = round(values, 1), color = color))
2000-
Code
nasa_10_nf_tr %>%
filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
na_item == "B6G_R_HAB",
direct == "PAID",
unit == "CP_MNAC",
sector == "S14_S15") %>%
select(geo, time, values, sector) %>%
year_to_date %>%
filter(date >= as.Date("2000-01-01")) %>%
group_by(geo) %>%
arrange(date) %>%
mutate(values = 100*values/values[1]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
na.omit %>%
ggplot + theme_minimal() + xlab("") + ylab("") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1995, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(10, 500, 5)) +
geom_label_repel(data = . %>% filter(date == max(date)), aes(x = date, y = values, label = round(values, 1), color = color))
2008-
Code
nasa_10_nf_tr %>%
filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
na_item == "B6G_R_HAB",
direct == "PAID",
unit == "CP_MNAC",
sector == "S14_S15") %>%
select(geo, time, values, sector) %>%
year_to_date %>%
filter(date >= as.Date("2008-01-01")) %>%
group_by(geo) %>%
arrange(date) %>%
mutate(values = 100*values/values[1]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
na.omit %>%
ggplot + theme_minimal() + xlab("") + ylab("") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1995, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(10, 500, 5)) +
geom_label_repel(data = . %>% filter(date == max(date)), aes(x = date, y = values, label = round(values, 1), color = color))
B6G
All
Code
nasa_10_nf_tr %>%
filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
na_item == "B6G",
direct == "PAID",
unit == "CP_MNAC",
sector == "S14_S15") %>%
select(geo, time, values, sector) %>%
year_to_date %>%
filter(date >= as.Date("1995-01-01")) %>%
group_by(geo) %>%
arrange(date) %>%
mutate(values = 100*values/values[1]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
na.omit %>%
ggplot + theme_minimal() + xlab("") + ylab("") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1995, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(100, 500, 5))
1999-
Code
nasa_10_nf_tr %>%
filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
na_item == "B6G",
direct == "PAID",
unit == "CP_MNAC",
sector == "S14_S15") %>%
select(geo, time, values, sector) %>%
year_to_date %>%
filter(date >= as.Date("1999-01-01")) %>%
group_by(geo) %>%
arrange(date) %>%
mutate(values = 100*values/values[1]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
na.omit %>%
ggplot + theme_minimal() + xlab("") + ylab("") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1995, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 500, 5)) +
geom_label_repel(data = . %>% filter(date == max(date)), aes(x = date, y = values, label = round(values, 1), color = color))
2000-
Code
nasa_10_nf_tr %>%
filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
na_item == "B6G",
direct == "PAID",
unit == "CP_MNAC",
sector == "S14_S15") %>%
select(geo, time, values, sector) %>%
year_to_date %>%
filter(date >= as.Date("2000-01-01")) %>%
group_by(geo) %>%
arrange(date) %>%
mutate(values = 100*values/values[1]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
na.omit %>%
ggplot + theme_minimal() + xlab("") + ylab("") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1995, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(100, 500, 5)) +
geom_label_repel(data = . %>% filter(date == max(date)), aes(x = date, y = values, label = round(values, 1), color = color))
2008-
Code
nasa_10_nf_tr %>%
filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
na_item == "B6G",
direct == "PAID",
unit == "CP_MNAC",
sector == "S14_S15") %>%
select(geo, time, values, sector) %>%
year_to_date %>%
filter(date >= as.Date("2008-01-01")) %>%
group_by(geo) %>%
arrange(date) %>%
mutate(values = 100*values/values[1]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
na.omit %>%
ggplot + theme_minimal() + xlab("") + ylab("") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1995, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(100, 500, 5)) +
geom_label_repel(data = . %>% filter(date == max(date)), aes(x = date, y = values, label = round(values, 1), color = color))
B6G/POP
All
Code
nasa_10_nf_tr %>%
filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
na_item == "B6G",
direct == "PAID",
unit == "CP_MNAC",
sector == "S14_S15") %>%
select(geo, time, values, sector) %>%
left_join(POP, by = c("geo", "time")) %>%
mutate(values = values/POP) %>%
year_to_date %>%
filter(date >= as.Date("1995-01-01")) %>%
group_by(geo) %>%
arrange(date) %>%
mutate(values = 100*values/values[1]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
na.omit %>%
ggplot + theme_minimal() + xlab("") + ylab("") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1995, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(100, 500, 5))
1999-
B6G/POP - labels
Code
nasa_10_nf_tr %>%
filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
na_item == "B6G",
direct == "PAID",
unit == "CP_MNAC",
