source | dataset | .html | .RData |
---|---|---|---|
eurostat | sts_inpr_m | 2025-01-05 | 2024-10-08 |
Production in industry - monthly data
Data - Eurostat
Info
Data on industry
source | dataset | .html | .RData |
---|---|---|---|
ec | INDUSTRY | 2025-01-05 | 2023-10-01 |
eurostat | ei_isin_m | 2025-01-07 | 2024-10-09 |
eurostat | htec_trd_group4 | 2025-01-07 | 2024-10-08 |
eurostat | nama_10_a64 | 2025-01-07 | 2025-01-07 |
eurostat | nama_10_a64_e | 2025-01-07 | 2025-01-07 |
eurostat | namq_10_a10_e | 2025-01-07 | 2025-01-07 |
eurostat | road_eqr_carmot | 2025-01-07 | 2024-10-08 |
eurostat | sts_inpp_m | 2024-06-24 | 2025-01-07 |
eurostat | sts_inppd_m | 2025-01-07 | 2025-01-07 |
eurostat | sts_inpr_m | 2025-01-05 | 2024-10-08 |
eurostat | sts_intvnd_m | 2025-01-07 | 2025-01-07 |
fred | industry | 2025-01-07 | 2025-01-07 |
oecd | ALFS_EMP | 2024-04-16 | 2025-01-07 |
oecd | BERD_MA_SOF | 2024-04-16 | 2023-09-09 |
oecd | GBARD_NABS2007 | 2024-04-16 | 2023-11-22 |
oecd | MEI_REAL | 2024-05-12 | 2025-01-07 |
oecd | MSTI_PUB | 2024-09-15 | 2025-01-07 |
oecd | SNA_TABLE4 | 2024-09-15 | 2025-01-07 |
wdi | NV.IND.EMPL.KD | 2024-01-06 | 2024-09-18 |
wdi | NV.IND.MANF.CD | 2025-01-07 | 2025-01-07 |
wdi | NV.IND.MANF.ZS | 2025-01-07 | 2025-01-07 |
wdi | NV.IND.TOTL.KD | 2024-01-06 | 2024-09-18 |
wdi | NV.IND.TOTL.ZS | 2025-01-07 | 2025-01-07 |
wdi | SL.IND.EMPL.ZS | 2025-01-07 | 2025-01-07 |
wdi | TX.VAL.MRCH.CD.WT | 2024-01-06 | 2024-09-18 |
Last
Code
%>%
sts_inpr_m group_by(time) %>%
summarise(Nobs = n()) %>%
arrange(desc(time)) %>%
head(2) %>%
print_table_conditional()
time | Nobs |
---|---|
2024M08 | 4075 |
2024M07 | 21524 |
nace_r2
Code
%>%
sts_inpr_m left_join(nace_r2, by = "nace_r2") %>%
group_by(nace_r2, Nace_r2) %>%
summarise(Nobs = n()) %>%
print_table_conditional()
s_adj
Code
%>%
sts_inpr_m left_join(s_adj, by = "s_adj") %>%
group_by(s_adj, S_adj) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
s_adj | S_adj | Nobs |
---|---|---|
CA | Calendar adjusted data, not seasonally adjusted data | 5640877 |
SCA | Seasonally and calendar adjusted data | 5493770 |
NSA | Unadjusted data (i.e. neither seasonally adjusted nor calendar adjusted data) | 3083300 |
unit
Code
%>%
sts_inpr_m left_join(unit, by = "unit") %>%
group_by(unit, Unit) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
unit | Unit | Nobs |
---|---|---|
I15 | Index, 2015=100 | 4316426 |
I21 | Index, 2021=100 | 3745002 |
I10 | Index, 2010=100 | 2920855 |
PCH_PRE | Percentage change on previous period | 1625872 |
PCH_SM | Percentage change compared to same period in previous year | 1609792 |
geo
Code
%>%
sts_inpr_m left_join(geo, by = "geo") %>%
group_by(geo, Geo) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
time
Code
%>%
sts_inpr_m group_by(time) %>%
summarise(Nobs = n()) %>%
arrange(desc(time)) %>%
print_table_conditional()
Last
Code
%>%
sts_inpr_m filter(time == max(time), !is.na(values)) %>%
print_table_conditional()
France VS EU
EU 2027
All
Code
%>%
sts_inpr_m filter(nace_r2 == "C",
== "I21",
unit %in% c("FR", "EU27_2020"),
geo == "SCA") %>%
s_adj select(geo, time, values) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Geo = ifelse(geo == "EU27_2020", "Europe", Geo)) %>%
%>%
month_to_date group_by(geo) %>%
arrange(date) %>%
mutate(values = 100*values/values[1]) %>%
#filter(date >= as.Date("2000-01-01")) %>%
left_join(colors, by = c("Geo" = "country")) %>%
