source | dataset | .html | .RData |
---|---|---|---|
2024-09-11 | 2024-04-15 |
LFS by sex and age - indicators
Data - OECD
Info
Data on employment
Code
load_data("employment.RData")
%>%
employment arrange(-(dataset == "LFS_SEXAGE_I_R")) %>%
source_dataset_file_updates()
source | dataset | .html | .RData |
---|---|---|---|
2024-05-01 | NA | ||
2024-06-19 | NA | ||
2024-06-19 | NA | ||
2024-09-14 | 2024-09-14 | ||
2024-09-14 | 2024-09-14 | ||
2024-09-14 | 2024-09-14 | ||
2024-09-15 | 2024-09-14 | ||
2024-04-16 | 2024-05-12 | ||
2024-04-16 | 2023-12-10 | ||
2024-09-11 | 2024-04-15 | ||
2024-09-11 | 2024-06-30 |
Données sur l’emploi
source | dataset | .html | .RData |
---|---|---|---|
2024-09-14 | 2024-09-14 | ||
2024-06-07 | 2024-09-14 | ||
2024-09-14 | 2024-09-14 | ||
2024-06-07 | 2024-09-14 | ||
2024-09-14 | 2024-09-14 | ||
2024-09-14 | 2024-09-14 | ||
2024-09-14 | 2024-09-14 |
LAST_COMPILE
LAST_COMPILE |
---|
2024-09-15 |
Last
obsTime | Nobs |
---|---|
2022 | 12100 |
SEX
Code
%>%
LFS_SEXAGE_I_R left_join(LFS_SEXAGE_I_R_var$SEX, by = "SEX") %>%
group_by(SEX, Sex) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
SEX | Sex | Nobs |
---|---|---|
MW | All persons | 153275 |
MEN | Men | 152299 |
WOMEN | Women | 150636 |
AGE
Code
%>%
LFS_SEXAGE_I_R left_join(LFS_SEXAGE_I_R_var$AGE, by = "AGE") %>%
group_by(AGE, Age) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
SERIES
Code
%>%
LFS_SEXAGE_I_R left_join(LFS_SEXAGE_I_R_var$SERIES, by = "SERIES") %>%
group_by(SERIES, Series) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
SERIES | Series | Nobs |
---|---|---|
LFPR | Labour force participation rate | 156928 |
EPR | Employment/population ratio | 156551 |
UR | Unemployment rate | 142731 |
FREQUENCY
Code
%>%
LFS_SEXAGE_I_R left_join(LFS_SEXAGE_I_R_var$FREQUENCY, by = "FREQUENCY") %>%
group_by(FREQUENCY, Frequency) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
FREQUENCY | Frequency | Nobs |
---|---|---|
A | Annual | 456210 |
COUNTRY
Code
%>%
LFS_SEXAGE_I_R left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
group_by(COUNTRY, Country) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Country))),
Flag = paste0('<img src="../../icon/flag/round/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
obsTime
Code
%>%
LFS_SEXAGE_I_R group_by(obsTime) %>%
summarise(Nobs = n()) %>%
arrange(desc(obsTime)) %>%
print_table_conditional()
Denmark, France, United States
25-54
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "2554",
AGE == "MW",
SEX %in% c("DNK", "USA", "FRA")) %>%
COUNTRY %>%
year_to_date left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Location = Country, date, obsValue) %>%
arrange(Location, date) %>%
mutate(obsValue = obsValue/100) %>%
left_join(colors, by = c("Location" = "country")) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color, linetype = color)) +
scale_color_identity() +
theme_minimal() + xlab("") + ylab("Employment / Population, 25-54") +
+
add_3flags scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 2),
labels = scales::percent_format(accuracy = 1))
25-64
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "2564",
AGE == "MW",
SEX %in% c("DNK", "USA", "FRA")) %>%
COUNTRY %>%
year_to_date left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Location = Country, date, obsValue) %>%
arrange(Location, date) %>%
mutate(obsValue = obsValue/100) %>%
left_join(colors, by = c("Location" = "country")) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color, linetype = color)) +
scale_color_identity() +
theme_minimal() + xlab("") + ylab("Employment / Population, 25-64") +
+
add_3flags scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 2),
labels = scales::percent_format(accuracy = 1))
20-64
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "2064",
AGE == "MW",
SEX %in% c("DNK", "USA", "FRA")) %>%
COUNTRY %>%
year_to_date left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Location = Country, date, obsValue) %>%
arrange(Location, date) %>%
mutate(obsValue = obsValue/100) %>%
left_join(colors, by = c("Location" = "country")) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color, linetype = color)) +
scale_color_identity() +
theme_minimal() + xlab("") + ylab("Employment / Population, 20-64") +
+
add_3flags scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 2),
labels = scales::percent_format(accuracy = 1))
Unemployment Rate
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "UR",
== "1564",
AGE == "MW",
SEX %in% c("DNK", "USA", "FRA")) %>%
COUNTRY %>%
year_to_date left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Location = Country, date, obsValue) %>%
arrange(Location, date) %>%
mutate(obsValue = obsValue/100) %>%
left_join(colors, by = c("Location" = "country")) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color, linetype = color)) +
scale_color_identity() +
theme_minimal() + xlab("") + ylab("Unemployment Rate") +
+
add_3flags scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 1),
labels = scales::percent_format(accuracy = 1))
Germany, France, Italy, United States, Spain
All
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "900000",
AGE == "MW",
SEX %in% c("ITA", "DEU", "FRA", "ESP", "USA")) %>%
COUNTRY %>%
year_to_date left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(COUNTRY, Location = Country, date, obsValue) %>%
left_join(colors, by = c("Location" = "country")) %>%
mutate(obsValue = obsValue/100) %>%
mutate(color = ifelse(COUNTRY == "USA", color2, color)) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
scale_color_identity() +
theme_minimal() + xlab("") + ylab("Employment / Population, Total") +
+
add_5flags scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 5),
labels = scales::percent_format(accuracy = 1))
1975-
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "900000",
AGE == "MW",
SEX %in% c("ITA", "DEU", "FRA", "ESP", "USA")) %>%
COUNTRY %>%
year_to_date filter(date >= as.Date("1975-01-01")) %>%
