source | dataset | Title | Download | Compile |
---|---|---|---|---|
oecd | MSTI_PUB | Main Science and Technology Indicators | 2023-10-04 | [2024-09-11] |
ec | INDUSTRY | Industry (sector data) | 2023-10-01 | [2024-09-15] |
eurostat | ei_isin_m | Industry - monthly data - index (2015 = 100) (NACE Rev. 2) - ei_isin_m | 2024-09-14 | [2024-09-14] |
eurostat | htec_trd_group4 | High-tech trade by high-tech group of products in million euro (from 2007, SITC Rev. 4) | 2024-09-14 | [2024-09-14] |
eurostat | nama_10_a64 | National accounts aggregates by industry (up to NACE A*64) | 2024-09-14 | [2024-09-14] |
eurostat | nama_10_a64_e | National accounts employment data by industry (up to NACE A*64) | 2024-09-14 | [2024-09-14] |
eurostat | namq_10_a10_e | Employment A*10 industry breakdowns | 2024-09-14 | [2024-09-14] |
eurostat | road_eqr_carmot | New registrations of passenger cars by type of motor energy and engine size - road_eqr_carmot | 2024-09-14 | [2024-09-14] |
eurostat | sts_inpp_m | Producer prices in industry, total - monthly data | 2024-09-14 | [2024-06-24] |
eurostat | sts_inppd_m | Producer prices in industry, domestic market - monthly data | 2024-09-14 | [2024-09-15] |
eurostat | sts_inpr_m | Production in industry - monthly data | 2024-09-14 | [2024-09-15] |
eurostat | sts_intvnd_m | Turnover in industry, non domestic market - monthly data - sts_intvnd_m | 2024-09-14 | [2024-06-24] |
fred | industry | Manufacturing, Industry | 2024-09-14 | [2024-09-14] |
oecd | ALFS_EMP | Employment by activities and status (ALFS) | 2024-05-12 | [2024-04-16] |
oecd | BERD_MA_SOF | Business enterprise R&D expenditure by main activity (focussed) and source of funds | 2023-09-09 | [2024-04-16] |
oecd | GBARD_NABS2007 | Government budget allocations for R and D | 2023-11-22 | [2024-04-16] |
oecd | MEI_REAL | Production and Sales (MEI) | 2024-05-03 | [2024-05-12] |
oecd | SNA_TABLE4 | PPPs and exchange rates | 2024-04-30 | [2024-09-11] |
wdi | NV.IND.EMPL.KD | Industry, value added per worker (constant 2010 USD) | 2024-09-15 | [2024-01-06] |
wdi | NV.IND.MANF.CD | Manufacturing, value added (current USD) | 2024-09-15 | [2024-09-15] |
wdi | NV.IND.MANF.ZS | Manufacturing, value added (% of GDP) | 2024-09-15 | [2024-01-06] |
wdi | NV.IND.TOTL.KD | Industry (including construction), value added (constant 2015 USD) - NV.IND.TOTL.KD | 2024-09-15 | [2024-01-06] |
wdi | NV.IND.TOTL.ZS | Industry, value added (including construction) (% of GDP) | 2024-09-15 | [2024-01-06] |
wdi | SL.IND.EMPL.ZS | Employment in industry (% of total employment) | 2024-09-15 | [2024-01-06] |
wdi | TX.VAL.MRCH.CD.WT | Merchandise exports (current USD) | 2024-09-15 | [2024-01-06] |
Main Science and Technology Indicators
Data - OECD
Info
DOWNLOAD_TIME
COMPILE_TIME
COMPILE_TIME |
---|
2024-09-15 |
Last
obsTime | Nobs |
---|---|
2023 | 57 |
MSTI_VAR
Code
%>%
MSTI_PUB left_join(MSTI_PUB_var$MSTI_VAR, by = "MSTI_VAR") %>%
group_by(MSTI_VAR, Msti_var) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
COU
Code
%>%
MSTI_PUB left_join(MSTI_PUB_var$COU, by = "COU") %>%
group_by(COU, Cou) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(Cou)),
