source | dataset | .html | .RData |
---|---|---|---|
insee | CNT-2014-PIB-EQB-RF | 2024-10-29 | 2024-11-05 |
Équilibre du produit intérieur brut
Data - Insee
Info
Info
Données sur la macroéconomie en France
source | dataset | .html | .RData |
---|---|---|---|
bdf | CFT | 2024-09-30 | 2024-07-01 |
insee | CNA-2014-CONSO-MEN | 2024-11-05 | 2024-11-05 |
insee | CNA-2014-CONSO-SI | 2024-11-05 | 2024-11-05 |
insee | CNA-2014-CSI | 2024-11-05 | 2024-11-05 |
insee | CNA-2014-FBCF-BRANCHE | 2024-11-05 | 2024-11-05 |
insee | CNA-2014-FBCF-SI | 2024-06-07 | 2024-11-05 |
insee | CNA-2014-PIB | 2024-11-05 | 2024-11-05 |
insee | CNA-2014-RDB | 2024-11-05 | 2024-11-05 |
insee | CNT-2014-CB | 2024-11-05 | 2024-11-05 |
insee | CNT-2014-CSI | 2024-11-05 | 2024-11-05 |
insee | CNT-2014-OPERATIONS | 2024-11-05 | 2024-11-05 |
insee | CNT-2014-PIB-EQB-RF | 2024-10-29 | 2024-11-05 |
insee | CONSO-MENAGES-2014 | 2024-10-29 | 2024-11-05 |
insee | conso-mensuelle | 2024-06-07 | 2023-07-04 |
insee | ICA-2015-IND-CONS | 2024-10-29 | 2024-11-05 |
insee | t_1101 | 2024-10-29 | 2022-01-02 |
insee | t_1102 | 2024-10-29 | 2020-10-30 |
insee | t_1105 | 2024-10-29 | 2020-10-30 |
LAST_UPDATE
Code
`CNT-2014-PIB-EQB-RF` %>%
group_by(LAST_UPDATE) %>%
summarise(Nobs = n()) %>%
arrange(desc(LAST_UPDATE)) %>%
print_table_conditional()
LAST_UPDATE | Nobs |
---|---|
2024-04-30 | 20236 |
LAST_COMPILE
LAST_COMPILE |
---|
2024-11-05 |
Last
Code
`CNT-2014-PIB-EQB-RF` %>%
filter(TIME_PERIOD == max(TIME_PERIOD)) %>%
select(TIME_PERIOD, TITLE_FR, OBS_VALUE) %>%
print_table_conditional()
Nobs
Code
`CNT-2014-PIB-EQB-RF` %>%
left_join(OPERATION, by = "OPERATION") %>%
group_by(OPERATION, Operation, CNA_PRODUIT) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
TITLE_FR
Code
`CNT-2014-PIB-EQB-RF` %>%
group_by(IDBANK, TITLE_FR) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
VALORISATION
Code
`CNT-2014-PIB-EQB-RF` %>%
left_join(VALORISATION, by = "VALORISATION") %>%
group_by(VALORISATION, Valorisation) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
VALORISATION | Valorisation | Nobs |
---|---|---|
L | Volumes aux prix de l'année précédente chaînés | 10911 |
V | Valeurs aux prix courants | 7525 |
SO | Sans objet | 1800 |
OPERATION
All
Code
`CNT-2014-PIB-EQB-RF` %>%
left_join(OPERATION, by = "OPERATION") %>%
group_by(OPERATION, Operation) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
OPERATION | Operation | Nobs |
---|---|---|
P3 | P3 - Dépense de consommation finale | 2408 |
PIB | PIB - Produit intérieur brut | 978 |
DINTF | Demande intérieure totale finale | 903 |
DINTFHS | Demande intérieure totale finale hors stocks | 903 |
P31 | P31 - Dépense de consommation finale individuelle | 903 |
P32 | P32 - Dépense de consommation finale collective | 903 |
P4 | P4 - Consommation finale effective | 903 |
P51 | P51 - Formation brute de capital fixe | 903 |
P51B | P51B - FBCF des entreprises financières (y compris entreprises individuelles) | 903 |
P51G | P51G - Formation brute de capital fixe | 903 |
P51M | P51M - FBCF des ménages (hors entreprises individuelles) | 903 |
P51P | P51P - FBCF des ISBLSM | 903 |
P51S | P51S - FBCF des entreprises non financières (y compris entreprises individuelles) | 903 |
P6 | P6 - Exportations de biens et services | 903 |
P7 | P7 - Importations de biens et services | 903 |
P52 | P52 - Variation de stocks | 602 |
P54 | P54 - Stocks et acquisitions moins cession d'objets de valeur | 602 |
SOLDE | SOLDE - Solde extérieur total | 602 |
D211 | D211 - Impôts de type 'Taxe à la Valeur Ajoutée' (TVA) | 301 |
D212 | D212 - Impôts sur les importations autres que la taxe à la valeur ajoutée | 301 |
D214 | D214 - Autres impôts sur les produits | 301 |
D319 | D319 - Autres subventions sur les produits | 301 |
P53 | P53 - Acquisitions moins cession d'objets de valeur | 301 |
D11 | D11 - Salaires et traitements bruts | 300 |
D121 | D121 - Cotisations sociales effectives à la charge des employeurs | 300 |
D122 | D122 - Cotisations sociales imputées à la charge des employeurs | 300 |
D291 | D291 - Impôts sur les salaires et la main-d'oeuvre | 300 |
D292 | D292 - Impôts divers sur la production | 300 |
D39 | D39 - Subventions d'exploitation | 300 |
Volume
Code
`CNT-2014-PIB-EQB-RF` %>%
filter(FREQ == "T",
== "L",
VALORISATION == "VALEUR_ABSOLUE",
NATURE `SECT-INST` == "SO") %>%