sector == "S14_S15") %>%
select(geo, time, values, sector) %>%
left_join(POP, by = c("geo", "time")) %>%
mutate(values = values/POP) %>%
year_to_date %>%
filter(date >= as.Date("1999-01-01")) %>%
group_by(geo) %>%
arrange(date) %>%
mutate(values = 100*values/values[1]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
na.omit %>%
ggplot + theme_minimal() + xlab("") + ylab("") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1995, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(100, 500, 5)) +
geom_label_repel(data = . %>% filter(date == max(date)), aes(x = date, y = values, label = round(values, 1), color = color))
B6G/POP
Code
nasa_10_nf_tr %>%
filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
na_item == "B6G",
direct == "PAID",
unit == "CP_MNAC",
sector == "S14_S15") %>%
select(geo, time, values, sector) %>%
left_join(POP, by = c("geo", "time")) %>%
mutate(values = values/POP) %>%
year_to_date %>%
filter(date >= as.Date("1999-01-01")) %>%
group_by(geo) %>%
arrange(date) %>%
mutate(values = 100*values/values[1]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
na.omit %>%
ggplot + theme_minimal() + xlab("") + ylab("") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1995, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(100, 500, 5))
Code
#geom_label_repel(data = . %>% filter(date == max(date)), aes(x = date, y = values, label = round(values, 1), color = color))D11/POP
Code
nasa_10_nf_tr %>%
filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
na_item == "D11",
direct == "PAID",
unit == "CP_MNAC",
sector == "S14_S15") %>%
select(geo, time, values, sector) %>%
left_join(POP, by = c("geo", "time")) %>%
mutate(values = values/POP) %>%
year_to_date %>%
filter(date >= as.Date("1999-01-01")) %>%
group_by(geo) %>%
arrange(date) %>%
mutate(values = 100*values/values[1]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
na.omit %>%
ggplot + theme_minimal() + xlab("") + ylab("") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1995, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(100, 500, 5)) +
geom_label_repel(data = . %>% filter(date == max(date)), aes(x = date, y = values, label = round(values, 1), color = color))
B7G_R_HAB
Code
nasa_10_nf_tr %>%
filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
na_item == "B7G_R_HAB",
direct == "PAID",
unit == "CP_MNAC",
sector == "S14_S15") %>%
select(geo, time, values, sector) %>%
year_to_date %>%
filter(date >= as.Date("1999-01-01")) %>%
group_by(geo) %>%
arrange(date) %>%
mutate(values = 100*values/values[1]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
na.omit %>%
ggplot + theme_minimal() + xlab("") + ylab("") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1995, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(10, 500, 5)) +
geom_label_repel(data = . %>% filter(date == max(date)), aes(x = date, y = values, label = round(values, 1), color = color))
D41/POP
Code
nasa_10_nf_tr %>%
filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
na_item == "D41",
direct == "PAID",
unit == "CP_MNAC",
sector == "S14_S15") %>%
select(geo, time, values, sector) %>%
left_join(POP, by = c("geo", "time")) %>%
mutate(values = values/POP) %>%
year_to_date %>%
filter(date >= as.Date("1999-01-01")) %>%
group_by(geo) %>%
arrange(date) %>%
mutate(values = 100*values/values[1]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
na.omit %>%
ggplot + theme_minimal() + xlab("") + ylab("") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1995, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(100, 500, 5)) +
geom_label_repel(data = . %>% filter(date == max(date)), aes(x = date, y = values, label = round(values, 1), color = color))
D4/POP
Code
nasa_10_nf_tr %>%
filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
na_item == "D4",
direct == "PAID",
unit == "CP_MNAC",
sector == "S14_S15") %>%
select(geo, time, values, sector) %>%
left_join(POP, by = c("geo", "time")) %>%
mutate(values = values/POP) %>%
year_to_date %>%
filter(date >= as.Date("1999-01-01")) %>%
group_by(geo) %>%
arrange(date) %>%
mutate(values = 100*values/values[1]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
na.omit %>%
ggplot + theme_minimal() + xlab("") + ylab("") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1995, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(100, 500, 5)) +
geom_label_repel(data = . %>% filter(date == max(date)), aes(x = date, y = values, label = round(values, 1), color = color))
2000-
Code
nasa_10_nf_tr %>%
filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
na_item == "B6G",
direct == "PAID",
unit == "CP_MNAC",
sector == "S14_S15") %>%
select(geo, time, values, sector) %>%
left_join(POP, by = c("geo", "time")) %>%
mutate(values = values/POP) %>%
year_to_date %>%
filter(date >= as.Date("2000-01-01")) %>%
group_by(geo) %>%
arrange(date) %>%
mutate(values = 100*values/values[1]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
na.omit %>%
