LAST_DOWNLOAD |
---|
2024-05-23 |
World Bank Commodity Price Data (The Pink Sheet)
Data - WB
Info
Links
LAST_DOWNLOAD
LAST_COMPILE
LAST_COMPILE |
---|
2024-06-20 |
Last
date | Nobs |
---|---|
2024-04-01 | 67 |
variable
Natural Gas: Europe and US
Nominal prices
Linear
Code
%>%
CMO filter(Variable %in% c("Natural gas, US", "Natural gas, Europe")) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot labs(x = "", y = "Price of natural gas (Current $/mmbtu)") + theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 10) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.position = c(0.4, 0.8),
legend.title = element_blank()) +
scale_y_continuous(breaks = seq(-20, 400, 10),
labels = dollar_format(a = 1))
Log
All
Code
%>%
CMO filter(Variable %in% c("Natural gas, US", "Natural gas, Europe")) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot labs(x = "", y = "Price of natural gas (Current $/mmbtu)") + theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 10) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.position = c(0.4, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = c(0.1, 0.2, 0.3, 0.5, 0.8, 1, 2, 3, 4, 5, 8, 10, 15, 20, 30, 40, 50),
labels = dollar_format(a = .1))
1990-
Code
%>%
CMO filter(Variable %in% c("Natural gas, US", "Natural gas, Europe")) %>%
filter(date >= as.Date("1990-01-01")) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot labs(x = "", y = "Price of natural gas (Current $/mmbtu)") + theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.position = c(0.4, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = c(0.1, 0.2, 0.3, 0.5, 0.8, 1, 2, 3, 4, 5, 8, 10, 15, 20, 30, 40, 50, 80, 100),
labels = dollar_format(a = 1))
2000-
Code
%>%
CMO filter(Variable %in% c("Natural gas, US", "Natural gas, Europe")) %>%
filter(date >= as.Date("2000-01-01")) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot labs(x = "", y = "Price of natural gas (Current $/mmbtu)") + theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = scales::date_format("%Y")) +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.position = c(0.4, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = c(0.1, 0.2, 0.3, 0.5, 0.8, 1, 2, 3, 4, 5, 8, 10, 15, 20, 30, 40, 50, 80, 100),
labels = dollar_format(a = 1))
Real prices
Linear
Code
%>%
CMO filter(Variable %in% c("Natural gas, US", "Natural gas, Europe")) %>%
left_join(CPIAUCSL, by = "date") %>%
arrange(desc(date)) %>%
mutate(value = value*CPIAUCSL[1]/CPIAUCSL) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot labs(x = "", y = "Price of natural gas (Constant $/mmbtu)") + theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 10) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.position = c(0.2, 0.9),
legend.title = element_blank()) +
scale_y_continuous(breaks = seq(-20, 400, 5),
labels = dollar_format(a = 1))
Log
All
Code
%>%
CMO filter(Variable %in% c("Natural gas, US", "Natural gas, Europe")) %>%
left_join(CPIAUCSL, by = "date") %>%
arrange(desc(date)) %>%
mutate(value = value*CPIAUCSL[1]/CPIAUCSL) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot labs(x = "", y = "Price of natural gas (Constant $/mmbtu)") + theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 10) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.position = c(0.2, 0.9),
legend.title = element_blank()) +
scale_y_log10(breaks = c(1, 2, 3, 4, 5, 8, 10, 15, 20, 30, 40, 50),
labels = dollar_format(a = 1))
1990-
Code
%>%
CMO filter(Variable %in% c("Natural gas, US", "Natural gas, Europe")) %>%
left_join(CPIAUCSL, by = "date") %>%
arrange(desc(date)) %>%
filter(date >= as.Date("1990-01-01")) %>%
mutate(value = value*CPIAUCSL[1]/CPIAUCSL) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot labs(x = "", y = "Price of natural gas (Constant $/mmbtu)") + theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.position = c(0.2, 0.9),
legend.title = element_blank()) +
scale_y_log10(breaks = c(1, 2, 3, 4, 5, 8, 10, 15, 20, 30, 40, 50),
labels = dollar_format(a = 1))
2000-
Code
%>%
CMO filter(Variable %in% c("Natural gas, US", "Natural gas, Europe")) %>%
left_join(CPIAUCSL, by = "date") %>%
arrange(desc(date)) %>%
filter(date >= as.Date("2000-01-01")) %>%
mutate(value = value*CPIAUCSL[1]/CPIAUCSL) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot labs(x = "", y = "Price of natural gas (Constant $/mmbtu)") + theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.position = c(0.2, 0.9),
legend.title = element_blank()) +
scale_y_log10(breaks = c(1, 2, 3, 4, 5, 8, 10, 15, 20, 30, 40, 50, 80),
labels = dollar_format(a = 1))
1999-
Linear
Code
<- CMO %>%
plot_linear filter(Variable %in% c("Natural gas, US", "Natural gas, Europe")) %>%
arrange(desc(date)) %>%
filter(date >= as.Date("1999-01-01")) %>%
filter(date <= as.Date("2024-01-01")) %>%
mutate(country = case_when(Variable == "Natural gas, US" ~ "États-Unis",
== "Natural gas, Europe" ~ "Europe",
Variable ~ NA)) %>%
T + geom_line(aes(x = date, y = value, color = country)) +
ggplot labs(x = "", y = "") + theme_minimal() +