left_join(OPERATION, by = "OPERATION") %>%
group_by(OPERATION, Operation) %>%
summarise(Nobs = n(),
Last = last(OBS_VALUE)) %>%
arrange(-Nobs) %>%
print_table_conditional()
OPERATION | Operation | Nobs | Last |
---|---|---|---|
DINTF | Demande intérieure totale finale | 301 | 68028 |
DINTFHS | Demande intérieure totale finale hors stocks | 301 | 66093 |
P3 | P3 - Dépense de consommation finale | 301 | NaN |
P31 | P31 - Dépense de consommation finale individuelle | 301 | 8150 |
P32 | P32 - Dépense de consommation finale collective | 301 | 8718 |
P4 | P4 - Consommation finale effective | 301 | 54746 |
P52 | P52 - Variation de stocks | 301 | NaN |
P6 | P6 - Exportations de biens et services | 301 | 3612 |
P7 | P7 - Importations de biens et services | 301 | 3846 |
PIB | PIB - Produit intérieur brut | 301 | 66592 |
Valeur
Code
`CNT-2014-PIB-EQB-RF` %>%
filter(FREQ == "T",
== "V",
VALORISATION == "VALEUR_ABSOLUE",
NATURE `SECT-INST` == "SO") %>%
left_join(OPERATION, by = "OPERATION") %>%
group_by(OPERATION, Operation) %>%
summarise(Nobs = n(),
Last = last(OBS_VALUE)) %>%
arrange(-Nobs) %>%
print_table_conditional()
OPERATION | Operation | Nobs | Last |
---|---|---|---|
D211 | D211 - Impôts de type 'Taxe à la Valeur Ajoutée' (TVA) | 301 | 231 |
D212 | D212 - Impôts sur les importations autres que la taxe à la valeur ajoutée | 301 | 5 |
D214 | D214 - Autres impôts sur les produits | 301 | 155 |
D319 | D319 - Autres subventions sur les produits | 301 | -28 |
DINTF | Demande intérieure totale finale | 301 | 3185 |
DINTFHS | Demande intérieure totale finale hors stocks | 301 | 3062 |
P3 | P3 - Dépense de consommation finale | 301 | NaN |
P31 | P31 - Dépense de consommation finale individuelle | 301 | 247 |
P32 | P32 - Dépense de consommation finale collective | 301 | 230 |
P4 | P4 - Consommation finale effective | 301 | 2449 |
P52 | P52 - Variation de stocks | 301 | 121 |
P53 | P53 - Acquisitions moins cession d'objets de valeur | 301 | 2 |
P54 | P54 - Stocks et acquisitions moins cession d'objets de valeur | 301 | 123 |
P6 | P6 - Exportations de biens et services | 301 | 437 |
P7 | P7 - Importations de biens et services | 301 | 420 |
PIB | PIB - Produit intérieur brut | 301 | 3201 |
SOLDE | SOLDE - Solde extérieur total | 301 | 17 |
NATURE
Code
`CNT-2014-PIB-EQB-RF` %>%
left_join(NATURE, by = "NATURE") %>%
group_by(NATURE, Nature) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
NATURE | Nature | Nobs |
---|---|---|
VALEUR_ABSOLUE | Valeur absolue | 14743 |
RATIO | Ratio | 5117 |
TAUX | Taux | 376 |
FREQ
Code
`CNT-2014-PIB-EQB-RF` %>%
left_join(FREQ, by = "FREQ") %>%
group_by(FREQ, Freq) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
FREQ | Freq | Nobs |
---|---|---|
T | NA | 20161 |
A | Annual | 75 |
UNIT_MEASURE
Code
`CNT-2014-PIB-EQB-RF` %>%
group_by(UNIT_MEASURE) %>%
summarise(Nobs = n()) %>%
print_table_conditional()
UNIT_MEASURE | Nobs |
---|---|
EUROS | 14442 |
POURCENT | 376 |
SO | 5418 |
CNA_PRODUIT
Code
`CNT-2014-PIB-EQB-RF` %>%
left_join(CNA_PRODUIT, by = "CNA_PRODUIT") %>%
group_by(CNA_PRODUIT, Cna_produit) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
CNA_PRODUIT | Cna_produit | Nobs |
---|---|---|
D-CNT | Ensemble des biens et services | 11733 |
SO | Sans objet | 8503 |
TIME_PERIOD
Code
`CNT-2014-PIB-EQB-RF` %>%
group_by(TIME_PERIOD) %>%
summarise(Nobs = n()) %>%
arrange(desc(TIME_PERIOD)) %>%
print_table_conditional()
Last - 2022-Q1
Tous
Code
`CNT-2014-PIB-EQB-RF` %>%
filter(TIME_PERIOD == "2022-Q1") %>%
select_if(~ n_distinct(.) > 1) %>%
select(-IDBANK, -TITLE_EN) %>%
arrange(-OBS_VALUE) %>%
print_table_conditional
% du PIB
Code
`CNT-2014-PIB-EQB-RF` %>%
filter(FREQ == "T",
== "V",
VALORISATION == "2022-Q1") %>%
TIME_PERIOD select_if(~ n_distinct(.) > 1) %>%
select(-IDBANK, -TITLE_EN) %>%
arrange(-OBS_VALUE) %>%
mutate(`% of GDP` = round(100*OBS_VALUE/OBS_VALUE[OPERATION == "PIB"], 1)) %>%
print_table_conditional
OPERATION | SECT-INST | CNA_PRODUIT | TITLE_FR | OBS_VALUE | OBS_REV | % of GDP |
---|---|---|---|---|---|---|
DINTF | SO | SO | Demande intérieure totale finale - Valeur aux prix courants - Série CVS-CJO - Série arrêtée | 664069 | 1 | 103.0 |
DINTFHS | SO | SO | Demande intérieure totale finale hors stocks - Valeur aux prix courants - Série CVS-CJO - Série arrêtée | 656929 | 1 | 101.9 |
