source | dataset | .html | .RData |
---|---|---|---|
eurostat | nrg_pc_204 | 2024-11-01 | 2024-11-05 |
Electricity prices for household consumers - bi-annual data (from 2007 onwards)
Data - Eurostat
Info
Data on energy
source | dataset | .html | .RData |
---|---|---|---|
ec | WOB | 2024-09-15 | 2024-08-25 |
eurostat | ei_isen_m | 2024-11-05 | 2024-10-09 |
eurostat | nrg_bal_c | 2023-12-31 | 2024-10-08 |
eurostat | nrg_pc_202 | 2024-11-05 | 2024-10-08 |
eurostat | nrg_pc_203 | 2023-06-11 | 2024-10-08 |
eurostat | nrg_pc_203_c | 2024-11-05 | 2024-10-08 |
eurostat | nrg_pc_203_h | 2024-11-05 | 2024-11-05 |
eurostat | nrg_pc_203_v | 2024-11-05 | 2024-10-08 |
eurostat | nrg_pc_204 | 2024-11-01 | 2024-11-05 |
eurostat | nrg_pc_205 | 2023-06-11 | 2024-10-08 |
fred | energy | 2024-11-01 | 2024-11-01 |
iea | world_energy_balances_highlights_2022 | 2024-06-20 | 2023-04-24 |
wb | CMO | 2024-06-20 | 2024-05-23 |
wdi | EG.GDP.PUSE.KO.PP.KD | 2024-09-18 | 2024-09-18 |
wdi | EG.USE.PCAP.KG.OE | 2024-09-18 | 2024-09-18 |
yahoo | energy | 2024-11-05 | 2024-11-05 |
LAST_COMPILE
LAST_COMPILE |
---|
2024-11-05 |
Last
Code
%>%
nrg_pc_204 group_by(time) %>%
summarise(Nobs = n()) %>%
arrange(desc(time)) %>%
head(1) %>%
print_table_conditional()
time | Nobs |
---|---|
2024S1 | 2052 |
Info
Code
include_graphics("https://ec.europa.eu/eurostat/documents/4187653/14185664/Gas+and+Electricity+Prices+S1_2022.png")
Code
include_graphics("https://ec.europa.eu/eurostat/statistics-explained/images/7/7a/Electricity_prices_for_household_consumers%2C_second_half_2022_v5.png")
nrg_cons
Code
%>%
nrg_pc_204 left_join(nrg_cons, by = "nrg_cons") %>%
group_by(nrg_cons, Nrg_cons) %>%
summarise(Nobs = n()) %>%
print_table_conditional()
nrg_cons | Nrg_cons | Nobs |
---|---|---|
KWH1000-2499 | Consumption from 1 000 kWh to 2 499 kWh - band DB | 11418 |
KWH2500-4999 | Consumption from 2 500 kWh to 4 999 kWh - band DC | 11454 |
KWH5000-14999 | Consumption from 5 000 kWh to 14 999 kWh - band DD | 11418 |
KWH_GE15000 | Consumption for 15 000 kWh or over - band DE | 11391 |
KWH_LT1000 | Consumption less than 1 000 kWh - band DA | 11289 |
TOT_KWH | Consumption of kWh - all bands | 2046 |
currency
Code
%>%
nrg_pc_204 left_join(currency, by = "currency") %>%
group_by(currency, Currency) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
currency | Currency | Nobs |
---|---|---|
EUR | Euro | 20494 |
NAC | National currency | 19702 |
PPS | Purchasing Power Standard | 18820 |
tax
Code
%>%
nrg_pc_204 left_join(tax, by = "tax") %>%
group_by(tax, Tax) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
tax | Tax | Nobs |
---|---|---|
I_TAX | All taxes and levies included | 19677 |
X_VAT | Excluding VAT and other recoverable taxes and levies | 19677 |
X_TAX | Excluding taxes and levies | 19662 |
geo
Code
%>%
nrg_pc_204 left_join(geo, by = "geo") %>%
group_by(geo, Geo) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
time
Code
%>%
nrg_pc_204 group_by(time) %>%
summarise(Nobs = n()) %>%
arrange(desc(time)) %>%
print_table_conditional()
What do I_TAX, X_VAT, X_TAX mean ?