ggplot() + ylab("Industrial Production") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
+
add_2flags scale_y_log10(breaks = seq(-60, 300, 10))
1992-
Code
%>%
sts_inpr_m filter(nace_r2 == "C",
== "I21",
unit %in% c("FR", "EU27_2020"),
geo == "SCA") %>%
s_adj select(geo, time, values) %>%
group_by(geo) %>%
mutate(values = 100*values/values[time == "1992M01"]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Geo = ifelse(geo == "EU27_2020", "Europe", Geo)) %>%
%>%
month_to_date filter(date >= as.Date("1992-01-01")) %>%
left_join(colors, by = c("Geo" = "country")) %>%
ggplot() + ylab("Industrial Production") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
+
add_2flags scale_y_log10(breaks = seq(-60, 300, 10))
2000-
Code
%>%
sts_inpr_m filter(nace_r2 == "C",
== "I21",
unit %in% c("FR", "EU27_2020"),
geo == "SCA") %>%
s_adj select(geo, time, values) %>%
group_by(geo) %>%
mutate(values = 100*values/values[time == "2000M01"]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Geo = ifelse(geo == "EU27_2020", "Europe", Geo)) %>%
%>%
month_to_date filter(date >= as.Date("2000-01-01")) %>%
left_join(colors, by = c("Geo" = "country")) %>%
ggplot() + ylab("Industrial Production") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
+
add_2flags scale_y_log10(breaks = seq(-60, 300, 10))
Eurozone
2000-
Code
%>%
sts_inpr_m filter(nace_r2 == "C",
== "I21",
unit %in% c("FR", "EA20"),
geo == "SCA") %>%
s_adj select(geo, time, values) %>%
group_by(geo) %>%
mutate(values = 100*values/values[time == "2020M02"]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
%>%
month_to_date filter(date >= as.Date("2000-01-01")) %>%
left_join(colors, by = c("Geo" = "country")) %>%
ggplot() + ylab("Industrial Production") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
+
add_2flags scale_y_log10(breaks = seq(-60, 300, 10))
Germany
Index, Change
Code
%>%
sts_inpr_m filter(geo == "DE",
== "SCA",
s_adj
%in% c("2022M08", "2022M07", "2022M03")) %>%
time select_if(~ n_distinct(.) > 1) %>%
spread(time, values) %>%
left_join(nace_r2, by = "nace_r2") %>%
select(nace_r2, Nace_r2, everything()) %>%
print_table_conditional()
Index
Code
%>%
sts_inpr_m filter(geo == "DE",
== "SCA",
s_adj == "I21",
unit %in% c("2022M08", "2022M07", "2022M03")) %>%
time select_if(~ n_distinct(.) > 1) %>%
spread(time, values) %>%
left_join(nace_r2, by = "nace_r2") %>%
select(nace_r2, Nace_r2, everything()) %>%
print_table_conditional()
PCH_PRE - Change
Code
%>%
sts_inpr_m filter(geo == "DE",
#s_adj == "SCA",
== "PCH_SM",
unit %in% c("2022M12", "2022M11", "2022M08", "2022M05","2022M03")) %>%
time select_if(~ n_distinct(.) > 1) %>%
spread(time, values) %>%
left_join(nace_r2, by = "nace_r2") %>%
select(nace_r2, Nace_r2, everything()) %>%
arrange(`2022M11`) %>%
print_table_conditional()
Fertilizers, Chemical industry
All
Code
%>%
sts_inpr_m filter(geo == "DE",
== "SCA",
s_adj == "I21",
unit %in% c("C2015", "C20_C21", "C20", "C2442")) %>%
nace_r2 %>%
month_to_date left_join(nace_r2, by = "nace_r2") %>%
mutate(Nace_r2 = gsub("Manufacture", "Manuf.", Nace_r2)) %>%
+ geom_line(aes(x = date, y = values, color = Nace_r2)) +
ggplot xlab("") + ylab("") + theme_minimal() +
theme(legend.position = c(0.5, 0.25),
legend.title = element_blank()) +
scale_x_date(breaks = "5 years",
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(60, 120, 10))
1995-
Code
%>%
sts_inpr_m filter(geo == "DE",
== "SCA",
s_adj == "I21",