PIB | SO | SO | Produit intérieur brut total - Valeur aux prix courants - Série CVS-CJO - Série arrêtée | 644543 | 1 | 100.0 |
P4 | SO | D-CNT | Dépenses de consommation totales - Valeur aux prix courants - Série CVS-CJO - Série arrêtée | 497031 | 1 | 77.1 |
P3 | S14 | D-CNT | Dépenses de consommation des ménages - Total - Valeur aux prix courants - Série CVS-CJO - Série arrêtée | 326685 | 1 | 50.7 |
P7 | SO | D-CNT | Importations - Total - Valeur aux prix courants - Série CVS-CJO - Série arrêtée | 236170 | 1 | 36.6 |
P6 | SO | D-CNT | Exportations - Total - Valeur aux prix courants - Série CVS-CJO - Série arrêtée | 216644 | 1 | 33.6 |
P51 | S0 | D-CNT | FBCF de l'ensemble des secteurs institutionnels - Total - Valeur aux prix courants - Série CVS-CJO - Série arrêtée | 159898 | 1 | 24.8 |
P3 | SO | SO | Dépenses de consommation des APU - Total - Valeur aux prix courants - Série CVS-CJO - Série arrêtée | 156513 | 1 | 24.3 |
P31 | SO | D-CNT | Dépenses de consommation individualisable des APU - Total - Valeur aux prix courants - Série CVS-CJO - Série arrêtée | 103457 | 1 | 16.1 |
P51S | S11 | D-CNT | Investissement des entreprises non financières - Total - Valeur aux prix courants - Série CVS-CJO - Série arrêtée | 88982 | 1 | 13.8 |
P32 | SO | D-CNT | Dépenses de consommation collective des APU - Total - Valeur aux prix courants - Série CVS-CJO - Série arrêtée | 53056 | 1 | 8.2 |
D211 | SO | D-CNT | TVA - Total - Valeur aux prix courants - Série CVS-CJO - Série arrêtée | 48828 | 1 | 7.6 |
P51M | S14 | D-CNT | FBCF des ménages - Total - Valeur aux prix courants - Série CVS-CJO - Série arrêtée | 38523 | 1 | 6.0 |
D214 | SO | D-CNT | Autres impôts sur les produits - Total - Valeur aux prix courants - Série CVS-CJO - Série arrêtée | 29146 | 1 | 4.5 |
P51G | S13 | D-CNT | FBCF des administrations publiques - Total - Valeur aux prix courants - Série CVS-CJO - Série arrêtée | 23749 | 1 | 3.7 |
P3 | S15 | D-CNT | Dépenses de consommation des ISBLSM - Total - Valeur aux prix courants - Série CVS-CJO - Série arrêtée | 13833 | NA | 2.1 |
P51B | S12 | D-CNT | FBCF des sociétés financières - Total - Valeur aux prix courants - Série CVS-CJO - Série arrêtée | 7292 | 1 | 1.1 |
P54 | SO | D-CNT | Stocks et acquisitions moins cessions d'objets de valeur - Total - Valeur aux prix courants - Série CVS-CJO - Série arrêtée | 7139 | 1 | 1.1 |
P52 | SO | D-CNT | Variation des stocks - Total - Valeur aux prix courants - Série CVS-CJO - Série arrêtée | 6789 | 1 | 1.1 |
P51P | S15 | D-CNT | FBCF des ISBLSM - Total - Valeur aux prix courants - Série CVS-CJO - Série arrêtée | 1352 | NA | 0.2 |
D212 | SO | D-CNT | Impôts sur importations - Total - Valeur aux prix courants - Série CVS-CJO - Série arrêtée | 915 | 1 | 0.1 |
P53 | SO | D-CNT | Acquisitions moins cessions d'objets de valeur - Total - Valeur aux prix courants - Série CVS-CJO - Série arrêtée | 351 | NA | 0.1 |
D319 | SO | D-CNT | Subventions - Total - Valeur aux prix courants - Série CVS-CJO - Série arrêtée | -7753 | NA | -1.2 |
SOLDE | SO | SO | Solde extérieur total - Valeur aux prix courants - Série CVS-CJO - Série arrêtée | -19526 | 1 | -3.0 |
Deflators
All
Code
`CNT-2014-PIB-EQB-RF` %>%
filter(OPERATION %in% c("PIB", "P3", "P4"),
%in% c("V", "L"),
VALORISATION == "VALEUR_ABSOLUE") %>%
NATURE select_if(~ n_distinct(.) > 1) %>%
select(-IDBANK, -TITLE_EN) %>%
rowwise() %>%
mutate(date = TIME_PERIOD_to_date(TIME_PERIOD)) %>%
arrange(desc(date)) %>%
group_by(OPERATION, `SECT-INST`, date) %>%
summarise(deflator = 100*OBS_VALUE[VALORISATION == "V"]/OBS_VALUE[VALORISATION == "L"]) %>%
%>%
ungroup left_join(OPERATION, by = "OPERATION") %>%
left_join(`SECT-INST`, by = "SECT-INST") %>%
mutate(variable = paste0(OPERATION, " - ", `Sect-Inst`)) %>%
+ geom_line(aes(x = date, y = deflator, color = variable)) +
ggplot theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10() +
theme(legend.position = c(0.5, 0.8),
legend.title = element_blank())
2014-
Code
`CNT-2014-PIB-EQB-RF` %>%
filter(OPERATION %in% c("PIB", "P3", "P4"),
%in% c("V", "L"),
VALORISATION == "VALEUR_ABSOLUE") %>%
NATURE select_if(~ n_distinct(.) > 1) %>%
select(-IDBANK, -TITLE_EN) %>%
rowwise() %>%
mutate(date = TIME_PERIOD_to_date(TIME_PERIOD)) %>%
arrange(desc(date)) %>%
group_by(OPERATION, `SECT-INST`, date) %>%