Flag = paste0('<img src="../../icon/flag/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
obsTime
Code
%>%
MSTI_PUB group_by(obsTime) %>%
summarise(Nobs = n()) %>%
arrange(desc(obsTime)) %>%
print_table_conditional()
High Technology Exports
Table
Code
%>%
MSTI_PUB filter(MSTI_VAR %in% c("TD_EAERO", "TD_ECOMP", "TD_EDRUG"),
%in% paste0(c(1981, 1990, 2000, 2005, 2010, 2019, 2020))) %>%
obsTime left_join(MSTI_PUB_var$COU, by = "COU") %>%
select(MSTI_VAR, COU, Cou, obsTime, obsValue) %>%
spread(MSTI_VAR, obsValue) %>%
transmute(COU, Cou, obsTime, obsValue = (TD_EAERO + TD_ECOMP + TD_EDRUG)/1000) %>%
mutate(obsValue = round(obsValue, 1)) %>%
spread(obsTime, obsValue) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(Cou)),
Flag = paste0('<img src="../../icon/flag/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
arrange(-`2019`) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
China, United States
Linear
Code
%>%
MSTI_PUB filter(MSTI_VAR %in% c("TD_EAERO", "TD_ECOMP", "TD_EDRUG"),
%in% c("CHN", "USA")) %>%
COU left_join(MSTI_PUB_var$COU, by = "COU") %>%
mutate(Cou = ifelse(COU == "CHN", "China", Cou)) %>%
%>%
year_to_date select(MSTI_VAR, Location = Cou, date, obsValue) %>%
spread(MSTI_VAR, obsValue) %>%
mutate(obsValue = (TD_EAERO + TD_ECOMP + TD_EDRUG)/1000) %>%
left_join(colors, by = c("Location" = "country")) %>%
+ geom_line(aes(x = date, y = obsValue, color = color)) +
ggplot scale_color_identity() + theme_minimal() + add_2flags +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 1200, 100),
labels = dollar_format(su = " Bn")) +
ylab("High Technology Exports = Aerospace + \nComputer, electronic and optical industry + Pharmaceutical") + xlab("")
Log
Code
%>%
MSTI_PUB filter(MSTI_VAR %in% c("TD_EAERO", "TD_ECOMP", "TD_EDRUG"),
%in% c("CHN", "USA")) %>%
COU left_join(MSTI_PUB_var$COU, by = "COU") %>%
mutate(Cou = ifelse(COU == "CHN", "China", Cou)) %>%
%>%
year_to_date select(MSTI_VAR, Location = Cou, date, obsValue) %>%
spread(MSTI_VAR, obsValue) %>%
mutate(obsValue = (TD_EAERO + TD_ECOMP + TD_EDRUG)/1000) %>%
left_join(colors, by = c("Location" = "country")) %>%
+ geom_line(aes(x = date, y = obsValue, color = color)) +
ggplot scale_color_identity() + theme_minimal() + add_2flags +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = c(1, 2, 3, 5, 8, 10, 20, 30, 50, 80, 100, 200, 300, 500, 800),
labels = dollar_format(su = " Bn", a = 1)) +
ylab("High Technology Exports = Aerospace + \nComputer, electronic and optical industry + Pharmaceutical") + xlab("")
China, United States, Germany, France
Linear
Code
%>%
MSTI_PUB filter(MSTI_VAR %in% c("TD_EAERO", "TD_ECOMP", "TD_EDRUG"),
%in% c("CHN", "USA", "DEU", "FRA")) %>%
COU left_join(MSTI_PUB_var$COU, by = "COU") %>%
mutate(Cou = ifelse(COU == "CHN", "China", Cou)) %>%
%>%
year_to_date select(MSTI_VAR, Location = Cou, date, obsValue) %>%
spread(MSTI_VAR, obsValue) %>%
mutate(obsValue = (TD_EAERO + TD_ECOMP + TD_EDRUG)/1000) %>%
left_join(colors, by = c("Location" = "country")) %>%
+ geom_line(aes(x = date, y = obsValue, color = color)) +