unit %in% c("C2015", "C20_C21", "C20", "C2442")) %>%
nace_r2 %>%
month_to_date filter(date >= as.Date("1995-01-01")) %>%
left_join(nace_r2, by = "nace_r2") %>%
mutate(Nace_r2 = gsub("Manufacture", "Manuf.", Nace_r2)) %>%
+ geom_line(aes(x = date, y = values, color = Nace_r2)) +
ggplot xlab("") + ylab("") + theme_minimal() +
theme(legend.position = c(0.5, 0.25),
legend.title = element_blank()) +
scale_x_date(breaks = "5 years",
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(60, 120, 10))
2010-
Code
%>%
sts_inpr_m filter(geo == "DE",
== "SCA",
s_adj == "I21",
unit %in% c("C2015", "C20_C21", "C20", "C2442")) %>%
nace_r2 %>%
month_to_date filter(date >= as.Date("2010-01-01")) %>%
left_join(nace_r2, by = "nace_r2") %>%
mutate(Nace_r2 = gsub("Manufacture", "Manuf.", Nace_r2)) %>%
+ geom_line(aes(x = date, y = values, color = Nace_r2)) +
ggplot xlab("") + ylab("") + theme_minimal() +
theme(legend.position = c(0.5, 0.25),
legend.title = element_blank()) +
scale_x_date(breaks = "1 year",
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(60, 120, 10))
2017-
Code
%>%
sts_inpr_m filter(geo == "DE",
== "SCA",
s_adj == "I21",
unit %in% c("C2015", "C20_C21", "C20", "C2442")) %>%
nace_r2 %>%
month_to_date filter(date >= as.Date("2017-01-01")) %>%
left_join(nace_r2, by = "nace_r2") %>%
mutate(Nace_r2 = gsub("Manufacture", "Manuf.", Nace_r2)) %>%
+ geom_line(aes(x = date, y = values, color = Nace_r2)) +
ggplot xlab("") + ylab("") + theme_minimal() +
theme(legend.position = c(0.5, 0.25),
legend.title = element_blank()) +
scale_x_date(breaks = "1 year",
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(40, 120, 10))
2020-
Code
%>%
sts_inpr_m filter(geo == "DE",
== "SCA",
s_adj == "I21",
unit %in% c("C2015", "C20_C21", "C20", "C2442")) %>%
nace_r2 %>%
month_to_date filter(date >= as.Date("2020-01-01")) %>%
left_join(nace_r2, by = "nace_r2") %>%
mutate(Nace_r2 = gsub("Manufacture", "Manuf.", Nace_r2)) %>%
+ geom_line(aes(x = date, y = values, color = Nace_r2)) +
ggplot xlab("") + ylab("") + theme_minimal() +
theme(legend.position = c(0.5, 0.25),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1),
legend.title = element_blank()) +
scale_x_date(breaks = "3 months",
labels = date_format("%b %y")) +
scale_y_log10(breaks = seq(40, 120, 5))
France, Germany, Italy, Greece, Europe
1995-
Code
%>%
sts_inpr_m filter(nace_r2 == "C",
== "I21",
unit %in% c("FR", "DE", "IT", "EA20", "EL"),
geo == "SCA") %>%
s_adj select(geo, time, values) %>%
group_by(geo) %>%
%>%
month_to_date filter(date >= as.Date("1995-01-01")) %>%
arrange(date) %>%
mutate(values = 100*values/values[1]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
ggplot() + ylab("Industrial Production") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
+
add_5flags scale_y_log10(breaks = seq(-60, 300, 10))
2000-
Code
%>%
sts_inpr_m filter(nace_r2 == "C",
== "I21",
unit %in% c("FR", "DE", "IT", "EA20", "EL"),
geo == "SCA") %>%
s_adj select(geo, time, values) %>%
group_by(geo) %>%
%>%
month_to_date filter(date >= as.Date("2000-01-01")) %>%
arrange(date) %>%
mutate(values = 100*values/values[1]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
ggplot() + ylab("Industrial Production") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
+
add_5flags scale_y_log10(breaks = seq(-60, 300, 10))
2008-
Code
%>%
sts_inpr_m filter(nace_r2 == "C",
== "I21",
unit %in% c("FR", "DE", "IT", "EA20", "EL"),