summarise(deflator = 100*OBS_VALUE[VALORISATION == "V"]/OBS_VALUE[VALORISATION == "L"]) %>%
%>%
ungroup left_join(OPERATION, by = "OPERATION") %>%
left_join(`SECT-INST`, by = "SECT-INST") %>%
filter(date >= as.Date("2014-01-01")) %>%
mutate(variable = paste0(OPERATION, " - ", `Sect-Inst`)) %>%
+ geom_line(aes(x = date, y = deflator, color = variable)) +
ggplot theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10() +
theme(legend.position = c(0.5, 0.8),
legend.title = element_blank())
2019-
Code
`CNT-2014-PIB-EQB-RF` %>%
filter(OPERATION %in% c("PIB", "P3", "P4"),
%in% c("V", "L"),
VALORISATION == "VALEUR_ABSOLUE") %>%
NATURE select_if(~ n_distinct(.) > 1) %>%
select(-IDBANK, -TITLE_EN) %>%
rowwise() %>%
mutate(date = TIME_PERIOD_to_date(TIME_PERIOD)) %>%
arrange(desc(date)) %>%
group_by(OPERATION, `SECT-INST`, date) %>%
summarise(deflator = 100*OBS_VALUE[VALORISATION == "V"]/OBS_VALUE[VALORISATION == "L"]) %>%
%>%
ungroup left_join(OPERATION, by = "OPERATION") %>%
left_join(`SECT-INST`, by = "SECT-INST") %>%
filter(date >= as.Date("2019-01-01")) %>%
mutate(variable = paste0(OPERATION, " - ", `Sect-Inst`)) %>%
+ geom_line(aes(x = date, y = deflator, color = variable)) +
ggplot theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10() +
theme(legend.position = c(0.5, 0.8),
legend.title = element_blank())
2020-
Code
`CNT-2014-PIB-EQB-RF` %>%
filter(OPERATION %in% c("PIB", "P3", "P4"),
%in% c("V", "L"),
VALORISATION == "VALEUR_ABSOLUE") %>%
NATURE select_if(~ n_distinct(.) > 1) %>%
select(-IDBANK, -TITLE_EN) %>%
rowwise() %>%
mutate(date = TIME_PERIOD_to_date(TIME_PERIOD)) %>%
arrange(desc(date)) %>%
group_by(OPERATION, `SECT-INST`, date) %>%
summarise(deflator = 100*OBS_VALUE[VALORISATION == "V"]/OBS_VALUE[VALORISATION == "L"]) %>%
%>%
ungroup left_join(OPERATION, by = "OPERATION") %>%
left_join(`SECT-INST`, by = "SECT-INST") %>%
filter(date >= as.Date("2020-01-01")) %>%
mutate(variable = paste0(OPERATION, " - ", `Sect-Inst`)) %>%
+ geom_line(aes(x = date, y = deflator, color = variable)) +
ggplot theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10() +
theme(legend.position = c(0.5, 0.8),
legend.title = element_blank())
2021-
Code
`CNT-2014-PIB-EQB-RF` %>%
filter(OPERATION %in% c("PIB", "P3", "P4"),
%in% c("V", "L"),
VALORISATION == "VALEUR_ABSOLUE") %>%
NATURE select_if(~ n_distinct(.) > 1) %>%
select(-IDBANK, -TITLE_EN) %>%
rowwise() %>%
mutate(date = TIME_PERIOD_to_date(TIME_PERIOD)) %>%
arrange(desc(date)) %>%
group_by(OPERATION, `SECT-INST`, date) %>%
summarise(deflator = 100*OBS_VALUE[VALORISATION == "V"]/OBS_VALUE[VALORISATION == "L"]) %>%
%>%
ungroup left_join(OPERATION, by = "OPERATION") %>%
left_join(`SECT-INST`, by = "SECT-INST") %>%
filter(date >= as.Date("2021-01-01")) %>%
mutate(variable = paste0(OPERATION, " - ", `Sect-Inst`)) %>%
group_by(OPERATION, `SECT-INST`) %>%
mutate(deflator = 100*deflator/deflator[1]) %>%
+ geom_line(aes(x = date, y = deflator, color = variable)) +
ggplot theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10() +
theme(legend.position = c(0.5, 0.8),
legend.title = element_blank())
Agrégats
consommation nominale
Code
`CNT-2014-PIB-EQB-RF` %>%
filter(FREQ == "T",
== "V",
VALORISATION %in% c("P3", "PIB")) %>%
OPERATION %>%
quarter_to_date filter(date >= as.Date("2022-01-01")) %>%
group_by(OPERATION, `SECT-INST`) %>%
arrange(date) %>%
mutate(OBS_VALUE = OBS_VALUE/OBS_VALUE[1]) %>%
mutate(TITLE_FR = gsub("- Valeur aux prix courants - Série CVS-CJO", "", TITLE_FR)) %>%
ggplot() + ylab("% du PIB") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.4),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 300, 5),
labels = percent_format(accuracy = 1))
Consommation: P4, P3
All
Code
`CNT-2014-PIB-EQB-RF` %>%
filter(FREQ == "T",
== "V",
VALORISATION %in% c("P4", "P3", "PIB")) %>%
OPERATION %>%
quarter_to_date group_by(date) %>%
mutate(OBS_VALUE = OBS_VALUE/OBS_VALUE[OPERATION == "PIB"]) %>%
filter(OPERATION != "PIB") %>%
mutate(TITLE_FR = gsub("- Valeur aux prix courants - Série CVS-CJO", "", TITLE_FR)) %>%
ggplot() + ylab("% du PIB") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.4),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 300, 5),
labels = percent_format(accuracy = 1))
1980-
Code
`CNT-2014-PIB-EQB-RF` %>%
filter(FREQ == "T",
== "V",
VALORISATION %in% c("P4", "P3", "PIB")) %>%
OPERATION %>%