ggplot + theme_minimal() + xlab("") + ylab("") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1995, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(100, 500, 5)) +
geom_label_repel(data = . %>% filter(date == max(date)), aes(x = date, y = values, label = round(values, 1), color = color))
2008-
Code
nasa_10_nf_tr %>%
filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
na_item == "B6G",
direct == "PAID",
unit == "CP_MNAC",
sector == "S14_S15") %>%
select(geo, time, values, sector) %>%
left_join(POP, by = c("geo", "time")) %>%
mutate(values = values/POP) %>%
year_to_date %>%
filter(date >= as.Date("2008-01-01")) %>%
group_by(geo) %>%
arrange(date) %>%
mutate(values = 100*values/values[1]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
na.omit %>%
ggplot + theme_minimal() + xlab("") + ylab("") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1995, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(100, 500, 5)) +
geom_label_repel(data = . %>% filter(date == max(date)), aes(x = date, y = values, label = round(values, 1), color = color))
B6N
All
Code
nasa_10_nf_tr %>%
filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
na_item == "B6N",
direct == "PAID",
unit == "CP_MNAC",
sector == "S14_S15") %>%
select(geo, time, values, sector) %>%
year_to_date %>%
#filter(date >= as.Date("1995-01-01")) %>%
group_by(geo) %>%
arrange(date) %>%
mutate(values = 100*values/values[1]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
na.omit %>%
ggplot + theme_minimal() + xlab("") + ylab("") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1995, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(100, 500, 5)) +
geom_label_repel(data = . %>% filter(date == max(date)), aes(x = date, y = values, label = round(values, 1), color = color))
1995-
Code
nasa_10_nf_tr %>%
filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
na_item == "B6N",
direct == "PAID",
unit == "CP_MNAC",
sector == "S14_S15") %>%
select(geo, time, values, sector) %>%
year_to_date %>%
filter(date >= as.Date("1995-01-01")) %>%
group_by(geo) %>%
arrange(date) %>%
mutate(values = 100*values/values[1]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
na.omit %>%
ggplot + theme_minimal() + xlab("") + ylab("") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1995, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(100, 500, 5)) +
geom_label_repel(data = . %>% filter(date == max(date)), aes(x = date, y = values, label = round(values, 1), color = color))
1999-
Code
nasa_10_nf_tr %>%
filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
na_item == "B6N",
direct == "PAID",
unit == "CP_MNAC",
sector == "S14_S15") %>%
select(geo, time, values, sector) %>%
year_to_date %>%
filter(date >= as.Date("1999-01-01")) %>%
group_by(geo) %>%
arrange(date) %>%
mutate(values = 100*values/values[1]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
na.omit %>%
ggplot + theme_minimal() + xlab("") + ylab("") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1995, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(100, 500, 5)) +
geom_label_repel(data = . %>% filter(date == max(date)), aes(x = date, y = values, label = round(values, 1), color = color))
Saving Rate (B9)
All
Code
nasa_10_nf_tr %>%
filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
na_item == "B9",
direct == "PAID",
unit == "CP_MNAC",
sector == "S14_S15") %>%
select(geo, time, values, sector) %>%
left_join(gdp, by = c("geo", "time")) %>%
mutate(values = values/gdp) %>%
year_to_date %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
na.omit %>%
ggplot + theme_minimal() + xlab("") + ylab("") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 10), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
labels = percent_format(a = 1))
2000-
Code
nasa_10_nf_tr %>%
filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
na_item == "B9",
direct == "PAID",
unit == "CP_MNAC",
sector == "S14_S15") %>%
select(geo, time, values, sector) %>%
left_join(gdp, by = c("geo", "time")) %>%
mutate(values = values/gdp) %>%
year_to_date %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
filter(date >= as.Date("2000-01-01")) %>%
ggplot + theme_minimal() + xlab("") + ylab("") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
labels = percent_format(a = 1))
2015-
Code
nasa_10_nf_tr %>%
filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
na_item == "B9",
direct == "PAID",
unit == "CP_MNAC",
sector == "S14_S15") %>%
select(geo, time, values, sector) %>%
left_join(gdp, by = c("geo", "time")) %>%
mutate(values = values/gdp) %>%
year_to_date %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
filter(date >= as.Date("2015-01-01")) %>%
ggplot + theme_minimal() + xlab("") + ylab("") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 1), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
labels = percent_format(a = 1))
Saving Rate (B8G)
All
Code
nasa_10_nf_tr %>%
filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
na_item == "B8G",