left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(COUNTRY, Location = Country, date, obsValue) %>%
left_join(colors, by = c("Location" = "country")) %>%
mutate(color = ifelse(COUNTRY == "USA", color2, color)) %>%
mutate(obsValue = obsValue/100) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
scale_color_identity() +
theme_minimal() + xlab("") + ylab("Employment / Population, Total") +
+
add_5flags scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 5),
labels = scales::percent_format(accuracy = 1))
1995-
English
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "900000",
AGE == "MW",
SEX %in% c("ITA", "DEU", "FRA", "ESP", "USA")) %>%
COUNTRY %>%
year_to_date filter(date >= as.Date("1995-01-01")) %>%
left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(COUNTRY, Location = Country, date, obsValue) %>%
left_join(colors, by = c("Location" = "country")) %>%
mutate(color = ifelse(COUNTRY == "USA", color2, color)) %>%
mutate(obsValue = obsValue/100) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
scale_color_identity() +
theme_minimal() + xlab("") + ylab("Employment / Population, Total") +
+
add_5flags scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 5),
labels = scales::percent_format(accuracy = 1))
French
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "900000",
AGE == "MW",
SEX %in% c("ITA", "DEU", "FRA", "ESP", "USA")) %>%
COUNTRY %>%
year_to_date filter(date >= as.Date("1995-01-01")) %>%
left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(COUNTRY, Location = Country, date, obsValue) %>%
left_join(colors, by = c("Location" = "country")) %>%
mutate(color = ifelse(COUNTRY == "USA", color2, color)) %>%
mutate(obsValue = obsValue/100) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
scale_color_identity() +
theme_minimal() + xlab("") + ylab("Taux d'emploi") +
+
add_5flags scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 5),
labels = scales::percent_format(accuracy = 1))
Germany, France, Italy, Greece, Spain
Total
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "900000",
AGE == "MW",
SEX %in% c("ITA", "DEU", "FRA", "ESP", "GRC")) %>%
COUNTRY %>%
year_to_date left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Location = Country, date, obsValue) %>%
left_join(colors, by = c("Location" = "country")) %>%
mutate(obsValue = obsValue/100) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
scale_color_identity() +
theme_minimal() + xlab("") + ylab("Employment / Population, Total") +
+
add_5flags scale_x_date(breaks = seq(1960, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 5),
labels = scales::percent_format(accuracy = 1))
25-64
All
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "2564",
AGE == "MW",
SEX %in% c("ITA", "DEU", "FRA", "ESP", "GRC")) %>%
COUNTRY %>%
year_to_date left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Country, date, obsValue) %>%
arrange(Country, date) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue/100, color = Country)) +
scale_color_manual(values = c("#ED2939", "#000000", "#0D5EAF", "#009246", "#FFC400")) +
theme_minimal() + xlab("") + ylab("Employment / Population, 25-64") +
geom_image(data = . %>%
filter(date == as.Date("2012-01-01")) %>%
mutate(date = as.Date("2012-01-01"),
image = paste0("../../icon/flag/round/", str_to_lower(Country), ".png")),
aes(x = date, y = obsValue/100, image = image), asp = 1.5) +
scale_x_date(breaks = seq(1960, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 5),
labels = scales::percent_format(accuracy = 1))
2000-
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "2564",
AGE == "MW",
SEX %in% c("ITA", "DEU", "FRA", "ESP", "GRC")) %>%
COUNTRY %>%
year_to_date filter(date >= as.Date("2000-01-01")) %>%
left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Country, date, obsValue) %>%
arrange(Country, date) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue/100, color = Country)) +
scale_color_manual(values = c("#ED2939", "#000000", "#0D5EAF", "#009246", "#FFC400")) +
theme_minimal() + xlab("") + ylab("Employment / Population, 25-64") +
geom_image(data = . %>%
filter(date == as.Date("2012-01-01")) %>%
mutate(date = as.Date("2012-01-01"),
image = paste0("../../icon/flag/round/", str_to_lower(Country), ".png")),
aes(x = date, y = obsValue/100, image = image), asp = 1.5) +
scale_x_date(breaks = seq(1960, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 5),
labels = scales::percent_format(accuracy = 1))
15-64
All
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "1564",
AGE == "MW",
SEX %in% c("ITA", "DEU", "FRA", "ESP", "GRC")) %>%
COUNTRY %>%
year_to_date left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Country, date, obsValue) %>%
arrange(Country, date) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue/100, color = Country)) +
scale_color_manual(values = c("#ED2939", "#000000", "#0D5EAF", "#009246", "#FFC400")) +
theme_minimal() + xlab("") + ylab("Employment / Population, 25-64") +
geom_image(data = . %>%
filter(date == as.Date("2012-01-01")) %>%
mutate(date = as.Date("2012-01-01"),
image = paste0("../../icon/flag/round/", str_to_lower(Country), ".png")),
aes(x = date, y = obsValue/100, image = image), asp = 1.5) +
scale_x_date(breaks = seq(1960, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 5),
labels = scales::percent_format(accuracy = 1))
2002-
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "1564",
AGE == "MW",
SEX %in% c("ITA", "DEU", "FRA", "ESP", "USA")) %>%
COUNTRY %>%
year_to_date filter(date >= as.Date("2000-01-01")) %>%
left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Country, date, obsValue) %>%
arrange(Country, date) %>%
mutate(obsValue = obsValue/100) %>%
rename(Location = Country) %>%
left_join(colors, by = c("Location" = "country")) %>%
mutate(color = ifelse(Location == "United States", color2, color)) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
scale_color_identity() +
theme_minimal() + xlab("") + ylab("Employment / Population, 15-64") +
+