quarter_to_date group_by(date) %>%
mutate(OBS_VALUE = OBS_VALUE/OBS_VALUE[OPERATION == "PIB"]) %>%
filter(OPERATION != "PIB") %>%
mutate(TITLE_FR = gsub("- Valeur aux prix courants - Série CVS-CJO", "", TITLE_FR)) %>%
filter(date >= as.Date("1980-01-01")) %>%
ggplot() + ylab("% du PIB") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.4),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 300, 5),
labels = percent_format(accuracy = 1))
1995-
Code
`CNT-2014-PIB-EQB-RF` %>%
filter(FREQ == "T",
== "V",
VALORISATION %in% c("P4", "P3", "PIB")) %>%
OPERATION %>%
quarter_to_date group_by(date) %>%
mutate(OBS_VALUE = OBS_VALUE/OBS_VALUE[OPERATION == "PIB"]) %>%
filter(OPERATION != "PIB") %>%
mutate(TITLE_FR = gsub("- Valeur aux prix courants - Série CVS-CJO", "", TITLE_FR)) %>%
filter(date >= as.Date("1995-01-01")) %>%
ggplot() + ylab("% du PIB") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.4),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 300, 5),
labels = percent_format(accuracy = 1))
2000-
Code
`CNT-2014-PIB-EQB-RF` %>%
filter(FREQ == "T",
== "V",
VALORISATION %in% c("P4", "P3", "PIB")) %>%
OPERATION %>%
quarter_to_date group_by(date) %>%
mutate(OBS_VALUE = OBS_VALUE/OBS_VALUE[OPERATION == "PIB"]) %>%
filter(OPERATION != "PIB") %>%
mutate(TITLE_FR = gsub("- Valeur aux prix courants - Série CVS-CJO", "", TITLE_FR)) %>%
filter(date >= as.Date("2000-01-01")) %>%
ggplot() + ylab("% du PIB") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.4),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 300, 5),
labels = percent_format(accuracy = 1))
Consommation P3: individualisable P31 vs. collective P32
All
Code
`CNT-2014-PIB-EQB-RF` %>%
filter(FREQ == "T",
== "V",
VALORISATION %in% c("P31", "P32", "PIB")) %>%
OPERATION %>%
quarter_to_date group_by(date) %>%
mutate(OBS_VALUE = OBS_VALUE/OBS_VALUE[OPERATION == "PIB"]) %>%
filter(OPERATION != "PIB") %>%
mutate(TITLE_FR = gsub("- Valeur aux prix courants - Série CVS-CJO", "", TITLE_FR)) %>%
ggplot() + ylab("% du PIB") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 300, 1),
labels = percent_format(accuracy = 1))
1980-
Code
`CNT-2014-PIB-EQB-RF` %>%
filter(FREQ == "T",
== "V",
VALORISATION %in% c("P31", "P32", "PIB")) %>%
OPERATION %>%
quarter_to_date group_by(date) %>%
mutate(OBS_VALUE = OBS_VALUE/OBS_VALUE[OPERATION == "PIB"]) %>%
filter(OPERATION != "PIB") %>%
mutate(TITLE_FR = gsub("- Valeur aux prix courants - Série CVS-CJO", "", TITLE_FR)) %>%
filter(date >= as.Date("1980-01-01")) %>%
ggplot() + ylab("% du PIB") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 300, 1),
labels = percent_format(accuracy = 1))
1995-
Code
`CNT-2014-PIB-EQB-RF` %>%
filter(FREQ == "T",
== "V",
VALORISATION %in% c("P31", "P32", "PIB")) %>%
OPERATION %>%
quarter_to_date group_by(date) %>%
mutate(OBS_VALUE = OBS_VALUE/OBS_VALUE[OPERATION == "PIB"]) %>%
filter(OPERATION != "PIB") %>%
mutate(TITLE_FR = gsub("- Valeur aux prix courants - Série CVS-CJO", "", TITLE_FR)) %>%
filter(date >= as.Date("1995-01-01")) %>%
ggplot() + ylab("% du PIB") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 300, 1),
labels = percent_format(accuracy = 1))
Exports, Imports
All
Code
`CNT-2014-PIB-EQB-RF` %>%
filter(FREQ == "T",
== "V",
VALORISATION %in% c("P6", "P7", "PIB")) %>%
OPERATION %>%
quarter_to_date group_by(date) %>%
mutate(OBS_VALUE = OBS_VALUE/OBS_VALUE[OPERATION == "PIB"]) %>%
filter(OPERATION != "PIB") %>%
mutate(TITLE_FR = gsub("- Valeur aux prix courants - Série CVS-CJO", "", TITLE_FR)) %>%
ggplot() + ylab("% du PIB") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 300, 2),
labels = percent_format(accuracy = 1))
1980-
Code
`CNT-2014-PIB-EQB-RF` %>%
filter(FREQ == "T",
== "V",
VALORISATION %in% c("P6", "P7", "PIB")) %>%
OPERATION %>%
quarter_to_date group_by(date) %>%
mutate(OBS_VALUE = OBS_VALUE/OBS_VALUE[OPERATION == "PIB"]) %>%
filter(OPERATION != "PIB") %>%
mutate(TITLE_FR = gsub("- Valeur aux prix courants - Série CVS-CJO", "", TITLE_FR)) %>%
filter(date >= as.Date("1980-01-01")) %>%
ggplot() + ylab("% du PIB") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 300, 2),
labels = percent_format(accuracy = 1))
1995-
Code
`CNT-2014-PIB-EQB-RF` %>%
filter(FREQ == "T",
== "V",
VALORISATION %in% c("P6", "P7", "PIB")) %>%
OPERATION %>%
quarter_to_date group_by(date) %>%
mutate(OBS_VALUE = OBS_VALUE/OBS_VALUE[OPERATION == "PIB"]) %>%
