World Bank Commodity Price Data (The Pink Sheet)
Data - WB
Info
Links
Data on energy
source | dataset | .html | .RData |
---|---|---|---|
ec | WOB | 2024-12-22 | 2024-08-25 |
eurostat | ei_isen_m | 2024-11-23 | 2024-10-09 |
eurostat | nrg_bal_c | 2023-12-31 | 2024-10-08 |
eurostat | nrg_pc_202 | 2024-12-21 | 2024-12-21 |
eurostat | nrg_pc_203 | 2023-06-11 | 2024-10-08 |
eurostat | nrg_pc_203_c | 2024-11-22 | 2024-10-08 |
eurostat | nrg_pc_203_h | 2024-11-22 | 2024-12-22 |
eurostat | nrg_pc_203_v | 2024-11-22 | 2024-10-08 |
eurostat | nrg_pc_204 | 2024-12-21 | 2024-12-22 |
eurostat | nrg_pc_205 | 2023-06-11 | 2024-10-08 |
fred | energy | 2024-12-22 | 2024-12-22 |
iea | world_energy_balances_highlights_2022 | 2024-06-20 | 2023-04-24 |
wb | CMO | 2024-12-21 | 2024-12-22 |
wdi | EG.GDP.PUSE.KO.PP.KD | 2024-09-18 | 2024-09-18 |
wdi | EG.USE.PCAP.KG.OE | 2024-09-18 | 2024-09-18 |
yahoo | energy | 2024-12-22 | 2024-12-22 |
Data on industry
source | dataset | .html | .RData |
---|---|---|---|
ec | INDUSTRY | 2024-09-15 | 2023-10-01 |
eurostat | ei_isin_m | 2024-11-23 | 2024-10-09 |
eurostat | htec_trd_group4 | 2024-11-23 | 2024-10-08 |
eurostat | nama_10_a64 | 2024-12-21 | 2024-12-21 |
eurostat | nama_10_a64_e | 2024-12-21 | 2024-12-21 |
eurostat | namq_10_a10_e | 2024-12-21 | 2024-12-21 |
eurostat | road_eqr_carmot | 2024-11-22 | 2024-10-08 |
eurostat | sts_inpp_m | 2024-06-24 | 2024-12-21 |
eurostat | sts_inppd_m | 2024-12-21 | 2024-12-21 |
eurostat | sts_inpr_m | 2024-11-22 | 2024-10-08 |
eurostat | sts_intvnd_m | 2024-12-21 | 2024-12-21 |
fred | industry | 2024-12-22 | 2024-12-22 |
oecd | ALFS_EMP | 2024-04-16 | 2024-12-21 |
oecd | BERD_MA_SOF | 2024-04-16 | 2023-09-09 |
oecd | GBARD_NABS2007 | 2024-04-16 | 2023-11-22 |
oecd | MEI_REAL | 2024-05-12 | 2024-12-21 |
oecd | MSTI_PUB | 2024-09-15 | 2024-12-21 |
oecd | SNA_TABLE4 | 2024-09-15 | 2024-12-16 |
wdi | NV.IND.EMPL.KD | 2024-01-06 | 2024-09-18 |
wdi | NV.IND.MANF.CD | 2024-12-21 | 2024-12-21 |
wdi | NV.IND.MANF.ZS | 2024-12-21 | 2024-12-21 |
wdi | NV.IND.TOTL.KD | 2024-01-06 | 2024-09-18 |
wdi | NV.IND.TOTL.ZS | 2024-12-21 | 2024-12-21 |
wdi | SL.IND.EMPL.ZS | 2024-12-21 | 2024-12-21 |
wdi | TX.VAL.MRCH.CD.WT | 2024-01-06 | 2024-09-18 |
LAST_COMPILE
LAST_COMPILE |
---|
2024-12-22 |
Last
date | Nobs |
---|---|
2024-11-01 | 68 |
variable
Natural Gas: Europe and US
Nominal prices
Linear
Code
<- CMO %>%
plot_linear filter(Variable %in% c("Natural gas, US", "Natural gas, Europe")) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot labs(x = "", y = "Price of natural gas (Current $/mmbtu)") + theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 10) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.position = c(0.4, 0.8),
legend.title = element_blank()) +
scale_y_continuous(breaks = seq(-20, 400, 10),
labels = dollar_format(a = 1))
plot_linear
Log
All
Code
<- CMO %>%
plot_log filter(Variable %in% c("Natural gas, US", "Natural gas, Europe")) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot labs(x = "", y = "Price of natural gas (Current $/mmbtu)") + theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 10) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.position = c(0.4, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = c(0.1, 0.2, 0.3, 0.5, 0.8, 1, 2, 3, 4, 5, 8, 10, 15, 20, 30, 40, 50),