add_5flags scale_x_date(breaks = seq(1960, 2022, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 5),
labels = scales::percent_format(accuracy = 1))
Unemployment rate, 25-64
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "UR",
== "2564",
AGE == "MW",
SEX %in% c("ITA", "DEU", "FRA", "ESP", "GRC")) %>%
COUNTRY %>%
year_to_date filter(date >= as.Date("2000-01-01")) %>%
left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Country, date, obsValue) %>%
arrange(Country, date) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue/100, color = Country)) +
scale_color_manual(values = c("#ED2939", "#000000", "#0D5EAF", "#009246", "#FFC400")) +
theme_minimal() + xlab("") + ylab("Unemployment Rate, 25-64") +
geom_image(data = . %>%
filter(date == as.Date("2014-01-01")) %>%
mutate(date = as.Date("2014-01-01"),
image = paste0("../../icon/flag/round/", str_to_lower(Country), ".png")),
aes(x = date, y = obsValue/100, image = image), asp = 1.5) +
scale_x_date(breaks = seq(1960, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 2),
labels = scales::percent_format(accuracy = 1))
Unemployment rate, 15-24
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "UR",
== "1524",
AGE == "MW",
SEX %in% c("ITA", "DEU", "FRA", "ESP", "GRC")) %>%
COUNTRY %>%
year_to_date filter(date >= as.Date("2000-01-01")) %>%
left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Country, date, obsValue) %>%
arrange(Country, date) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue/100, color = Country)) +
scale_color_manual(values = c("#ED2939", "#000000", "#0D5EAF", "#009246", "#FFC400")) +
theme_minimal() + xlab("") + ylab("Unemployment Rate, 15-24") +
geom_image(data = . %>%
filter(date == as.Date("2013-01-01")) %>%
mutate(date = as.Date("2013-01-01"),
image = paste0("../../icon/flag/round/", str_to_lower(Country), ".png")),
aes(x = date, y = obsValue/100, image = image), asp = 1.5) +
scale_x_date(breaks = seq(1960, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 5),
labels = scales::percent_format(accuracy = 1))
Employment / Population, Men, 25-54
Number of observations
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "2554",
AGE == "MEN") %>%
SEX left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
group_by(COUNTRY, Country) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Country))),
Flag = paste0('<img src="../../icon/flag/round/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
Table: 1970, 1980, 1990, 2000, 2010
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "2554",
AGE == "MEN",
SEX %in% c("1970", "1980", "1990", "2000", "2010")) %>%
obsTime left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(COUNTRY, Country, obsTime, obsValue) %>%
mutate(obsValue = round(obsValue, 1)) %>%
spread(obsTime, obsValue) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Country))),
Flag = paste0('<img src="../../icon/flag/round/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
Table: 2003, 2007, 2011, 2015, 2019
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "2554",
AGE == "MEN",
SEX %in% c("2003", "2007", "2011", "2015", "2019")) %>%
obsTime left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(COUNTRY, Country, obsTime, obsValue) %>%
mutate(obsValue = round(obsValue, 1)) %>%
spread(obsTime, obsValue) %>%
arrange(-`2019`) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Country))),
Flag = paste0('<img src="../../icon/flag/round/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
Germany, France, Italy, Greece, United States
1960-
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "2554",
AGE == "MEN",
SEX %in% c("ITA", "DEU", "FRA", "GRC", "USA")) %>%
COUNTRY %>%
year_to_date filter(date >= as.Date("1960-01-01")) %>%
left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Country, date, obsValue) %>%
arrange(Country, date) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue/100, color = Country)) +
scale_color_manual(values = c("#002395", "#000000", "#0D5EAF", "#009246", "#B22234")) +
theme_minimal() + xlab("") + ylab("Employment / Population, Men, 25-54") +
geom_image(data = . %>%
filter(date == as.Date("2013-01-01")) %>%
mutate(image = paste0("../../icon/flag/round/", str_to_lower(gsub(" ", "-", Country)), ".png")),
aes(x = date, y = obsValue/100, image = image), asp = 1.5) +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 5),
labels = scales::percent_format(accuracy = 1))
2000-
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "2554",
AGE == "MEN",
SEX %in% c("ITA", "ESP", "FRA", "GRC", "USA")) %>%
COUNTRY %>%
year_to_date filter(date >= as.Date("2000-01-01")) %>%
left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Country, date, obsValue) %>%
arrange(Country, date) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue/100, color = Country)) +
scale_color_manual(values = c("#002395", "#0D5EAF", "#009246", "#FFC400", "#B22234")) +
theme_minimal() + xlab("") + ylab("Employment / Population, Men, 25-54") +
geom_image(data = . %>%
filter(date == as.Date("2011-01-01")) %>%
mutate(image = paste0("../../icon/flag/round/", str_to_lower(gsub(" ", "-", Country)), ".png")),
aes(x = date, y = obsValue/100, image = image), asp = 1.5) +
scale_x_date(breaks = seq(1960, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 2),
labels = scales::percent_format(accuracy = 1))
Germany, France, Italy, Greece, Spain
1960-
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "2554",
AGE == "MEN",
SEX %in% c("ITA", "DEU", "FRA", "ESP", "USA")) %>%
COUNTRY %>%
year_to_date filter(date >= as.Date("1960-01-01")) %>%
left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Country, date, obsValue) %>%
arrange(Country, date) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue/100, color = Country)) +
scale_color_manual(values = c("#ED2939", "#000000", "#0D5EAF", "#009246", "#FFC400")) +
theme_minimal() + xlab("") + ylab("Employment / Population, Men, 25-54") +
geom_image(data = . %>%
filter(date == as.Date("2012-01-01")) %>%
mutate(date = as.Date("2012-01-01"),