filter(OPERATION != "PIB") %>%
mutate(TITLE_FR = gsub("- Valeur aux prix courants - Série CVS-CJO", "", TITLE_FR)) %>%
filter(date >= as.Date("1995-01-01")) %>%
ggplot() + ylab("% du PIB") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 300, 2),
labels = percent_format(accuracy = 1))
Solde Extérieur
All
Code
`CNT-2014-PIB-EQB-RF` %>%
filter(FREQ == "T",
== "V",
VALORISATION %in% c("SOLDE", "PIB")) %>%
OPERATION %>%
quarter_to_date group_by(date) %>%
mutate(OBS_VALUE = OBS_VALUE/OBS_VALUE[OPERATION == "PIB"]) %>%
filter(OPERATION != "PIB") %>%
mutate(TITLE_FR = gsub("- Valeur aux prix courants - Série CVS-CJO", "", TITLE_FR)) %>%
%>%
na.omit ggplot() + ylab("% du PIB") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-100, 300, 1),
labels = percent_format(accuracy = 1))
1980-
Code
`CNT-2014-PIB-EQB-RF` %>%
filter(FREQ == "T",
== "V",
VALORISATION %in% c("SOLDE", "PIB")) %>%
OPERATION %>%
quarter_to_date group_by(date) %>%
mutate(OBS_VALUE = OBS_VALUE/OBS_VALUE[OPERATION == "PIB"]) %>%
filter(OPERATION != "PIB") %>%
mutate(TITLE_FR = gsub("- Valeur aux prix courants - Série CVS-CJO", "", TITLE_FR)) %>%
%>%
na.omit filter(date >= as.Date("1980-01-01")) %>%
ggplot() + ylab("% du PIB") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-100, 300, 1),
labels = percent_format(accuracy = 1))
1995-
Code
`CNT-2014-PIB-EQB-RF` %>%
filter(FREQ == "T",
== "V",
VALORISATION %in% c("SOLDE", "PIB")) %>%
OPERATION %>%
quarter_to_date group_by(date) %>%
mutate(OBS_VALUE = OBS_VALUE/OBS_VALUE[OPERATION == "PIB"]) %>%
filter(OPERATION != "PIB") %>%
mutate(TITLE_FR = gsub("- Valeur aux prix courants - Série CVS-CJO", "", TITLE_FR)) %>%
%>%
na.omit filter(date >= as.Date("1995-01-01")) %>%
ggplot() + ylab("% du PIB") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-100, 300, 1),
labels = percent_format(accuracy = 1))
Investissement
All
Code
`CNT-2014-PIB-EQB-RF` %>%
filter(FREQ == "T",
== "V",
VALORISATION %in% c("P51", "P51B", "P51G", "P51M", "P51P", "P51S", "PIB")) %>%
OPERATION %>%
quarter_to_date group_by(date) %>%
mutate(OBS_VALUE = OBS_VALUE/OBS_VALUE[OPERATION == "PIB"]) %>%
filter(OPERATION != "PIB") %>%
mutate(TITLE_FR = gsub("- Valeur aux prix courants - Série CVS-CJO", "", TITLE_FR)) %>%
ggplot() + ylab("% du PIB") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = OBS_VALUE, color = paste(OPERATION, "-", TITLE_FR))) +
#
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.78),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 300, 2),
labels = percent_format(accuracy = 1))
1980-
Code
`CNT-2014-PIB-EQB-RF` %>%
filter(FREQ == "T",
== "V",
VALORISATION %in% c("P51", "P51B", "P51G", "P51M", "P51P", "P51S", "PIB")) %>%
OPERATION %>%
quarter_to_date group_by(date) %>%
mutate(OBS_VALUE = OBS_VALUE/OBS_VALUE[OPERATION == "PIB"]) %>%
filter(OPERATION != "PIB") %>%
mutate(TITLE_FR = gsub("- Valeur aux prix courants - Série CVS-CJO", "", TITLE_FR)) %>%
filter(date >= as.Date("1980-01-01")) %>%
ggplot() + ylab("% du PIB") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
#
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 300, 2),
labels = percent_format(accuracy = 1))
1995-
Code
`CNT-2014-PIB-EQB-RF` %>%
filter(FREQ == "T",
== "V",
VALORISATION %in% c("P51", "P51B", "P51G", "P51M", "P51P", "P51S", "PIB")) %>%
OPERATION %>%
quarter_to_date group_by(date) %>%
mutate(OBS_VALUE = OBS_VALUE/OBS_VALUE[OPERATION == "PIB"]) %>%
filter(OPERATION != "PIB") %>%
mutate(TITLE_FR = gsub("- Valeur aux prix courants - Série CVS-CJO", "", TITLE_FR)) %>%
filter(date >= as.Date("1995-01-01")) %>%
ggplot() + ylab("% du PIB") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
#
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 300, 2),
labels = percent_format(accuracy = 1))
GDP Updates
gdp_quarterly2
Code
<- `CNT-2014-PIB-EQB-RF` %>%
gdp_quarterly filter(OPERATION == "PIB",
== "T",
FREQ == "V") %>%
VALORISATION %>%
quarter_to_date arrange(date) %>%
mutate(date = date + months(3) - days(1)) %>%
select(date, gdp = OBS_VALUE) %>%
mutate(gdp = gdp/1000)
save(gdp_quarterly, file = "gdp_quarterly2.RData")
%>%
gdp_quarterly tail(5) %>%
print_table_conditional()
date | gdp |
---|---|
2023-03-31 | 685.694 |
2023-06-30 | 701.202 |
2023-09-30 | 706.297 |
2023-12-31 | 712.478 |
2024-03-31 | 719.086 |
gdp_quarterly3
Code