labels = dollar_format(a = .1))
plot_log
1990-
Code
%>%
CMO filter(Variable %in% c("Natural gas, US", "Natural gas, Europe")) %>%
filter(date >= as.Date("1990-01-01")) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot labs(x = "", y = "Price of natural gas (Current $/mmbtu)") + theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.position = c(0.4, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = c(0.1, 0.2, 0.3, 0.5, 0.8, 1, 2, 3, 4, 5, 8, 10, 15, 20, 30, 40, 50, 80, 100),
labels = dollar_format(a = 1))
2000-
Code
%>%
CMO filter(Variable %in% c("Natural gas, US", "Natural gas, Europe")) %>%
filter(date >= as.Date("2000-01-01")) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot labs(x = "", y = "Price of natural gas (Current $/mmbtu)") + theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = scales::date_format("%Y")) +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.position = c(0.4, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = c(0.1, 0.2, 0.3, 0.5, 0.8, 1, 2, 3, 4, 5, 8, 10, 15, 20, 30, 40, 50, 80, 100),
labels = dollar_format(a = 1))
Bind
Code
::ggarrange(plot_linear + ggtitle("Linear Scale"), plot_log + ggtitle("Log Scale"), common.legend = T) ggpubr
Real prices
Linear
Code
<- CMO %>%
plot_linear filter(Variable %in% c("Natural gas, US", "Natural gas, Europe")) %>%
left_join(CPIAUCSL, by = "date") %>%
arrange(desc(date)) %>%
filter(!is.na(CPIAUCSL)) %>%
mutate(value = value*CPIAUCSL[1]/CPIAUCSL) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot labs(x = "", y = "Price of natural gas (Constant $/mmbtu)") + theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 10) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.position = c(0.2, 0.9),
legend.title = element_blank()) +
scale_y_continuous(breaks = seq(-20, 400, 5),
labels = dollar_format(a = 1))
plot_linear
Log
All
Code
<- CMO %>%
plot_log filter(Variable %in% c("Natural gas, US", "Natural gas, Europe")) %>%
left_join(CPIAUCSL, by = "date") %>%
arrange(desc(date)) %>%
filter(!is.na(CPIAUCSL)) %>%
mutate(value = value*CPIAUCSL[1]/CPIAUCSL) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot labs(x = "", y = "Price of natural gas (Constant $/mmbtu)") + theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 10) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.position = c(0.2, 0.9),
legend.title = element_blank()) +
scale_y_log10(breaks = c(1, 2, 3, 4, 5, 8, 10, 15, 20, 30, 40, 50),
labels = dollar_format(a = 1))
plot_log
1990-
Code
%>%
CMO filter(Variable %in% c("Natural gas, US", "Natural gas, Europe")) %>%
left_join(CPIAUCSL, by = "date") %>%
arrange(desc(date)) %>%
filter(!is.na(CPIAUCSL)) %>%
filter(date >= as.Date("1990-01-01")) %>%
mutate(value = value*CPIAUCSL[1]/CPIAUCSL) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot labs(x = "", y = "Price of natural gas (Constant $/mmbtu)") + theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.position = c(0.2, 0.9),
legend.title = element_blank()) +
scale_y_log10(breaks = c(1, 2, 3, 4, 5, 8, 10, 15, 20, 30, 40, 50),
labels = dollar_format(a = 1))
2000-
Code
%>%
CMO filter(Variable %in% c("Natural gas, US", "Natural gas, Europe")) %>%
left_join(CPIAUCSL, by = "date") %>%
arrange(desc(date)) %>%
filter(!is.na(CPIAUCSL)) %>%
filter(date >= as.Date("2000-01-01")) %>%