image = paste0("../../icon/flag/round/", str_to_lower(gsub(" ", "-", Country)), ".png")),
aes(x = date, y = obsValue/100, image = image), asp = 1.5) +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 5),
labels = scales::percent_format(accuracy = 1))
2000-
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "2554",
AGE == "MEN",
SEX %in% c("ITA", "DEU", "FRA", "ESP", "GRC")) %>%
COUNTRY %>%
year_to_date filter(date >= as.Date("2000-01-01")) %>%
left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Country, date, obsValue) %>%
arrange(Country, date) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue/100, color = Country)) +
scale_color_manual(values = c("#ED2939", "#000000", "#0D5EAF", "#009246", "#FFC400")) +
theme_minimal() + xlab("") + ylab("Employment / Population, Men, 25-54") +
geom_image(data = . %>%
filter(date == as.Date("2012-01-01")) %>%
mutate(date = as.Date("2012-01-01"),
image = paste0("../../icon/flag/round/", str_to_lower(gsub(" ", "-", Country)), ".png")),
aes(x = date, y = obsValue/100, image = image), asp = 1.5) +
scale_x_date(breaks = seq(1960, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 5),
labels = scales::percent_format(accuracy = 1))
G7, North America, OECD, Oceania
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "2554",
AGE == "MEN",
SEX %in% c("G7", "NAM", "OECD", "OCE")) %>%
COUNTRY %>%
year_to_date filter(date >= as.Date("1960-01-01")) %>%
left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Country, date, obsValue) %>%
arrange(Country, date) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue/100, color = Country)) +
scale_color_manual(values = c("#002395", "#C60B1E", "#000000", "#009246")) +
theme_minimal() + xlab("") + ylab("Employment / Population, Men, 25-54") +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.2, 0.2)) +
scale_y_continuous(breaks = 0.01*seq(0, 200, 2),
labels = scales::percent_format(accuracy = 1))
Germany, France, Italy
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "2554",
AGE == "MEN",
SEX %in% c("ITA", "DEU", "FRA")) %>%
COUNTRY %>%
year_to_date filter(date >= as.Date("1960-01-01")) %>%
left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Country, date, obsValue) %>%
arrange(Country, date) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue/100, color = Country)) +
scale_color_manual(values = c("#002395", "#000000", "#009246")) +
theme_minimal() + xlab("") + ylab("Employment / Population, Men, 25-54") +
geom_image(data = . %>%
filter(date == as.Date("2019-01-01")) %>%
mutate(date = as.Date("2021-01-01"),
image = paste0("../../icon/flag/round/", str_to_lower(Country), ".png")),
aes(x = date, y = obsValue/100, image = image), asp = 1.5) +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 5),
labels = scales::percent_format(accuracy = 1))
Europe, United States, United Kingdom
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "2554",
AGE == "MEN",
SEX %in% c("EUR", "GBR", "USA")) %>%
COUNTRY %>%
year_to_date filter(date >= as.Date("1980-01-01")) %>%
left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Country, date, obsValue) %>%
arrange(Country, date) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue/100, color = Country)) +
scale_color_manual(values = c("#FFCC00", "#CF142B", "#3C3B6E")) +
theme_minimal() + xlab("") + ylab("Employment / Population, Men, 25-54") +
geom_image(data = . %>%
filter(date == as.Date("2019-01-01")) %>%
mutate(date = as.Date("2021-01-01"),
image = paste0("../../icon/flag/round/", str_to_lower(gsub(" ", "-", Country)), ".png")),
aes(x = date, y = obsValue/100, image = image), asp = 1.5) +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 1),
labels = scales::percent_format(accuracy = 1))
Europe, United States
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "2554",
AGE == "MEN",
SEX %in% c("EUR", "EU16", "USA")) %>%
COUNTRY %>%
year_to_date filter(date >= as.Date("1960-01-01")) %>%
left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Country, date, obsValue) %>%
arrange(Country, date) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue/100, color = Country)) +
scale_color_manual(values = c("#002395", "#000000", "#009246", "#B22234")) +
theme_minimal() + xlab("") + ylab("Employment / Population, Men, 25-54") +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.8, 0.8)) +
scale_y_continuous(breaks = 0.01*seq(0, 200, 1),
labels = scales::percent_format(accuracy = 1))
Germany, France, Italy, United States
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "2554",
AGE == "MEN",
SEX %in% c("ITA", "DEU", "FRA", "USA")) %>%
COUNTRY %>%
year_to_date filter(date >= as.Date("1960-01-01")) %>%
left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Country, date, obsValue) %>%
arrange(Country, date) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue/100, color = Country)) +
scale_color_manual(values = c("#002395", "#000000", "#009246", "#B22234")) +
theme_minimal() + xlab("") + ylab("Employment / Population, Men, 25-54") +
geom_image(data = . %>%
filter(date == as.Date("2019-01-01")) %>%
mutate(date = as.Date("2021-01-01"),
image = paste0("../../icon/flag/round/", str_to_lower(gsub(" ", "-", Country)), ".png")),
aes(x = date, y = obsValue/100, image = image), asp = 1.5) +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 5),
labels = scales::percent_format(accuracy = 1))
Finland, Sweden, United States
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "2554",
AGE == "MEN",
SEX %in% c("USA", "FIN", "SWE")) %>%
COUNTRY %>%
year_to_date filter(date >= as.Date("1960-01-01")) %>%
left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Country, date, obsValue) %>%
arrange(Country, date) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue/100, color = Country)) +
scale_color_manual(values = c("#003580", "#FECC00", "#B22234")) +
theme_minimal() + xlab("") + ylab("Employment / Population, Men, 25-54") +
geom_image(data = . %>%
filter(date == as.Date("2019-01-01")) %>%
mutate(date = as.Date("2021-01-01"),