scale_x_date(breaks = c(seq(1999, 2100, 5), seq(1997, 2100, 5)) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = c("#B22234", "#003399")) +
theme(legend.position = c(0.2, 0.9),
legend.title = element_blank()) +
scale_y_continuous(breaks = seq(0, 100, 5),
labels = dollar_format(a = 1)) +
labs(caption = "Source: Banque Mondiale, Commodity Markets Outlook")
<- plot_linear
plot plot_linear
Code
save(plot, file = "CMO_files/figure-html/natural-gas-real-linear-1999-1.RData")
Log
Code
<- plot_linear +
plot_log scale_y_log10(breaks = c(1, 2, 3, 4, 5, 8, 10, 15, 20, 30, 40, 50, 80),
labels = dollar_format(a = 1))
<- plot_log
plot save(plot, file = "CMO_files/figure-html/natural-gas-real-log-1999-1.RData")
plot
Both
Code
<- ggpubr::ggarrange(plot_linear, plot_log)
plot_both
<- plot_both
plot save(plot, file = "CMO_files/figure-html/natural-gas-real-both-1999-1.RData")
plot
Wheat Prices
Nominal prices
Linear
Code
%>%
CMO filter(Variable %in% c("Wheat, US HRW", "Wheat, US SRW")) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot labs(x = "", y = "Price of wheat (Current $/mt)") + theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 10) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.position = c(0.4, 0.8),
legend.title = element_blank()) +
scale_y_continuous(breaks = seq(0, 2000, 50),
labels = dollar_format(a = 1))
Log
Code
%>%
CMO filter(Variable %in% c("Wheat, US HRW", "Wheat, US SRW")) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot labs(x = "", y = "Price of wheat (Current $/mt)") + theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 10) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.position = c(0.4, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = 100*c(0.1, 0.2, 0.3, 0.5, 0.8, 1, 1.5, 2, 3, 4, 5, 7, 8, 10, 12, 14, 20, 30, 40, 50, 80),
labels = dollar_format(a = 1))
Real prices
Linear
Code
%>%
CMO filter(Variable %in% c("Wheat, US HRW", "Wheat, US SRW")) %>%
left_join(CPIAUCSL, by = "date") %>%
arrange(desc(date)) %>%
mutate(value = value*CPIAUCSL[1]/CPIAUCSL) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot labs(x = "", y = "Price of wheat (Current $/mt)") + theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 10) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.position = c(0.8, 0.9),
legend.title = element_blank()) +
scale_y_continuous(breaks = seq(0, 2000, 50),
labels = dollar_format(a = 1))
Log
Code
%>%
CMO filter(Variable %in% c("Wheat, US HRW", "Wheat, US SRW")) %>%
left_join(CPIAUCSL, by = "date") %>%
arrange(desc(date)) %>%
mutate(value = value*CPIAUCSL[1]/CPIAUCSL) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot labs(x = "", y = "Price of wheat (Current $/mt)") + theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 10) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.position = c(0.8, 0.9),
legend.title = element_blank()) +
scale_y_log10(breaks = 100*c(0.1, 0.2, 0.3, 0.5, 0.8, 1, 1.5, 2, 3, 4, 5, 8, 10, 12, 14, 20, 30, 40, 50),
labels = dollar_format(a = 1))
Oil
Nominal prices
Linear
Code
%>%
CMO filter(Variable %in% c("Crude oil, Dubai", "Crude oil, WTI")) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot labs(x = "", y = "Price of oil (Current $/mmbtu)") + theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 10) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.position = c(0.4, 0.8),
legend.title = element_blank()) +
scale_y_continuous(breaks = seq(-20, 400, 10),
labels = dollar_format(a = 1))
Log
Code
%>%
CMO filter(Variable %in% c("Crude oil, Dubai", "Crude oil, WTI")) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot labs(x = "", y = "Price of natural gas (Current $/mmbtu)") + theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 10) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.position = c(0.4, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = c(1, 2, 3, 4, 5, 8, 10, 15, 20, 30, 40, 50, 80, 100, 200, 300, 500),
labels = dollar_format(a = 1))
Real prices
Linear
Code
%>%
CMO filter(Variable %in% c("Crude oil, Dubai", "Crude oil, WTI")) %>%
left_join(CPIAUCSL, by = "date") %>%
arrange(desc(date)) %>%
mutate(value = value*CPIAUCSL[1]/CPIAUCSL) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot labs(x = "", y = "Price of natural gas (Constant $/mmbtu)") + theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 10) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.position = c(0.2, 0.9),
legend.title = element_blank()) +
scale_y_continuous(breaks = seq(-20, 400, 5),
labels = dollar_format(a = 1))
Log
Code
%>%
CMO filter(Variable %in% c("Crude oil, Dubai", "Crude oil, WTI")) %>%
left_join(CPIAUCSL, by = "date") %>%
arrange(desc(date)) %>%
mutate(value = value*CPIAUCSL[1]/CPIAUCSL) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot labs(x = "", y = "Price of natural gas (Constant $/mmbtu)") + theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 10) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.position = c(0.2, 0.9),
legend.title = element_blank()) +
scale_y_log10(breaks = c(1, 2, 3, 4, 5, 8, 10, 15, 20, 30, 40, 50, 100, 200, 300, 500),
labels = dollar_format(a = 1))