direct == "PAID",
unit == "CP_MNAC",
sector == "S14_S15") %>%
select(geo, time, values, sector) %>%
left_join(gdp, by = c("geo", "time")) %>%
mutate(values = values/gdp) %>%
year_to_date %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
na.omit %>%
ggplot + theme_minimal() + xlab("") + ylab("") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 10), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
labels = percent_format(a = 1))
2000-
Code
nasa_10_nf_tr %>%
filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
na_item == "B8G",
direct == "PAID",
unit == "CP_MNAC",
sector == "S14_S15") %>%
select(geo, time, values, sector) %>%
left_join(gdp, by = c("geo", "time")) %>%
mutate(values = values/gdp) %>%
year_to_date %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
filter(date >= as.Date("2000-01-01")) %>%
ggplot + theme_minimal() + xlab("") + ylab("") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
labels = percent_format(a = 1))
2015-
Code
nasa_10_nf_tr %>%
filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
na_item == "B8G",
direct == "PAID",
unit == "CP_MNAC",
sector == "S14_S15") %>%
select(geo, time, values, sector) %>%
left_join(gdp, by = c("geo", "time")) %>%
mutate(values = values/gdp) %>%
year_to_date %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
filter(date >= as.Date("2015-01-01")) %>%
ggplot + theme_minimal() + xlab("") + ylab("") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 1), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
labels = percent_format(a = 1))
Operating surplus and mixed income, gross - B2A3G, S14_S15
All
Code
nasa_10_nf_tr %>%
filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
na_item == "B2A3G",
direct == "PAID",
unit == "CP_MNAC",
sector == "S14_S15") %>%
select(geo, time, values, sector) %>%
left_join(gdp, by = c("geo", "time")) %>%
mutate(values = values/gdp) %>%
year_to_date %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
na.omit %>%
ggplot + theme_minimal() + xlab("") + ylab("") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 10), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
labels = percent_format(a = 1))
2000-
Code
nasa_10_nf_tr %>%
filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
na_item == "B2A3G",
direct == "PAID",
unit == "CP_MNAC",
sector == "S14_S15") %>%
select(geo, time, values, sector) %>%
left_join(gdp, by = c("geo", "time")) %>%
mutate(values = values/gdp) %>%
year_to_date %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
filter(date >= as.Date("2000-01-01")) %>%
ggplot + theme_minimal() + xlab("") + ylab("") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
labels = percent_format(a = 1))
2015-
Code
nasa_10_nf_tr %>%
filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
na_item == "B2A3G",
direct == "PAID",
unit == "CP_MNAC",
sector == "S14_S15") %>%
select(geo, time, values, sector) %>%
left_join(gdp, by = c("geo", "time")) %>%
mutate(values = values/gdp) %>%
year_to_date %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
filter(date >= as.Date("2015-01-01")) %>%
ggplot + theme_minimal() + xlab("") + ylab("") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 1), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
labels = percent_format(a = 1))
Operating surplus and mixed income, gross - B2A3G, S11
All
Code
nasa_10_nf_tr %>%
filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
na_item == "B2A3G",
direct == "PAID",
unit == "CP_MNAC",
sector == "S11") %>%
select(geo, time, values, sector) %>%
left_join(gdp, by = c("geo", "time")) %>%
mutate(values = values/gdp) %>%
year_to_date %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
na.omit %>%
ggplot + theme_minimal() + xlab("") + ylab("") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 10), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
labels = percent_format(a = 1))
2000-
Code
nasa_10_nf_tr %>%
filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
na_item == "B2A3G",
direct == "PAID",
unit == "CP_MNAC",
sector == "S11") %>%
select(geo, time, values, sector) %>%
left_join(gdp, by = c("geo", "time")) %>%
mutate(values = values/gdp) %>%
year_to_date %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
filter(date >= as.Date("2000-01-01")) %>%
ggplot + theme_minimal() + xlab("") + ylab("") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
labels = percent_format(a = 1))
2015-
Code
nasa_10_nf_tr %>%
filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
na_item == "B2A3G",
direct == "PAID",
unit == "CP_MNAC",
sector == "S11") %>%
select(geo, time, values, sector) %>%
left_join(gdp, by = c("geo", "time")) %>%
mutate(values = values/gdp) %>%
year_to_date %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
filter(date >= as.Date("2015-01-01")) %>%
ggplot + theme_minimal() + xlab("") + ylab("") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 1), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
labels = percent_format(a = 1))