image = paste0("../../icon/flag/round/", str_to_lower(gsub(" ", "-", Country)), ".png")),
aes(x = date, y = obsValue/100, image = image), asp = 1.5) +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 2),
labels = scales::percent_format(accuracy = 1))
Australia, Germany, Japan
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "2554",
AGE == "MEN",
SEX %in% c("AUS", "JPN", "DEU")) %>%
COUNTRY %>%
year_to_date filter(date >= as.Date("1960-01-01")) %>%
left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Country, date, obsValue) %>%
arrange(Country, date) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue/100, color = Country)) +
scale_color_manual(values = c("#00008B", "#000000", "#BC002D")) +
theme_minimal() + xlab("") + ylab("Employment / Population, Men, 25-54") +
geom_image(data = . %>%
filter(date == as.Date("2019-01-01")) %>%
mutate(date = as.Date("2021-01-01"),
image = paste0("../../icon/flag/round/", str_to_lower(gsub(" ", "-", Country)), ".png")),
aes(x = date, y = obsValue/100, image = image), asp = 1.5) +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 2),
labels = scales::percent_format(accuracy = 1))
Italy, Netherlands, Spain
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "2554",
AGE == "MEN",
SEX %in% c("ITA", "NLD", "ESP")) %>%
COUNTRY %>%
year_to_date filter(date >= as.Date("1960-01-01")) %>%
left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Country, date, obsValue) %>%
arrange(Country, date) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue/100, color = Country)) +
scale_color_manual(values = c("#009246", "#21468B", "#C60B1E")) +
theme_minimal() + xlab("") + ylab("Employment / Population, Men, 25-54") +
geom_image(data = . %>%
filter(date == as.Date("2019-01-01")) %>%
mutate(date = as.Date("2021-01-01"),
image = paste0("../../icon/flag/round/", str_to_lower(gsub(" ", "-", Country)), ".png")),
aes(x = date, y = obsValue/100, image = image), asp = 1.5) +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 2),
labels = scales::percent_format(accuracy = 1))
France, Norway, Portugal
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "2554",
AGE == "MEN",
SEX %in% c("FRA", "NOR", "PRT")) %>%
COUNTRY %>%
year_to_date filter(date >= as.Date("1960-01-01")) %>%
left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Country, date, obsValue) %>%
arrange(Country, date) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue/100, color = Country)) +
scale_color_manual(values = c("#002395", "#EF2B2D", "#006600")) +
theme_minimal() + xlab("") + ylab("Employment / Population, Men, 25-54") +
geom_image(data = . %>%
filter(date == as.Date("2019-01-01")) %>%
mutate(date = as.Date("2021-01-01"),
image = paste0("../../icon/flag/round/", str_to_lower(gsub(" ", "-", Country)), ".png")),
aes(x = date, y = obsValue/100, image = image), asp = 1.5) +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 2),
labels = scales::percent_format(accuracy = 1))
Belgium, Canada, Ireland, Korea
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "2554",
AGE == "MEN",
SEX %in% c("BEL", "CAN", "IRL", "KOR")) %>%
COUNTRY %>%
year_to_date filter(date >= as.Date("1960-01-01")) %>%
left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Country, date, obsValue) %>%
arrange(Country, date) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue/100, color = Country)) +
scale_color_manual(values = c("#000000", "#FF0000", "#FF883E", "#013478")) +
theme_minimal() + xlab("") + ylab("Employment / Population, Men, 25-54") +
geom_image(data = . %>%
filter(date == as.Date("2019-01-01")) %>%
mutate(date = as.Date("2021-01-01"),
image = paste0("../../icon/flag/round/", str_to_lower(gsub(" ", "-", Country)), ".png")),
aes(x = date, y = obsValue/100, image = image), asp = 1.5) +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 2),
labels = scales::percent_format(accuracy = 1))
Europe, United States, United Kingdom
Employment Rate, 25-64, Men
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "2564",
AGE == "MEN",
SEX %in% c("EUR", "GBR", "USA")) %>%
COUNTRY %>%
year_to_date filter(date >= as.Date("1980-01-01")) %>%
left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Country, date, obsValue) %>%
arrange(Country, date) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue/100, color = Country)) +
scale_color_manual(values = c("#FFCC00", "#CF142B", "#3C3B6E")) +
theme_minimal() + xlab("") + ylab("Employment / Population, Men, 25-54") +
geom_image(data = . %>%
filter(date == as.Date("2019-01-01")) %>%
mutate(date = as.Date("2021-01-01"),
image = paste0("../../icon/flag/round/", str_to_lower(gsub(" ", "-", Country)), ".png")),
aes(x = date, y = obsValue/100, image = image), asp = 1.5) +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 1),
labels = scales::percent_format(accuracy = 1))
Employment Rate, 25-64, Men and Women
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "2564",
AGE == "MW",
SEX %in% c("EUR", "GBR", "USA")) %>%
COUNTRY %>%
year_to_date filter(date >= as.Date("1980-01-01")) %>%
left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Country, date, obsValue) %>%
arrange(Country, date) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue/100, color = Country)) +
scale_color_manual(values = c("#FFCC00", "#CF142B", "#3C3B6E")) +
theme_minimal() + xlab("") + ylab("Employment / Population, Men, 25-54") +
geom_image(data = . %>%
filter(date == as.Date("2019-01-01")) %>%
mutate(date = as.Date("2021-01-01"),
image = paste0("../../icon/flag/round/", str_to_lower(gsub(" ", "-", Country)), ".png")),
aes(x = date, y = obsValue/100, image = image), asp = 1.5) +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 1),
labels = scales::percent_format(accuracy = 1))
Unemployment Rate, 25-64, Men and Women
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "UR",
== "2564",
AGE == "MW",
SEX %in% c("EUR", "GBR", "USA")) %>%
COUNTRY %>%
year_to_date filter(date >= as.Date("1980-01-01")) %>%
left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Country, date, obsValue) %>%