mutate(value = value*CPIAUCSL[1]/CPIAUCSL) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot labs(x = "", y = "Price of natural gas (Constant $/mmbtu)") + theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.position = c(0.2, 0.9),
legend.title = element_blank()) +
scale_y_log10(breaks = c(1, 2, 3, 4, 5, 8, 10, 15, 20, 30, 40, 50, 80),
labels = dollar_format(a = 1))
1999-
Linear
Code
<- CMO %>%
plot_linear filter(Variable %in% c("Natural gas, US", "Natural gas, Europe")) %>%
arrange(desc(date)) %>%
filter(date >= as.Date("1999-01-01")) %>%
mutate(country = case_when(Variable == "Natural gas, US" ~ "États-Unis",
== "Natural gas, Europe" ~ "Europe",
Variable ~ NA)) %>%
T + geom_line(aes(x = date, y = value, color = country)) +
ggplot labs(x = "", y = "") + theme_minimal() +
scale_x_date(breaks = c(seq(1999, 2100, 2)) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = c("#B22234", "#003399")) +
theme(legend.position = c(0.2, 0.9),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_y_continuous(breaks = seq(0, 100, 5),
labels = dollar_format(a = 1)) +
labs(caption = "")
<- plot_linear
plot plot_linear
Code
save(plot, file = "CMO_files/figure-html/natural-gas-real-linear-1999-1.RData")
Log
Code
<- plot_linear +
plot_log scale_y_log10(breaks = c(1, 2, 3, 4, 5, 8, 10, 15, 20, 30, 40, 50, 80),
labels = dollar_format(a = 1))
<- plot_log
plot save(plot, file = "CMO_files/figure-html/natural-gas-real-log-1999-1.RData")
plot
Both
Code
<- ggarrange(plot_linear + ggtitle("Linear Scale"), plot_log + ggtitle("Log Scale"), common.legend = T)
plot_both
<- plot_both
plot save(plot, file = "CMO_files/figure-html/natural-gas-real-both-1999-1.RData")
plot
Bind
Code
ggarrange(plot_linear + ggtitle("Linear Scale"), plot_log + ggtitle("Log Scale"), common.legend = T)
Wheat Prices
Nominal prices
Linear
Code
<- CMO %>%
plot_linear filter(Variable %in% c("Wheat, US HRW", "Wheat, US SRW")) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot labs(x = "", y = "Price of wheat (Current $/mt)") + theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 10) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.position = c(0.4, 0.8),
legend.title = element_blank()) +
scale_y_continuous(breaks = seq(0, 2000, 50),
labels = dollar_format(a = 1))
plot_linear
Log
Code
<- CMO %>%
plot_log filter(Variable %in% c("Wheat, US HRW", "Wheat, US SRW")) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot labs(x = "", y = "Price of wheat (Current $/mt)") + theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 10) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.position = c(0.4, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = 100*c(0.1, 0.2, 0.3, 0.5, 0.8, 1, 1.5, 2, 3, 4, 5, 7, 8, 10, 12, 14, 20, 30, 40, 50, 80),
labels = dollar_format(a = 1))
plot_log
Bind
Code
ggarrange(plot_linear + ggtitle("Linear Scale"), plot_log + ggtitle("Log Scale"), common.legend = T)
Real prices
Linear
Code
<- CMO %>%
plot_linear filter(Variable %in% c("Wheat, US HRW", "Wheat, US SRW")) %>%
left_join(CPIAUCSL, by = "date") %>%
arrange(desc(date)) %>%
filter(!is.na(CPIAUCSL)) %>%
mutate(value = value*CPIAUCSL[1]/CPIAUCSL) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot labs(x = "", y = "Price of wheat (Current $/mt)") + theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 10) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.position = c(0.8, 0.9),