Netherlands
Code
%>%
nrg_pc_204 filter(geo %in% c("FR"),
== "EUR",
currency %in% c("2021S2", "2022S1", "2022S2", "2023S1")) %>%
time select_if(~n_distinct(.) > 1) %>%
#mutate(values = 1000* values) %>%
spread(tax, values) %>%
mutate(` Taxes except VAT` = X_VAT-X_TAX,
` VAT` = I_TAX-X_VAT,
`Excluding taxes` = X_TAX) %>%
print_table_conditional()
nrg_cons | time | I_TAX | X_TAX | X_VAT | Taxes except VAT | VAT | Excluding taxes |
---|---|---|---|---|---|---|---|
KWH_GE15000 | 2021S2 | 0.1781 | 0.1169 | 0.1505 | 0.0336 | 0.0276 | 0.1169 |
KWH_GE15000 | 2022S1 | 0.1850 | 0.1394 | 0.1566 | 0.0172 | 0.0284 | 0.1394 |
KWH_GE15000 | 2022S2 | 0.1868 | 0.1457 | 0.1576 | 0.0119 | 0.0292 | 0.1457 |
KWH_GE15000 | 2023S1 | 0.2001 | 0.1657 | 0.1695 | 0.0038 | 0.0306 | 0.1657 |
KWH_LT1000 | 2021S2 | 0.4236 | 0.3161 | 0.3841 | 0.0680 | 0.0395 | 0.3161 |
KWH_LT1000 | 2022S1 | 0.4338 | 0.3421 | 0.3916 | 0.0495 | 0.0422 | 0.3421 |
KWH_LT1000 | 2022S2 | 0.4260 | 0.3417 | 0.3848 | 0.0431 | 0.0412 | 0.3417 |
KWH_LT1000 | 2023S1 | 0.4355 | 0.3585 | 0.3911 | 0.0326 | 0.0444 | 0.3585 |
KWH1000-2499 | 2021S2 | 0.2398 | 0.1665 | 0.2098 | 0.0433 | 0.0300 | 0.1665 |
KWH1000-2499 | 2022S1 | 0.2482 | 0.1893 | 0.2165 | 0.0272 | 0.0317 | 0.1893 |
KWH1000-2499 | 2022S2 | 0.2582 | 0.2049 | 0.2262 | 0.0213 | 0.0320 | 0.2049 |
KWH1000-2499 | 2023S1 | 0.2741 | 0.2258 | 0.2386 | 0.0128 | 0.0355 | 0.2258 |
KWH2500-4999 | 2021S2 | 0.2022 | 0.1356 | 0.1738 | 0.0382 | 0.0284 | 0.1356 |
KWH2500-4999 | 2022S1 | 0.2092 | 0.1566 | 0.1793 | 0.0227 | 0.0299 | 0.1566 |
KWH2500-4999 | 2022S2 | 0.2204 | 0.1723 | 0.1899 | 0.0176 | 0.0305 | 0.1723 |
KWH2500-4999 | 2023S1 | 0.2300 | 0.1893 | 0.1971 | 0.0078 | 0.0329 | 0.1893 |
KWH5000-14999 | 2021S2 | 0.1850 | 0.1219 | 0.1572 | 0.0353 | 0.0278 | 0.1219 |
KWH5000-14999 | 2022S1 | 0.1928 | 0.1445 | 0.1635 | 0.0190 | 0.0293 | 0.1445 |
KWH5000-14999 | 2022S2 | 0.1967 | 0.1533 | 0.1672 | 0.0139 | 0.0295 | 0.1533 |
KWH5000-14999 | 2023S1 | 0.2088 | 0.1720 | 0.1771 | 0.0051 | 0.0317 | 0.1720 |
TOT_KWH | 2021S2 | 0.1970 | 0.1316 | 0.1687 | 0.0371 | 0.0283 | 0.1316 |
TOT_KWH | 2022S1 | 0.2046 | 0.1539 | 0.1748 | 0.0209 | 0.0298 | 0.1539 |
TOT_KWH | 2022S2 | 0.2106 | 0.1648 | 0.1805 | 0.0157 | 0.0301 | 0.1648 |
TOT_KWH | 2023S1 | 0.2225 | 0.1834 | 0.1901 | 0.0067 | 0.0324 | 0.1834 |
Consumption < 1 000 kWh
bars
Code
%>%
nrg_pc_204 filter(geo %in% c("FR", "DE", "EA", "ES"),
== "KWH_LT1000",
nrg_cons == "EUR",
currency %in% c("2021S2", "2022S1", "2022S2", "2023S1")) %>%
time select_if(~n_distinct(.) > 1) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA", "Europe", Geo)) %>%
spread(tax, values) %>%
transmute(time, Geo,
` Taxes except VAT` = X_VAT-X_TAX,
` VAT` = I_TAX-X_VAT,
`Excluding taxes` = X_TAX) %>%
gather(Tax, values, - time, -Geo) %>%
ggplot(., aes(x = time, y = values, fill = Tax)) +
geom_bar(stat = "identity",
position = "stack") +
facet_grid(~ Geo) + theme_minimal() +
theme(legend.position = c(0.2, 0.9),
legend.title = element_blank()) +
scale_fill_manual(values = viridis(3)[1:3]) +
scale_y_continuous(breaks = seq(-30, 30, .1),
labels = dollar_format(a = .1, pre = "", su = "€/kWh"),
limits = c(0, 0.6)) +
xlab("Semester") + ylab("") +
ggtitle("Electricity price, LOW Consumption")
France, Germany, EA19, Spain
All
Code
%>%
nrg_pc_204 filter(geo %in% c("FR", "DE", "EA", "ES"),
%in% c("I_TAX", "X_TAX"),
tax == "KWH_LT1000",
nrg_cons == "EUR") %>%
currency left_join(geo, by = "geo") %>%
left_join(tax, by = "tax") %>%