arrange(Country, date) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue/100, color = Country)) +
scale_color_manual(values = c("#FFCC00", "#CF142B", "#3C3B6E")) +
theme_minimal() + xlab("") + ylab("") +
geom_image(data = . %>%
filter(date == as.Date("1997-01-01")) %>%
mutate(date = as.Date("1997-01-01"),
image = paste0("../../icon/flag/round/", str_to_lower(gsub(" ", "-", Country)), ".png")),
aes(x = date, y = obsValue/100, image = image), asp = 1.5) +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 1),
labels = scales::percent_format(accuracy = 1))
United States, Greece, Italy
Employment / Population ratio
All
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "1564",
AGE == "MW",
SEX %in% c("USA", "GRC", "ITA")) %>%
COUNTRY %>%
year_to_date filter(date >= as.Date("1960-01-01")) %>%
left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Country, date, obsValue) %>%
arrange(Country, date) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue/100, color = Country)) +
scale_color_manual(values = c("#0D5EAF", "#006600", "#C60B1E")) +
theme_minimal() + xlab("") + ylab("Employment / Population") +
geom_image(data = . %>%
filter(date == as.Date("2019-01-01")) %>%
mutate(date = as.Date("2021-01-01"),
image = paste0("../../icon/flag/round/", str_to_lower(gsub(" ", "-", Country)), ".png")),
aes(x = date, y = obsValue/100, image = image), asp = 1.5) +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 5),
labels = scales::percent_format(accuracy = 1))
Greece, Portugal, Spain
Employment / Population ratio
All
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "1564",
AGE == "MW",
SEX %in% c("GRC", "PRT", "ESP")) %>%
COUNTRY %>%
year_to_date filter(date >= as.Date("1960-01-01")) %>%
left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Country, date, obsValue) %>%
arrange(Country, date) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue/100, color = Country)) +
scale_color_manual(values = c("#0D5EAF", "#006600", "#C60B1E")) +
theme_minimal() + xlab("") + ylab("") +
geom_image(data = . %>%
filter(date == as.Date("2019-01-01")) %>%
mutate(date = as.Date("2021-01-01"),
image = paste0("../../icon/flag/round/", str_to_lower(Country), ".png")),
aes(x = date, y = obsValue/100, image = image), asp = 1.5) +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 5),
labels = scales::percent_format(accuracy = 1))
Men
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "1564",
AGE == "MEN",
SEX %in% c("GRC", "PRT", "ESP")) %>%
COUNTRY %>%
year_to_date filter(date >= as.Date("1960-01-01")) %>%
left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Country, date, obsValue) %>%
arrange(Country, date) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue/100, color = Country)) +
scale_color_manual(values = c("#0D5EAF", "#006600", "#C60B1E")) +
theme_minimal() + xlab("") + ylab("") +
geom_image(data = . %>%
filter(date == as.Date("2019-01-01")) %>%
mutate(date = as.Date("2021-01-01"),
image = paste0("../../icon/flag/round/", str_to_lower(Country), ".png")),
aes(x = date, y = obsValue/100, image = image), asp = 1.5) +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 5),
labels = scales::percent_format(accuracy = 1))
Women
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "1564",
AGE == "WOMEN",
SEX %in% c("GRC", "PRT", "ESP")) %>%
COUNTRY %>%
year_to_date filter(date >= as.Date("1960-01-01")) %>%
left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Country, date, obsValue) %>%
arrange(Country, date) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue/100, color = Country)) +
scale_color_manual(values = c("#0D5EAF", "#006600", "#C60B1E")) +
theme_minimal() + xlab("") + ylab("") +
geom_image(data = . %>%
filter(date == as.Date("2019-01-01")) %>%
mutate(date = as.Date("2021-01-01"),
image = paste0("../../icon/flag/round/", str_to_lower(Country), ".png")),
aes(x = date, y = obsValue/100, image = image), asp = 1.5) +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 5),
labels = scales::percent_format(accuracy = 1))
Unemployment Rate
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "UR",
== "1564",
AGE == "MW",
SEX %in% c("GRC", "PRT", "ESP")) %>%
COUNTRY %>%
year_to_date filter(date >= as.Date("1960-01-01")) %>%
left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Country, date, obsValue) %>%
arrange(Country, date) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue/100, color = Country)) +
scale_color_manual(values = c("#0D5EAF", "#006600", "#C60B1E")) +
theme_minimal() + xlab("") + ylab("") +
geom_image(data = . %>%
filter(date == as.Date("2019-01-01")) %>%
mutate(date = as.Date("2021-01-01"),
image = paste0("../../icon/flag/round/", str_to_lower(Country), ".png")),
aes(x = date, y = obsValue/100, image = image), asp = 1.5) +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 1),
labels = scales::percent_format(accuracy = 1))
Labour force participation rate - LFPR
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "LFPR",
== "1564",
AGE == "MW",
SEX %in% c("GRC", "PRT", "ESP")) %>%
COUNTRY %>%
year_to_date filter(date >= as.Date("1960-01-01")) %>%
left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Country, date, obsValue) %>%
arrange(Country, date) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue/100, color = Country)) +
scale_color_manual(values = c("#0D5EAF", "#006600", "#C60B1E")) +
theme_minimal() + xlab("") + ylab("") +
geom_image(data = . %>%
filter(date == as.Date("2019-01-01")) %>%
mutate(date = as.Date("2021-01-01"),
image = paste0("../../icon/flag/round/", str_to_lower(Country), ".png")),
aes(x = date, y = obsValue/100, image = image), asp = 1.5) +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 5),
labels = scales::percent_format(accuracy = 1))
Germany, France, Italy
Employment / Population ratio
All
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "1564",
AGE == "MW",
SEX %in% c("ITA", "DEU", "FRA")) %>%
COUNTRY %>%
year_to_date filter(date >= as.Date("1960-01-01")) %>%
left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Country, date, obsValue) %>%