<- `CNT-2014-PIB-EQB-RF` %>%
gdp_quarterly filter(OPERATION == "PIB",
== "T",
FREQ == "V") %>%
VALORISATION %>%
quarter_to_date arrange(date) %>%
select(date, gdp = OBS_VALUE) %>%
mutate(gdp = gdp/1000)
save(gdp_quarterly, file = "gdp_quarterly3.RData")
%>%
gdp_quarterly tail(5) %>%
print_table_conditional()
date | gdp |
---|---|
2023-01-01 | 685.694 |
2023-04-01 | 701.202 |
2023-07-01 | 706.297 |
2023-10-01 | 712.478 |
2024-01-01 | 719.086 |
gdp_quarterly4: IDBANK 010565707
Code
<- `CNT-2014-PIB-EQB-RF` %>%
gdp_quarterly filter(OPERATION == "PIB",
== "T",
FREQ == "V") %>%
VALORISATION %>%
quarter_to_date arrange(date) %>%
select(date, gdp = OBS_VALUE)
save(gdp_quarterly, file = "gdp_quarterly4.RData")
%>%
gdp_quarterly tail(5) %>%
print_table_conditional()
date | gdp |
---|---|
2023-01-01 | 685694 |
2023-04-01 | 701202 |
2023-07-01 | 706297 |
2023-10-01 | 712478 |
2024-01-01 | 719086 |
Depuis le Covid-19
PIB valeur
Code
`CNT-2014-PIB-EQB-RF` %>%
filter(OPERATION %in% c("PIB", "P3", "P31", "P32", "P4"),
== "T",
FREQ == "V",
VALORISATION == "VALEUR_ABSOLUE",
NATURE `SECT-INST` == "SO") %>%
left_join(OPERATION, by = "OPERATION") %>%
%>%
quarter_to_date filter(date >= as.Date("2019-10-01")) %>%
select_if(~ n_distinct(.) > 1) %>%
arrange(date) %>%
group_by(OPERATION) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == as.Date("2019-10-01")]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = Operation)) +
ggplot xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("2019-10-01"), to = as.Date("2023-10-01"), by = "quarter"),
labels = date_format("%b %y")) +
scale_y_log10(breaks = seq(0, 120, 5)) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank())
PIB volume
2019-Q4
Code
`CNT-2014-PIB-EQB-RF` %>%
filter(OPERATION %in% c("PIB", "P3", "P31", "P32", "P4"),
== "T",
FREQ == "L",
VALORISATION == "VALEUR_ABSOLUE",
NATURE `SECT-INST` == "SO") %>%
left_join(OPERATION, by = "OPERATION") %>%
%>%
quarter_to_date filter(date >= as.Date("2019-10-01")) %>%
select_if(~ n_distinct(.) > 1) %>%
arrange(date) %>%
group_by(OPERATION) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == as.Date("2019-10-01")]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = Operation)) +
ggplot xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("2019-10-01"), to = as.Date("2023-10-01"), by = "quarter"),
labels = date_format("%b %y")) +
scale_y_log10(breaks = seq(0, 120, 5)) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank())
Demande, Demande hors stocks
Code
`CNT-2014-PIB-EQB-RF` %>%
filter(OPERATION %in% c("PIB", "DINTF", "DINTFHS"),
== "T",
FREQ == "L",
VALORISATION == "VALEUR_ABSOLUE",
NATURE `SECT-INST` == "SO") %>%
left_join(OPERATION, by = "OPERATION") %>%
%>%
quarter_to_date filter(date >= as.Date("2019-10-01")) %>%
select_if(~ n_distinct(.) > 1) %>%
arrange(date) %>%
group_by(OPERATION) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == as.Date("2019-10-01")]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = Operation)) +
ggplot xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("2019-10-01"), to = as.Date("2023-10-01"), by = "quarter"),
labels = date_format("%b %y")) +
scale_y_log10(breaks = seq(0, 120, 5)) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank())
2017-Q2 -
PIB valeur
Code
`CNT-2014-PIB-EQB-RF` %>%
filter(OPERATION %in% c("PIB", "P3", "P31", "P32", "P4"),
== "T",
FREQ == "V",
VALORISATION == "VALEUR_ABSOLUE",
NATURE `SECT-INST` == "SO") %>%
left_join(OPERATION, by = "OPERATION") %>%
%>%
quarter_to_date filter(date >= as.Date("2017-04-01")) %>%
select_if(~ n_distinct(.) > 1) %>%
arrange(date) %>%
group_by(OPERATION) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == as.Date("2017-04-01")]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = Operation)) +
ggplot xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("2017-04-01"), to = as.Date("2023-10-01"), by = "6 months"),
labels = date_format("%b %y")) +
scale_y_log10(breaks = c(seq(0, 120, 5), 106, 107, 111, 112, 113)) +
theme(legend.position = c(0.3, 0.2),
legend.title = element_blank())
PIB volume
Code
`CNT-2014-PIB-EQB-RF` %>%
filter(OPERATION %in% c("PIB", "P3", "P31", "P32", "P4"),
== "T",
FREQ == "L",
VALORISATION == "VALEUR_ABSOLUE",
NATURE `SECT-INST` == "SO") %>%
left_join(OPERATION, by = "OPERATION") %>%
%>%
quarter_to_date filter(date >= as.Date("2017-04-01")) %>%