%>%
semester_to_date mutate(Geo = ifelse(geo == "EA", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
+ geom_line(aes(x = date, y = values, color = color, linetype = Tax)) +
ggplot scale_color_identity() + theme_minimal() + add_8flags +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2025, 2), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.2, 0.8),
legend.title = element_blank()) +
xlab("") + ylab("Electricity Prices - C < 1 000 kWh") +
scale_y_log10(breaks = seq(-30, 30, .1),
labels = dollar_format(a = .1, pre = "", su = "€"))
2020-
Code
%>%
nrg_pc_204 filter(geo %in% c("FR", "DE", "EA", "ES"),
%in% c("I_TAX", "X_TAX"),
tax == "KWH_LT1000",
nrg_cons == "EUR") %>%
currency left_join(geo, by = "geo") %>%
left_join(tax, by = "tax") %>%
%>%
semester_to_date filter(date >= as.Date("2020-01-01")) %>%
mutate(Geo = ifelse(geo == "EA", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
+ geom_line(aes(x = date, y = values, color = color, linetype = Tax)) +
ggplot scale_color_identity() + theme_minimal() + add_8flags +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2025, 1), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.2, 0.8),
legend.title = element_blank()) +
xlab("") + ylab("Band DA : Consumption < 1 000 kWh") +
scale_y_log10(breaks = seq(-30, 30, .1),
labels = dollar_format(a = .1, pre = "", su = "€"))
France, Germany, Italy, Spain
Code
%>%
nrg_pc_204 filter(geo %in% c("FR", "DE", "IT", "ES"),
%in% c("I_TAX", "X_TAX"),
tax == "KWH_LT1000",
nrg_cons == "EUR") %>%
currency left_join(geo, by = "geo") %>%
left_join(tax, by = "tax") %>%
%>%
semester_to_date filter(date >= as.Date("2020-01-01")) %>%
left_join(colors, by = c("Geo" = "country")) %>%
+ geom_line(aes(x = date, y = values, color = color, linetype = Tax)) +
ggplot scale_color_identity() + theme_minimal() + add_8flags +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2025, 1), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.2, 0.8),
legend.title = element_blank()) +
xlab("") + ylab("Electricity Prices - C < 1 000 kWh") +
scale_y_log10(breaks = seq(-30, 30, .1),
labels = dollar_format(a = .1, pre = "", su = "€"))
Netherlands
Code
%>%
nrg_pc_204 filter(geo %in% c("NL"),
%in% c("I_TAX", "X_TAX"),
tax == "KWH_LT1000",
nrg_cons == "EUR") %>%
currency left_join(geo, by = "geo") %>%
left_join(tax, by = "tax") %>%
%>%
semester_to_date left_join(colors, by = c("Geo" = "country")) %>%
+ geom_line(aes(x = date, y = values, color = color, linetype = Tax)) +
ggplot scale_color_identity() + theme_minimal() + add_2flags +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2025, 2), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.2, 0.3),
legend.title = element_blank()) +
xlab("") + ylab("Electricity Prices - C < 1 000 kWh") +
scale_y_continuous(breaks = seq(-30, 30, .1),
labels = dollar_format(a = .1, pre = "", su = "€"))
Greece, Belgium, Austria, Portugal
Code
%>%
nrg_pc_204 filter(geo %in% c("EL", "BE", "AT", "PT"),
%in% c("I_TAX", "X_TAX"),
tax == "KWH_LT1000",
nrg_cons == "EUR") %>%
currency left_join(geo, by = "geo") %>%
left_join(tax, by = "tax") %>%
%>%
semester_to_date left_join(colors, by = c("Geo" = "country")) %>%
+ geom_line(aes(x = date, y = values, color = color, linetype = Tax)) +
ggplot scale_color_identity() + theme_minimal() + add_8flags +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2025, 2), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.2, 0.9),
legend.title = element_blank()) +
xlab("") + ylab("Electricity Prices - C < 1 000 kWh") +
scale_y_log10(breaks = seq(-30, 30, .1),
labels = dollar_format(a = .1, pre = "", su = "€"))
1 000 kWh < Consumption < 2 500 kWh
France, Germany, Italy, Spain
Code
%>%
nrg_pc_204 filter(geo %in% c("FR", "DE", "IT", "ES"),
%in% c("I_TAX", "X_TAX"),
tax == "KWH1000-2499",
nrg_cons == "EUR") %>%
currency left_join(geo, by = "geo") %>%
left_join(tax, by = "tax") %>%
%>%
semester_to_date left_join(colors, by = c("Geo" = "country")) %>%
+ geom_line(aes(x = date, y = values, color = color, linetype = Tax)) +
ggplot scale_color_identity() + theme_minimal() + add_8flags +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2025, 2), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.2, 0.9),
legend.title = element_blank()) +
xlab("") + ylab("Electricity Prices - 1 000 kWh < C < 2 500 kWh") +
scale_y_log10(breaks = c(0.12, 0.15, 0.18, 0.2, 0.25, 0.3, 0.35),
labels = dollar_format(a = .01, pre = "", su = "€"))
Band DE : Consumption > 15 000 kWh
France, Germany, EA19, Spain
bars
Code
%>%
nrg_pc_204 filter(geo %in% c("FR", "DE", "EA", "ES"),
== "KWH_GE15000",
nrg_cons == "EUR",
currency %in% c("2021S2", "2022S1", "2022S2")) %>%
time select_if(~n_distinct(.) > 1) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA", "Europe", Geo)) %>%
spread(tax, values) %>%
transmute(time, Geo,
` Taxes except VAT` = X_VAT-X_TAX,
` VAT` = I_TAX-X_VAT,
`Excluding taxes` = X_TAX) %>%
gather(Tax, values, - time, -Geo) %>%
ggplot(., aes(x = time, y = values, fill = Tax)) +
geom_bar(stat = "identity",
position = "stack") +
facet_grid(~ Geo) + theme_minimal() +
theme(legend.position = "none",
legend.title = element_blank()) +
scale_fill_manual(values = viridis(3)[1:3]) +
scale_y_continuous(breaks = seq(-30, 30, .1),
labels = dollar_format(a = .1, pre = "", su = "€/kWh"),
limits = c(0, 0.6)) +
xlab("Semester") + ylab("") +
ggtitle("Electricity price, HIGH Consumption")
2020-
Code
%>%
nrg_pc_204 filter(geo %in% c("FR", "DE", "EA", "ES"),
%in% c("I_TAX", "X_TAX"),
tax == "KWH_GE15000",
nrg_cons == "EUR") %>%
currency left_join(geo, by = "geo") %>%
left_join(tax, by = "tax") %>%
%>%
semester_to_date filter(date >= as.Date("2020-01-01")) %>%
mutate(Geo = ifelse(geo == "EA", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
+ geom_line(aes(x = date, y = values, color = color, linetype = Tax)) +
ggplot scale_color_identity() + theme_minimal() + add_8flags +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2025, 1), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.2, 0.8),
legend.title = element_blank()) +
xlab("") + ylab("Band DE : Consumption > 15 000 kWh") +
scale_y_log10(breaks = seq(-30, 30, .05),
labels = dollar_format(a = .01, pre = "", su = "€"))
Euros
Euro Area EA
All
Code
%>%
nrg_pc_204 filter(geo == "EA",
== "EUR") %>%
currency left_join(tax, by = "tax") %>%
left_join(nrg_cons, by = "nrg_cons") %>%
select_if(~ n_distinct(.) > 1) %>%
%>%
semester_to_date + geom_line(aes(x = date, y = values, color = paste0(Tax, " - ", Nrg_cons))) +
ggplot theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 1, 0.01)) +
theme(legend.position = c(0.45, 0.5),
legend.title = element_blank(),
legend.text = element_text(size = 8),
legend.key.size = unit(0.9, 'lines'))
2020-
Code
%>%
nrg_pc_204 filter(geo == "EA",
== "EUR") %>%
currency left_join(tax, by = "tax") %>%
left_join(nrg_cons, by = "nrg_cons") %>%
select_if(~ n_distinct(.) > 1) %>%
%>%
semester_to_date filter(date >= as.Date("2020-01-01")) %>%