arrange(Country, date) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue/100, color = Country)) +
scale_color_manual(values = c("#002395", "#000000", "#009246")) +
theme_minimal() + xlab("") + ylab("") +
geom_image(data = . %>%
filter(date == as.Date("2019-01-01")) %>%
mutate(date = as.Date("2021-01-01"),
image = paste0("../../icon/flag/round/", str_to_lower(Country), ".png")),
aes(x = date, y = obsValue/100, image = image), asp = 1.5) +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 5),
labels = scales::percent_format(accuracy = 1))
Men
15-64
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "1564",
AGE == "MEN",
SEX %in% c("ITA", "DEU", "FRA")) %>%
COUNTRY %>%
year_to_date filter(date >= as.Date("1960-01-01")) %>%
left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Country, date, obsValue) %>%
arrange(Country, date) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue/100, color = Country)) +
scale_color_manual(values = c("#002395", "#000000", "#009246")) +
theme_minimal() + xlab("") + ylab("") +
geom_image(data = . %>%
filter(date == as.Date("2019-01-01")) %>%
mutate(date = as.Date("2021-01-01"),
image = paste0("../../icon/flag/round/", str_to_lower(Country), ".png")),
aes(x = date, y = obsValue/100, image = image), asp = 1.5) +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 5),
labels = scales::percent_format(accuracy = 1))
25-64
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "2564",
AGE == "MEN",
SEX %in% c("ITA", "DEU", "FRA")) %>%
COUNTRY %>%
year_to_date filter(date >= as.Date("1960-01-01")) %>%
left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Country, date, obsValue) %>%
arrange(Country, date) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue/100, color = Country)) +
scale_color_manual(values = c("#002395", "#000000", "#009246")) +
theme_minimal() + xlab("") + ylab("") +
geom_image(data = . %>%
filter(date == as.Date("2019-01-01")) %>%
mutate(date = as.Date("2021-01-01"),
image = paste0("../../icon/flag/round/", str_to_lower(Country), ".png")),
aes(x = date, y = obsValue/100, image = image), asp = 1.5) +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 5),
labels = scales::percent_format(accuracy = 1))
Women
15-64
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "1564",
AGE == "WOMEN",
SEX %in% c("ITA", "DEU", "FRA")) %>%
COUNTRY %>%
year_to_date filter(date >= as.Date("1960-01-01")) %>%
left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Country, date, obsValue) %>%
arrange(Country, date) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue/100, color = Country)) +
scale_color_manual(values = c("#002395", "#000000", "#009246")) +
theme_minimal() + xlab("") + ylab("") +
geom_image(data = . %>%
filter(date == as.Date("2019-01-01")) %>%
mutate(date = as.Date("2021-01-01"),
image = paste0("../../icon/flag/round/", str_to_lower(Country), ".png")),
aes(x = date, y = obsValue/100, image = image), asp = 1.5) +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 5),
labels = scales::percent_format(accuracy = 1))
25-64
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "2564",
AGE == "WOMEN",
SEX %in% c("ITA", "DEU", "FRA")) %>%
COUNTRY %>%
year_to_date filter(date >= as.Date("1960-01-01")) %>%
left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Country, date, obsValue) %>%
arrange(Country, date) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue/100, color = Country)) +
scale_color_manual(values = c("#002395", "#000000", "#009246")) +
theme_minimal() + xlab("") + ylab("") +
geom_image(data = . %>%
filter(date == as.Date("2019-01-01")) %>%
mutate(date = as.Date("2021-01-01"),
image = paste0("../../icon/flag/round/", str_to_lower(Country), ".png")),
aes(x = date, y = obsValue/100, image = image), asp = 1.5) +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 5),
labels = scales::percent_format(accuracy = 1))
25-54
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "2554",
AGE == "WOMEN",
SEX %in% c("ITA", "DEU", "FRA")) %>%
COUNTRY %>%
year_to_date filter(date >= as.Date("1960-01-01")) %>%
left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Country, date, obsValue) %>%
arrange(Country, date) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue/100, color = Country)) +
scale_color_manual(values = c("#002395", "#000000", "#009246")) +
theme_minimal() + xlab("") + ylab("") +
geom_image(data = . %>%
filter(date == as.Date("2019-01-01")) %>%
mutate(date = as.Date("2021-01-01"),
image = paste0("../../icon/flag/round/", str_to_lower(Country), ".png")),
aes(x = date, y = obsValue/100, image = image), asp = 1.5) +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 5),
labels = scales::percent_format(accuracy = 1))
Unemployment Rate
All
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "UR",
== "1564",
AGE == "MW",
SEX %in% c("ITA", "DEU", "FRA")) %>%
COUNTRY %>%
year_to_date filter(date >= as.Date("1960-01-01")) %>%
left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Country, date, obsValue) %>%
arrange(Country, date) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue/100, color = Country)) +
scale_color_manual(values = c("#002395", "#000000", "#009246")) +
theme_minimal() + xlab("") + ylab("") +
geom_image(data = . %>%
filter(date == as.Date("2019-01-01")) %>%
mutate(date = as.Date("2021-01-01"),
image = paste0("../../icon/flag/round/", str_to_lower(Country), ".png")),
aes(x = date, y = obsValue/100, image = image), asp = 1.5) +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 1),
labels = scales::percent_format(accuracy = 1))
Labour force participation rate - LFPR
All
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "LFPR",
== "1564",
AGE == "MW",
SEX %in% c("ITA", "DEU", "FRA")) %>%
COUNTRY %>%
year_to_date filter(date >= as.Date("1960-01-01")) %>%
left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Country, date, obsValue) %>%
arrange(Country, date) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue/100, color = Country)) +