geo == "SCA") %>%
s_adj select(geo, time, values) %>%
group_by(geo) %>%
%>%
month_to_date filter(date >= as.Date("2008-01-01")) %>%
arrange(date) %>%
mutate(values = 100*values/values[1]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
ggplot() + ylab("Industrial Production") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
+
add_5flags scale_y_log10(breaks = seq(-60, 300, 10))
France, Germany, Italy
C20 - Manufacture of chemicals and chemical products
All
Code
%>%
sts_inpr_m filter(nace_r2 == "C20",
== "I21",
unit %in% c("FR", "DE", "IT", "EA20"),
geo == "SCA") %>%
s_adj select(geo, time, values) %>%
group_by(geo) %>%
mutate(values = 100*values/values[time == "2010M01"]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
%>%
month_to_date left_join(colors, by = c("Geo" = "country")) %>%
ggplot() + ylab("Industrial Production") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_4flags +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_log10(breaks = seq(-60, 300, 10))
1992-
Code
%>%
sts_inpr_m filter(nace_r2 == "C20",
== "I21",
unit %in% c("FR", "DE", "IT", "EA20"),
geo == "SCA") %>%
s_adj select(geo, time, values) %>%
group_by(geo) %>%
mutate(values = 100*values/values[time == "2001M01"]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
%>%
month_to_date filter(date >= as.Date("1992-01-01")) %>%
left_join(colors, by = c("Geo" = "country")) %>%
ggplot() + ylab("Industrial Production") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_4flags +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_log10(breaks = seq(-60, 300, 10))
2000-
Code
%>%
sts_inpr_m filter(nace_r2 == "C20",
== "I21",
unit %in% c("FR", "DE", "IT", "EA20"),
geo == "SCA") %>%
s_adj select(geo, time, values) %>%
group_by(geo) %>%
mutate(values = 100*values/values[time == "2001M01"]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
%>%
month_to_date filter(date >= as.Date("2000-01-01")) %>%
left_join(colors, by = c("Geo" = "country")) %>%
ggplot() + ylab("Industrial Production\nManufacture of fertilisers and nitrogen compounds") + xlab("") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_4flags + theme_minimal() +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(-60, 300, 10))
2019-
Code
%>%
sts_inpr_m filter(nace_r2 == "C20",
== "I21",
unit %in% c("FR", "DE", "IT", "EA20"),
geo == "SCA") %>%
s_adj select(geo, time, values) %>%
group_by(geo) %>%
mutate(values = 100*values/values[time == "2019M01"]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
%>%
month_to_date filter(date >= as.Date("2019-01-01")) %>%
left_join(colors, by = c("Geo" = "country")) %>%
ggplot() + ylab("Industrial Production\nManufacture of fertilisers and nitrogen compounds") + xlab("") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_4flags + theme_minimal() +
scale_x_date(breaks = "3 months",
labels = date_format("%b %y")) +
+
add_4flags theme(legend.position = "none",
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_y_log10(breaks = seq(-60, 300, 5))
2020-
Code
%>%
sts_inpr_m filter(nace_r2 == "C20",
== "I21",
unit %in% c("FR", "DE", "IT", "EA20"),
geo == "SCA") %>%
s_adj select(geo, time, values) %>%
group_by(geo) %>%
mutate(values = 100*values/values[time == "2020M01"]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
%>%
month_to_date filter(date >= as.Date("2020-01-01")) %>%
left_join(colors, by = c("Geo" = "country")) %>%
ggplot() + ylab("Industrial Production\nManufacture of fertilisers and nitrogen compounds") + xlab("") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_4flags + theme_minimal() +
theme(legend.position = "none",
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_x_date(breaks = "2 months",
labels = date_format("%b %y")) +
scale_y_log10(breaks = seq(-60, 300, 5))
2021-
Code
%>%
sts_inpr_m filter(nace_r2 == "C20",
== "I21",
unit %in% c("FR", "DE", "IT", "EA20"),
geo == "SCA") %>%
s_adj select(geo, time, values) %>%
group_by(geo) %>%
mutate(values = 100*values/values[time == "2021M01"]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
%>%
month_to_date filter(date >= as.Date("2021-01-01")) %>%
left_join(colors, by = c("Geo" = "country")) %>%
ggplot() + ylab("Industrial Production\nManufacture of chemicals and chemical products") + xlab("") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_4flags + theme_minimal() +
theme(legend.position = "none",
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_x_date(breaks = "2 months",
labels = date_format("%b %y")) +
scale_y_log10(breaks = seq(-60, 300, 5))
C2015 - Manufacture of fertilisers and nitrogen compounds
All
Code
%>%
sts_inpr_m filter(nace_r2 == "C2015",
== "I21",
unit %in% c("FR", "DE", "IT", "EA20"),
geo == "SCA") %>%
s_adj select(geo, time, values) %>%
group_by(geo) %>%
mutate(values = 100*values/values[time == "2010M01"]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
%>%
month_to_date left_join(colors, by = c("Geo" = "country")) %>%
ggplot() + ylab("Industrial Production") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_4flags +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_log10(breaks = seq(-60, 300, 10))
1992-
Code
%>%
sts_inpr_m filter(nace_r2 == "C2015",
== "I21",
unit %in% c("FR", "DE", "IT", "EA20"),
geo == "SCA") %>%
s_adj select(geo, time, values) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
%>%
month_to_date group_by(geo) %>%
arrange(date) %>%
mutate(values = 100*values/values[1]) %>%
filter(date >= as.Date("1992-01-01")) %>%
left_join(colors, by = c("Geo" = "country")) %>%
ggplot() + ylab("Industrial Production") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_4flags +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_log10(breaks = seq(-60, 300, 10))
2000-
Code
%>%
sts_inpr_m filter(nace_r2 == "C2015",
== "I21",
unit %in% c("FR", "DE", "IT", "EA20"),
geo == "SCA") %>%
s_adj select(geo, time, values) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
%>%
month_to_date group_by(geo) %>%
mutate(values = 100*values/values[1]) %>%
filter(date >= as.Date("2000-01-01")) %>%
left_join(colors, by = c("Geo" = "country")) %>%
ggplot() + ylab("Industrial Production\nManufacture of fertilisers and nitrogen compounds") + xlab("") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_4flags + theme_minimal() +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
scale_y_log10(breaks = seq(-60, 300, 10))
2019-
Code
%>%
sts_inpr_m filter(nace_r2 == "C2015",
== "I21",
unit %in% c("FR", "DE", "IT", "EA20"),
geo == "SCA") %>%
s_adj select(geo, time, values) %>%
group_by(geo) %>%
mutate(values = 100*values/values[time == "2019M01"]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
%>%
month_to_date filter(date >= as.Date("2019-01-01")) %>%
left_join(colors, by = c("Geo" = "country")) %>%
ggplot() + ylab("Industrial Production\nManufacture of fertilisers and nitrogen compounds") + xlab("") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_4flags + theme_minimal() +
scale_x_date(breaks = "3 months",
labels = date_format("%b %y")) +
+
add_4flags theme(legend.position = "none",
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_y_log10(breaks = seq(-60, 300, 10))
2020-
Code
%>%
sts_inpr_m filter(nace_r2 == "C2015",
== "I21",
unit %in% c("FR", "DE", "IT", "EA20"),
geo == "SCA") %>%
s_adj select(geo, time, values) %>%
group_by(geo) %>%
mutate(values = 100*values/values[time == "2020M01"]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
%>%
month_to_date filter(date >= as.Date("2020-01-01")) %>%
left_join(colors, by = c("Geo" = "country")) %>%
ggplot() + ylab("Industrial Production\nManufacture of fertilisers and nitrogen compounds") + xlab("") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_4flags + theme_minimal() +
theme(legend.position = "none",
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_x_date(breaks = "2 months",
labels = date_format("%b %y")) +
scale_y_log10(breaks = seq(-60, 300, 10))
2021-
Code
load_data("eurostat/nace_r2_fr.RData")
%>%
sts_inpr_m filter(nace_r2 == "C2015",
== "I21",
unit %in% c("FR", "DE", "IT", "EA20"),
geo == "SCA") %>%
s_adj group_by(geo) %>%
mutate(values = 100*values/values[time == "2021M01"]) %>%
left_join(geo, by = "geo") %>%
left_join(nace_r2, by = "nace_r2") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
%>%
month_to_date filter(date >= as.Date("2021-01-01")) %>%
left_join(colors, by = c("Geo" = "country")) %>%
ggplot() + ylab("Production industrielle\nFabrication de produits azotés et d'engrais") + xlab("") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_4flags + theme_minimal() +
theme(legend.position = "none",
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_x_date(breaks = "2 months",
labels = date_format("%b %y")) +
scale_y_log10(breaks = seq(-60, 300, 10))
Manufacturing
All
Code
%>%
sts_inpr_m filter(nace_r2 == "C",
== "I21",
unit %in% c("FR", "DE", "IT", "EA20"),
geo == "SCA") %>%
s_adj select(geo, time, values) %>%
group_by(geo) %>%
mutate(values = 100*values/values[time == "1997M01"]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
%>%
month_to_date left_join(colors, by = c("Geo" = "country")) %>%
ggplot() + ylab("Industrial Production") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_4flags +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_log10(breaks = seq(-60, 300, 10))
1992-
Code
%>%
sts_inpr_m filter(nace_r2 == "C",
== "I21",
unit %in% c("FR", "DE", "IT", "EA20"),
geo == "SCA") %>%
s_adj select(geo, time, values) %>%
group_by(geo) %>%
%>%
month_to_date arrange(date) %>%
mutate(values = 100*values/values[1]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
filter(date >= as.Date("1992-01-01")) %>%
left_join(colors, by = c("Geo" = "country")) %>%
ggplot() + ylab("Industrial Production") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_4flags +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_log10(breaks = seq(-60, 300, 10))
1995-
Code
%>%
sts_inpr_m filter(nace_r2 == "C",
== "I21",
unit %in% c("FR", "DE", "IT", "EA20"),
geo == "SCA") %>%
s_adj select(geo, time, values) %>%
group_by(geo) %>%
%>%
month_to_date filter(date >= as.Date("1995-01-01")) %>%
arrange(date) %>%
mutate(values = 100*values/values[1]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
ggplot() + ylab("Industrial Production") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