select_if(~ n_distinct(.) > 1) %>%
arrange(date) %>%
group_by(OPERATION) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == as.Date("2017-04-01")]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = Operation)) +
ggplot xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("2017-04-01"), to = as.Date("2023-10-01"), by = "6 months"),
labels = date_format("%b %y")) +
scale_y_log10(breaks = c(seq(0, 120, 5), 106, 107)) +
theme(legend.position = c(0.3, 0.2),
legend.title = element_blank())
Demande, Demande hors stocks
Code
`CNT-2014-PIB-EQB-RF` %>%
filter(OPERATION %in% c("PIB", "DINTF", "DINTFHS"),
== "T",
FREQ == "L",
VALORISATION == "VALEUR_ABSOLUE",
NATURE `SECT-INST` == "SO") %>%
left_join(OPERATION, by = "OPERATION") %>%
%>%
quarter_to_date filter(date >= as.Date("2017-04-01")) %>%
select_if(~ n_distinct(.) > 1) %>%
arrange(date) %>%
group_by(OPERATION) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == as.Date("2017-04-01")]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = Operation)) +
ggplot xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("2017-04-01"), to = as.Date("2023-10-01"), by = "6 months"),
labels = date_format("%b %y")) +
scale_y_log10(breaks = seq(0, 120, 5)) +
theme(legend.position = c(0.3, 0.2),
legend.title = element_blank())
2011-Q1
PIB valeur
Code
`CNT-2014-PIB-EQB-RF` %>%
filter(OPERATION %in% c("PIB", "P3", "P31", "P32", "P4"),
== "T",
FREQ == "V",
VALORISATION == "VALEUR_ABSOLUE",
NATURE `SECT-INST` == "SO") %>%
left_join(OPERATION, by = "OPERATION") %>%
%>%
quarter_to_date filter(date >= as.Date("2011-01-01")) %>%
select_if(~ n_distinct(.) > 1) %>%
arrange(date) %>%
group_by(OPERATION) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == as.Date("2011-01-01")]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = Operation)) +
ggplot xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = "1 year",
labels = date_format("%Y")) +
scale_y_log10(breaks = c(seq(0, 170, 5), 106, 107, 111, 112, 113)) +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank())
PIB volume
Code
`CNT-2014-PIB-EQB-RF` %>%
filter(OPERATION %in% c("PIB", "P3", "P31", "P32", "P4"),
== "T",
FREQ == "L",
VALORISATION == "VALEUR_ABSOLUE",
NATURE `SECT-INST` == "SO") %>%
left_join(OPERATION, by = "OPERATION") %>%
%>%
quarter_to_date filter(date >= as.Date("2010-01-01")) %>%
select_if(~ n_distinct(.) > 1) %>%
arrange(date) %>%
group_by(OPERATION) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == as.Date("2010-01-01")]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = Operation)) +
ggplot xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = "1 year",
labels = date_format("%Y")) +
scale_y_log10(breaks = c(seq(0, 180, 5), 106, 107)) +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank())
2011-14
PIB valeur
Code
`CNT-2014-PIB-EQB-RF` %>%
filter(OPERATION %in% c("PIB", "P3", "P31", "P32", "P4"),
== "T",
FREQ == "V",
VALORISATION == "VALEUR_ABSOLUE",
NATURE `SECT-INST` == "SO") %>%
left_join(OPERATION, by = "OPERATION") %>%
%>%
quarter_to_date filter(date >= as.Date("2011-01-01"),
<= as.Date("2014-01-01")) %>%
date select_if(~ n_distinct(.) > 1) %>%
arrange(date) %>%
group_by(OPERATION) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == as.Date("2011-01-01")]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = Operation)) +
ggplot xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = "1 year",
labels = date_format("%Y")) +
scale_y_log10(breaks = c(seq(0, 170, 1), 106, 107, 111, 112, 113)) +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank())
PIB volume
Code
`CNT-2014-PIB-EQB-RF` %>%
filter(OPERATION %in% c("PIB", "P3", "P31", "P32", "P4"),
== "T",
FREQ == "L",
VALORISATION == "VALEUR_ABSOLUE",
NATURE `SECT-INST` == "SO") %>%
left_join(OPERATION, by = "OPERATION") %>%
%>%
quarter_to_date filter(date >= as.Date("2011-01-01"),
<= as.Date("2014-01-01")) %>%
date select_if(~ n_distinct(.) > 1) %>%
arrange(date) %>%
group_by(OPERATION) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == as.Date("2011-01-01")]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = Operation)) +
ggplot xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = "1 year",
labels = date_format("%Y")) +
scale_y_log10(breaks = c(seq(0, 180, 1), 106, 107)) +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank())