source | dataset | .html | .RData |
---|---|---|---|
bls | jt | 2024-05-01 | NA |
Job Openings and Labor Turnover Survey - JT
Data - BLS
Info
Data on employment
source | dataset | .html | .RData |
---|---|---|---|
bls | jt | 2024-05-01 | NA |
bls | la | 2024-01-06 | NA |
bls | ln | 2024-01-06 | NA |
eurostat | nama_10_a10_e | 2024-04-18 | 2024-04-18 |
eurostat | nama_10_a64_e | 2024-04-18 | 2024-04-18 |
eurostat | namq_10_a10_e | 2024-04-18 | 2024-04-18 |
eurostat | une_rt_m | 2024-04-18 | 2024-04-18 |
oecd | ALFS_EMP | 2024-04-16 | 2024-01-26 |
oecd | EPL_T | 2024-04-16 | 2023-12-10 |
oecd | LFS_SEXAGE_I_R | 2024-04-16 | 2024-04-15 |
oecd | STLABOUR | 2024-04-16 | 2024-04-15 |
LAST_DOWNLOAD
LAST_DOWNLOAD |
---|
2024-03-20 |
LAST_COMPILE
LAST_COMPILE |
---|
2024-05-01 |
Last
date | Nobs |
---|---|
2024-03-01 | 913 |
jt.industry
Code
1.AllItems %>%
jt.data.left_join(jt.series, by = "series_id") %>%
left_join(jt.industry, by = "industry_code") %>%
group_by(industry_code, industry_text) %>%
summarise(Nobs = n()) %>%
print_table_conditional
jt.dataelement
Code
1.AllItems %>%
jt.data.left_join(jt.series, by = "series_id") %>%
left_join(jt.dataelement, by = "dataelement_code") %>%
group_by(dataelement_code, dataelement_text) %>%
summarise(Nobs = n()) %>%
print_table_conditional
dataelement_code | dataelement_text | Nobs |
---|---|---|
HI | Hires | 103294 |
JO | Job openings | 103294 |
LD | Layoffs and discharges | 103294 |
OS | Other separations | 44032 |
QU | Quits | 103294 |
TS | Total separations | 103294 |
UO | Unemployed persons per job opening ratio | 14509 |
jt.ratelevel
Code
1.AllItems %>%
jt.data.left_join(jt.series, by = "series_id") %>%
left_join(jt.ratelevel, by = "ratelevel_code") %>%
group_by(ratelevel_code, ratelevel_text) %>%
summarise(Nobs = n()) %>%
print_table_conditional
ratelevel_code | ratelevel_text | Nobs |
---|---|---|
L | Level - In Thousands | 280251 |
R | Rate | 294760 |
jt.region
Code
%>%
jt.region if (is_html_output()) print_table(.) else .} {
region_code | region_text | display_level | selectable | sort_sequence |
---|---|---|---|---|
00 | Total US | 0 | T | 1 |
MW | Midwest (Only available for Total Nonfarm) | 1 | T | 4 |
NE | Northeast (Only available for Total Nonfarm) | 1 | T | 2 |
SO | South (Only available for Total Nonfarm) | 1 | T | 3 |
WE | West (Only available for Total Nonfarm) | 1 | T | 5 |
jt.seasonal
Code
1.AllItems %>%
jt.data.left_join(jt.series, by = "series_id") %>%
left_join(jt.seasonal, by = c("seasonal" = "seasonal_code")) %>%
group_by(seasonal, seasonal_text) %>%
summarise(Nobs = n()) %>%
print_table_conditional
seasonal | seasonal_text | Nobs |
---|---|---|
S | Seasonally Adjusted | 284479 |
U | Not Seasonally Adjusted | 290532 |
Monthly Job Openings, Layoffs and Quits, in Thousands
All
Code
1.AllItems %>%
jt.data.filter(series_id %in% c("JTS000000000000000LDL",
"JTS000000000000000QUL",
"JTS000000000000000JOL")) %>%
left_join(jt.series, by = "series_id") %>%
left_join(jt.dataelement, by = "dataelement_code") %>%
%>%
month_to_date ggplot(.) +
geom_line(aes(x = date, y = value, color = dataelement_text)) +
theme_minimal() +
theme(legend.title = element_blank(),
legend.position = c(0.6, 0.85)) +
scale_x_date(breaks = as.Date(paste0(seq(1930, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
geom_rect(data = nber_recessions %>%
filter(Peak > as.Date("1996-01-01")),
aes(xmin = Peak, xmax = Trough, ymin = -Inf, ymax = +Inf),
fill = 'grey', alpha = 0.5) +
scale_y_continuous(breaks = 1000*seq(0, 20, 1),
labels = dollar_format(suffix = "K", prefix = "")) +
xlab("") + ylab("Monthly Levels ('000s)")
Monthly Hires and Separations, in Thousands
All
Code
1.AllItems %>%
jt.data.filter(series_id %in% c("JTS000000000000000HIL",
"JTS000000000000000TSL")) %>%
left_join(jt.series, by = "series_id") %>%
left_join(jt.dataelement, by = "dataelement_code") %>%
%>%
month_to_date ggplot(.) +
geom_line(aes(x = date, y = value, color = dataelement_text)) +
theme_minimal() +
theme(legend.title = element_blank(),
legend.position = c(0.6, 0.85)) +
scale_x_date(breaks = as.Date(paste0(seq(1930, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
geom_rect(data = nber_recessions %>%
filter(Peak > as.Date("1996-01-01")),
aes(xmin = Peak, xmax = Trough, ymin = -Inf, ymax = +Inf),
fill = 'grey', alpha = 0.5) +
scale_y_continuous(breaks = 1000*seq(0, 20, 1),
labels = dollar_format(suffix = "K", prefix = "")) +
xlab("") + ylab("Monthly Levels ('000s)")
Limits
Code
1.AllItems %>%
jt.data.filter(series_id %in% c("JTS000000000000000HIL",
"JTS000000000000000TSL")) %>%
left_join(jt.series, by = "series_id") %>%
left_join(jt.dataelement, by = "dataelement_code") %>%
%>%
month_to_date ggplot(.) +
geom_line(aes(x = date, y = value, color = dataelement_text)) +
theme_minimal() +
theme(legend.title = element_blank(),
legend.position = c(0.6, 0.85)) +
scale_x_date(breaks = as.Date(paste0(seq(1930, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
geom_rect(data = nber_recessions %>%
filter(Peak > as.Date("1996-01-01")),
aes(xmin = Peak, xmax = Trough, ymin = -Inf, ymax = +Inf),
fill = 'grey', alpha = 0.5) +
scale_y_continuous(breaks = 1000*seq(0, 20, 1),
labels = dollar_format(suffix = "K", prefix = ""),
limits = c(3000, 9000)) +
xlab("") + ylab("Monthly Levels ('000s)")
Monthly Hires, quits, Openings
All
Code
1.AllItems %>%
jt.data.filter(series_id %in% c("JTS000000000000000HIL",
"JTS000000000000000JOL",
"JTS000000000000000QUL")) %>%
left_join(jt.series, by = "series_id") %>%
left_join(jt.dataelement, by = "dataelement_code") %>%
%>%
month_to_date ggplot(.) +
geom_line(aes(x = date, y = value, color = dataelement_text)) +
theme_minimal() +
theme(legend.title = element_blank(),
legend.position = c(0.6, 0.85)) +
scale_x_date(breaks = as.Date(paste0(seq(1930, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
geom_rect(data = nber_recessions %>%
filter(Peak > as.Date("1996-01-01")),
aes(xmin = Peak, xmax = Trough, ymin = -Inf, ymax = +Inf),
fill = 'grey', alpha = 0.5) +
scale_y_continuous(breaks = 1000*seq(0, 20, 1),
labels = dollar_format(suffix = "K", prefix = "")) +
xlab("") + ylab("Monthly Levels ('000s) - Source: JOLTS")