+
add_4flags scale_y_log10(breaks = seq(-60, 300, 10))
2000-
Code
%>%
sts_inpr_m filter(nace_r2 == "C",
== "I21",
unit %in% c("FR", "DE", "IT", "EA20"),
geo == "SCA") %>%
s_adj select(geo, time, values) %>%
group_by(geo) %>%
%>%
month_to_date filter(date >= as.Date("2000-01-01")) %>%
arrange(date) %>%
mutate(values = 100*values/values[1]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
ggplot() + ylab("Industrial Production") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
+
add_4flags scale_y_log10(breaks = seq(-60, 300, 10))
2019-
Code
%>%
sts_inpr_m filter(nace_r2 == "C",
== "I21",
unit %in% c("FR", "DE", "IT", "EA20"),
geo == "SCA") %>%
s_adj select(geo, time, values) %>%
group_by(geo) %>%
mutate(values = 100*values/values[time == "2019M01"]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
%>%
month_to_date filter(date >= as.Date("2019-01-01")) %>%
left_join(colors, by = c("Geo" = "country")) %>%
ggplot() + ylab("Industrial Production") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() +
scale_x_date(breaks = "3 months",
labels = date_format("%b %y")) +
theme(legend.position = "none",
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
+
add_4flags theme(legend.position = "none") +
scale_y_log10(breaks = seq(-60, 300, 10))
2020-
Code
%>%
sts_inpr_m filter(nace_r2 == "C",
== "I21",
unit %in% c("FR", "DE", "IT", "EA20", "ES"),
geo == "SCA") %>%
s_adj select(geo, time, values) %>%
group_by(geo) %>%
mutate(values = 100*values/values[time == "2020M02"]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
%>%
month_to_date filter(date >= as.Date("2020-02-01")) %>%
left_join(colors, by = c("Geo" = "country")) %>%
ggplot() + ylab("Industrial Production, Manufacturing") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
theme(legend.position = "none",
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_x_date(breaks = "2 months",
labels = date_format("%b %y")) +
scale_y_log10(breaks = seq(-60, 300, 10))
Covid-19
Table
Code
%>%
sts_inpr_m filter(nace_r2 == "C",
== "I21",
unit == "SCA",
s_adj %in% c("2019M11", "2020M02", "2020M03", "2020M04", "2020M05", "2020M08", "2020M11"),
time !(geo %in% c("IE", "EU28"))) %>%
select(geo, time, values) %>%
group_by(geo) %>%
mutate(values = 100*values/values[time == "2019M11"]) %>%
left_join(geo, by = "geo") %>%
spread(time, values) %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
arrange(`2020M04`) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
2018
Code
%>%
sts_inpr_m filter(nace_r2 == "C",
== "I21",
unit %in% c("FR", "DE", "IT"),
geo == "SCA") %>%
s_adj select(geo, time, values) %>%
group_by(geo) %>%
mutate(values = 100*values/values[time == "2018M01"]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
%>%
month_to_date filter(date >= as.Date("2018-01-01")) %>%
ggplot() + ylab("Industrial Production") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = Geo)) +
scale_color_manual(values = c("#0055a4", "#000000", "#008c45")) +
scale_x_date(breaks = "3 months",
labels = date_format("%b %y")) +
geom_image(data = . %>%
filter(date == as.Date("2021-01-01")) %>%
mutate(image = paste0("../../icon/flag/", str_to_lower(Geo), ".png")),
aes(x = date, y = values, image = image), asp = 1.5) +
theme(legend.position = "none",
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_y_log10(breaks = seq(-60, 300, 10))
2019M09
Code
%>%