legend.title = element_blank()) +
scale_y_continuous(breaks = seq(0, 2000, 50),
labels = dollar_format(a = 1))
plot_linear
Log
Code
<- CMO %>%
plot_log filter(Variable %in% c("Wheat, US HRW", "Wheat, US SRW")) %>%
left_join(CPIAUCSL, by = "date") %>%
arrange(desc(date)) %>%
filter(!is.na(CPIAUCSL)) %>%
mutate(value = value*CPIAUCSL[1]/CPIAUCSL) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot labs(x = "", y = "Price of wheat (Current $/mt)") + theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 10) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.position = c(0.8, 0.9),
legend.title = element_blank()) +
scale_y_log10(breaks = 100*c(0.1, 0.2, 0.3, 0.5, 0.8, 1, 1.5, 2, 3, 4, 5, 8, 10, 12, 14, 20, 30, 40, 50),
labels = dollar_format(a = 1))
plot_log
Bind
Code
ggarrange(plot_linear + ggtitle("Linear Scale"), plot_log + ggtitle("Log Scale"), common.legend = T)
Oil
Nominal prices
Linear
Code
<- CMO %>%
plot_linear filter(Variable %in% c("Crude oil, Dubai", "Crude oil, WTI")) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot labs(x = "", y = "Price of oil ($/bbl)") + theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 10) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.position = c(0.4, 0.8),
legend.title = element_blank()) +
scale_y_continuous(breaks = seq(-20, 400, 10),
labels = dollar_format(a = 1))
plot_linear
Log
Code
<- CMO %>%
plot_log filter(Variable %in% c("Crude oil, Dubai", "Crude oil, WTI")) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot labs(x = "", y = "Price of oil ($/bbl)") + theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 10) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.position = c(0.4, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = c(1, 2, 3, 4, 5, 8, 10, 15, 20, 30, 40, 50, 80, 100, 200, 300, 500),
labels = dollar_format(a = 1))
plot_log
Bind
Code
ggarrange(plot_linear + ggtitle("Linear Scale"), plot_log + ggtitle("Log Scale"), common.legend = T)
Real prices
Linear
Code
<- CMO %>%
plot_linear filter(Variable %in% c("Crude oil, Dubai", "Crude oil, WTI")) %>%
left_join(CPIAUCSL, by = "date") %>%
arrange(desc(date)) %>%
filter(!is.na(CPIAUCSL)) %>%
mutate(value = value*CPIAUCSL[1]/CPIAUCSL) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot labs(x = "", y = "Real price of oil ($/bbl)") + theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 10) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.position = c(0.2, 0.9),
legend.title = element_blank()) +
scale_y_continuous(breaks = seq(-20, 400, 5),
labels = dollar_format(a = 1))
plot_linear
Log
Code
<- CMO %>%
plot_log filter(Variable %in% c("Crude oil, Dubai", "Crude oil, WTI")) %>%
left_join(CPIAUCSL, by = "date") %>%
arrange(desc(date)) %>%
filter(!is.na(CPIAUCSL)) %>%
mutate(value = value*CPIAUCSL[1]/CPIAUCSL) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot labs(x = "", y = "Real price of oil ($/bbl)") + theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 10) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.position = c(0.2, 0.9),
legend.title = element_blank()) +
scale_y_log10(breaks = c(1, 2, 3, 4, 5, 8, 10, 15, 20, 30, 40, 50, 100, 200, 300, 500),
labels = dollar_format(a = 1))
plot_log
Bind
Code
ggarrange(plot_linear + ggtitle("Linear Scale"), plot_log + ggtitle("Log Scale"), common.legend = T)