+ geom_line(aes(x = date, y = values, color = paste0(Tax, " - ", Nrg_cons))) +
ggplot theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1920, 2025, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 1, 0.01)) +
theme(legend.position = c(0.45, 0.5),
legend.title = element_blank(),
legend.text = element_text(size = 8),
legend.key.size = unit(0.9, 'lines'))
France
All
Code
%>%
nrg_pc_204 filter(geo == "FR",
== "EUR") %>%
currency left_join(tax, by = "tax") %>%
left_join(nrg_cons, by = "nrg_cons") %>%
select_if(~ n_distinct(.) > 1) %>%
%>%
semester_to_date + geom_line(aes(x = date, y = values, color = Nrg_cons, linetype = Tax)) +
ggplot theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 1, 0.01)) +
theme(legend.position = c(0.45, 0.5),
legend.title = element_blank(),
legend.text = element_text(size = 8),
legend.key.size = unit(0.9, 'lines'))
2020-
Code
%>%
nrg_pc_204 filter(geo == "FR",
== "EUR") %>%
currency left_join(tax, by = "tax") %>%
left_join(nrg_cons, by = "nrg_cons") %>%
select_if(~ n_distinct(.) > 1) %>%
%>%
semester_to_date filter(date >= as.Date("2020-01-01")) %>%
+ geom_line(aes(x = date, y = values, color = paste0(Tax, " - ", Nrg_cons))) +
ggplot theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 1, 0.01)) +
theme(legend.position = c(0.45, 0.5),
legend.title = element_blank(),
legend.text = element_text(size = 8),
legend.key.size = unit(0.9, 'lines'))
Germany
Code
%>%
nrg_pc_204 filter(geo == "DE",
== "KWH",
unit == "EUR") %>%
currency left_join(tax, by = "tax") %>%
left_join(nrg_cons, by = "nrg_cons") %>%
select_if(~ n_distinct(.) > 1) %>%
%>%
semester_to_date + geom_line(aes(x = date, y = values, color = paste0(Tax, " - ", Nrg_cons))) +
ggplot theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 1, 0.01)) +
theme(legend.position = c(0.45, 0.5),
legend.title = element_blank(),
legend.text = element_text(size = 8),
legend.key.size = unit(0.9, 'lines'))
Italy
Code
%>%
nrg_pc_204 filter(geo == "IT",
== "KWH",
unit == "EUR") %>%
currency left_join(tax, by = "tax") %>%
left_join(nrg_cons, by = "nrg_cons") %>%
select_if(~ n_distinct(.) > 1) %>%
%>%
semester_to_date + geom_line(aes(x = date, y = values, color = paste0(Tax, " - ", Nrg_cons))) +
ggplot theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 1, 0.01)) +
theme(legend.position = c(0.45, 0.5),
legend.title = element_blank(),
legend.text = element_text(size = 8),
legend.key.size = unit(0.9, 'lines'))
Spain
Code
%>%
nrg_pc_204 filter(geo == "ES",
== "EUR") %>%
currency left_join(tax, by = "tax") %>%
left_join(nrg_cons, by = "nrg_cons") %>%
select_if(~ n_distinct(.) > 1) %>%
%>%
semester_to_date + geom_line(aes(x = date, y = values, color = paste0(Tax, " - ", Nrg_cons))) +
ggplot theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 1, 0.01)) +
theme(legend.position = c(0.45, 0.5),
legend.title = element_blank(),
legend.text = element_text(size = 8),
legend.key.size = unit(0.9, 'lines'))
Netherlands
Code
%>%
nrg_pc_204 filter(geo == "NL",
== "EUR") %>%
currency left_join(tax, by = "tax") %>%
left_join(nrg_cons, by = "nrg_cons") %>%
select_if(~ n_distinct(.) > 1) %>%
%>%
semester_to_date + geom_line(aes(x = date, y = values, color = paste0(Tax, " - ", Nrg_cons))) +
ggplot theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 1, 0.01)) +
theme(legend.position = c(0.45, 0.5),
legend.title = element_blank(),
legend.text = element_text(size = 8),
legend.key.size = unit(0.9, 'lines'))