ggplot scale_color_identity() + theme_minimal() + add_4flags +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 1200, 100),
labels = dollar_format(su = " Bn")) +
ylab("High Technology Exports = Aerospace + \nComputer, electronic and optical industry + Pharmaceutical") + xlab("")
Log
All
Code
%>%
MSTI_PUB filter(MSTI_VAR %in% c("TD_EAERO", "TD_ECOMP", "TD_EDRUG"),
%in% c("CHN", "USA", "DEU", "FRA", "EU27_2020")) %>%
COU left_join(MSTI_PUB_var$COU, by = "COU") %>%
mutate(Cou = ifelse(COU == "CHN", "China", Cou)) %>%
%>%
year_to_date select(MSTI_VAR, COU, Location = Cou, date, obsValue) %>%
spread(MSTI_VAR, obsValue) %>%
mutate(obsValue = (TD_EAERO + TD_ECOMP + TD_EDRUG)/1000) %>%
mutate(Location = ifelse(COU == "EU27_2020", "Europe", Location)) %>%
left_join(colors, by = c("Location" = "country")) %>%
mutate(color = ifelse(COU == "USA", color2, color)) %>%
+ geom_line(aes(x = date, y = obsValue, color = color)) +
ggplot scale_color_identity() + theme_minimal() + add_4flags +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = c(1, 2, 3, 5, 8, 10, 20, 30, 50, 80, 100, 200, 300, 500, 800),
labels = dollar_format(su = " Bn", a = 1)) +
ylab("High Technology Exports = Aerospace + \nComputer, electronic and optical industry + Pharmaceutical") + xlab("")
1995-
Code
%>%
MSTI_PUB filter(MSTI_VAR %in% c("TD_EAERO", "TD_ECOMP", "TD_EDRUG"),
%in% c("CHN", "USA", "DEU", "FRA")) %>%
COU left_join(MSTI_PUB_var$COU, by = "COU") %>%
mutate(Cou = ifelse(COU == "CHN", "China", Cou)) %>%
%>%
year_to_date filter(date >= as.Date("1995-01-01")) %>%
select(MSTI_VAR, COU, Location = Cou, date, obsValue) %>%
spread(MSTI_VAR, obsValue) %>%
mutate(obsValue = (TD_EAERO + TD_ECOMP + TD_EDRUG)/1000) %>%
left_join(colors, by = c("Location" = "country")) %>%
mutate(color = ifelse(COU %in% c("CHN", "USA"), color2, color)) %>%
+ geom_line(aes(x = date, y = obsValue, color = color)) +
ggplot scale_color_identity() + theme_minimal() + add_4flags +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = c(1, 2, 3, 5, 8, 10, 20, 30, 50, 80, 100, 200, 300, 500, 800),
labels = dollar_format(su = " Bn", a = 1)) +
ylab("High Tech. Exports = Aerospace + Computer, \nelectronic and optical industry + Pharmaceutical") + xlab("")
1995-
Code
%>%
MSTI_PUB filter(MSTI_VAR %in% c("TD_EAERO", "TD_ECOMP", "TD_EDRUG"),
%in% c("CHN", "USA", "DEU", "FRA")) %>%
COU left_join(MSTI_PUB_var$COU, by = "COU") %>%
mutate(Cou = ifelse(COU == "CHN", "China", Cou)) %>%
%>%
year_to_date filter(date >= as.Date("1995-01-01")) %>%
select(MSTI_VAR, COU, Location = Cou, date, obsValue) %>%
spread(MSTI_VAR, obsValue) %>%
mutate(obsValue = (TD_EAERO + TD_ECOMP + TD_EDRUG)/1000) %>%
left_join(colors, by = c("Location" = "country")) %>%
mutate(color = ifelse(COU %in% c("USA"), color2, color)) %>%
+ geom_line(aes(x = date, y = obsValue, color = color)) +
ggplot scale_color_identity() + theme_minimal() + add_4flags +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = c(1, 2, 3, 5, 8, 10, 20, 30, 50, 80, 100, 200, 300, 500, 800),
labels = dollar_format(su = " Mds", a = 1)) +
ylab("Exportations de Haute Technologie = Aéronautique, \nInformatique, Electronique, Optique, Pharmacie") + xlab("")