sts_inpr_m filter(nace_r2 == "C",
== "I21",
unit %in% c("FR", "DE", "IT"),
geo == "SCA") %>%
s_adj select(geo, time, values) %>%
group_by(geo) %>%
mutate(values = 100*values/values[time == "2019M09"]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
%>%
month_to_date filter(date >= as.Date("2019-09-01")) %>%
ggplot() + ylab("Industrial Production") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = Geo)) +
scale_color_manual(values = c("#0055a4", "#000000", "#008c45")) +
scale_x_date(breaks = "2 months",
labels = date_format("%b %y")) +
geom_image(data = . %>%
filter(date == as.Date("2021-05-01")) %>%
mutate(image = paste0("../../icon/flag/", str_to_lower(Geo), ".png")),
aes(x = date, y = values, image = image), asp = 1.5) +
theme(legend.position = "none",
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_y_log10(breaks = seq(-60, 300, 10))
2020M02
Code
%>%
sts_inpr_m filter(nace_r2 == "C",
== "I21",
unit %in% c("FR", "DE", "IT", "ES"),
geo == "SCA") %>%
s_adj select(geo, time, values) %>%
group_by(geo) %>%
mutate(values = 100*values/values[time == "2020M02"]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
%>%
month_to_date filter(date >= as.Date("2020-02-01")) %>%
ggplot() + ylab("Industrial Production") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = Geo)) +
scale_color_manual(values = c("#0055a4", "#000000", "#008c45", "#C60B1E")) +
scale_x_date(breaks = "3 months",
labels = date_format("%b %y")) +
geom_image(data = . %>%
filter(date == as.Date("2020-08-01")) %>%
mutate(image = paste0("../../icon/flag/", str_to_lower(Geo), ".png")),
aes(x = date, y = values, image = image), asp = 1.5) +
theme(legend.position = "none",
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_y_log10(breaks = seq(-60, 300, 10))
Cumulative loss in production
Code
%>%
sts_inpr_m filter(nace_r2 == "C",
== "I21",
unit %in% c("FR", "DE", "IT", "ES", "UK"),
geo == "SCA") %>%
s_adj select(geo, time, values) %>%
group_by(geo) %>%
mutate(values = 100*values/values[time == "2020M02"]) %>%
left_join(geo, by = "geo") %>%
%>%
month_to_date filter(date >= as.Date("2020-02-01")) %>%
group_by(Geo) %>%
arrange(date) %>%
mutate(values = values-100,
values = cumsum(values)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
ggplot() + ylab("Industrial Production (Cumulative loss)") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() +
scale_x_date(breaks = "2 months",
labels = date_format("%b %y")) +
+
add_5flags theme(legend.position = "none",
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_y_continuous(breaks = seq(-300, 300, 10))
Cumulative loss in production
Code
%>%
sts_inpr_m filter(nace_r2 == "C",
== "I21",
unit %in% c("FR", "DE", "IT", "ES"),
geo == "SCA") %>%
s_adj select(geo, time, values) %>%
group_by(geo) %>%
mutate(values = 100*values/values[time == "2020M02"]) %>%
left_join(geo, by = "geo") %>%
%>%
month_to_date filter(date >= as.Date("2020-02-01")) %>%
group_by(Geo) %>%
arrange(date) %>%
mutate(values = values-100,
values = cumsum(values)) %>%
ggplot() + ylab("Industrial Production (Cumulative loss)") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = Geo)) +
scale_color_manual(values = c("#0055a4", "#000000", "#008c45", "#C60B1E")) +
scale_x_date(breaks = "2 months",
labels = date_format("%b %y")) +
+
add_4flags theme(legend.position = "none",
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_y_continuous(breaks = seq(-300, 300, 10))