scale_color_manual(values = c("#002395", "#000000", "#009246")) +
theme_minimal() + xlab("") + ylab("") +
geom_image(data = . %>%
filter(date == as.Date("2019-01-01")) %>%
mutate(date = as.Date("2021-01-01"),
image = paste0("../../icon/flag/round/", str_to_lower(Country), ".png")),
aes(x = date, y = obsValue/100, image = image), asp = 1.5) +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 5),
labels = scales::percent_format(accuracy = 1))
Men
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "LFPR",
== "1564",
AGE == "MEN",
SEX %in% c("ITA", "DEU", "FRA")) %>%
COUNTRY %>%
year_to_date filter(date >= as.Date("1960-01-01")) %>%
left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Country, date, obsValue) %>%
arrange(Country, date) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue/100, color = Country)) +
scale_color_manual(values = c("#002395", "#000000", "#009246")) +
theme_minimal() + xlab("") + ylab("") +
geom_image(data = . %>%
filter(date == as.Date("2019-01-01")) %>%
mutate(date = as.Date("2021-01-01"),
image = paste0("../../icon/flag/round/", str_to_lower(Country), ".png")),
aes(x = date, y = obsValue/100, image = image), asp = 1.5) +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 5),
labels = scales::percent_format(accuracy = 1))
Italy, Germany, Greece, Spain, Portugal, France
EP - All
FLAGS
2000-
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "1564",
AGE == "MW",
SEX %in% c("ITA", "DEU", "GRC", "ESP", "PRT", "FRA")) %>%
COUNTRY %>%
year_to_date filter(date >= as.Date("2000-01-01")) %>%
left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Country, date, obsValue) %>%
arrange(Country, date) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue/100, color = Country)) +
scale_color_manual(values = c("#002395", "#000000", "#0D5EAF",
"#CE2B37", "#006600", "#FFC400")) +
theme_minimal() + xlab("") + ylab("") +
geom_image(data = . %>%
filter(date == as.Date("2019-01-01")) %>%
mutate(date = as.Date("2020-01-01"),
image = paste0("../../icon/flag/round/", str_to_lower(Country), ".png")),
aes(x = date, y = obsValue/100, image = image), asp = 1.5) +
scale_x_date(breaks = seq(1960, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 5),
labels = scales::percent_format(accuracy = 1))
1990-
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "1564",
AGE == "MW",
SEX %in% c("ITA", "DEU", "GRC", "ESP", "PRT", "FRA")) %>%
COUNTRY %>%
year_to_date filter(date >= as.Date("1990-01-01")) %>%
left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Country, date, obsValue) %>%
arrange(Country, date) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue/100, color = Country)) +
scale_color_manual(values = c("#002395", "#000000", "#0D5EAF",
"#CE2B37", "#006600", "#FFC400")) +
theme_minimal() + xlab("") + ylab("") +
geom_image(data = . %>%
filter(date == as.Date("2019-01-01")) %>%
mutate(date = as.Date("2020-01-01"),
image = paste0("../../icon/flag/round/", str_to_lower(Country), ".png")),
aes(x = date, y = obsValue/100, image = image), asp = 1.5) +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 5),
labels = scales::percent_format(accuracy = 1))
1980-
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "1564",
AGE == "MW",
SEX %in% c("ITA", "DEU", "GRC", "ESP", "PRT", "FRA")) %>%
COUNTRY %>%
year_to_date filter(date >= as.Date("1980-01-01")) %>%
left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Country, date, obsValue) %>%
arrange(Country, date) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue/100, color = Country)) +
scale_color_manual(values = c("#002395", "#000000", "#0D5EAF",
"#CE2B37", "#006600", "#FFC400")) +
theme_minimal() + xlab("") + ylab("") +
geom_image(data = . %>%
filter(date == as.Date("2019-01-01")) %>%
mutate(date = as.Date("2020-01-01"),
image = paste0("../../icon/flag/round/", str_to_lower(Country), ".png")),
aes(x = date, y = obsValue/100, image = image), asp = 1.5) +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 5),
labels = scales::percent_format(accuracy = 1))
1970-
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "1564",
AGE == "MW",
SEX %in% c("ITA", "DEU", "GRC", "ESP", "PRT", "FRA")) %>%
COUNTRY %>%
year_to_date filter(date >= as.Date("1970-01-01")) %>%
left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Country, date, obsValue) %>%
arrange(Country, date) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue/100, color = Country)) +
scale_color_manual(values = c("#002395", "#000000", "#0D5EAF",
"#CE2B37", "#006600", "#FFC400")) +
theme_minimal() + xlab("") + ylab("") +
geom_image(data = . %>%
filter(date == as.Date("2019-01-01")) %>%
mutate(date = as.Date("2020-01-01"),
image = paste0("../../icon/flag/round/", str_to_lower(Country), ".png")),
aes(x = date, y = obsValue/100, image = image), asp = 1.5) +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 5),
labels = scales::percent_format(accuracy = 1))
1960-
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "1564",
AGE == "MW",
SEX %in% c("ITA", "DEU", "GRC", "ESP", "PRT", "FRA")) %>%
COUNTRY %>%
year_to_date filter(date >= as.Date("1960-01-01")) %>%
left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Country, date, obsValue) %>%
arrange(Country, date) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue/100, color = Country)) +
scale_color_manual(values = c("#002395", "#000000", "#0D5EAF",
"#CE2B37", "#006600", "#FFC400")) +
theme_minimal() + xlab("") + ylab("") +
geom_image(data = . %>%
filter(date == as.Date("2019-01-01")) %>%
mutate(date = as.Date("2021-01-01"),
image = paste0("../../icon/flag/round/", str_to_lower(Country), ".png")),
aes(x = date, y = obsValue/100, image = image), asp = 1.5) +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 5),
labels = scales::percent_format(accuracy = 1))
FLAGS & legends
2000-
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "1564",
AGE == "MW",
SEX %in% c("ITA", "DEU", "GRC", "ESP", "PRT", "FRA")) %>%
COUNTRY %>%
year_to_date filter(date >= as.Date("2000-01-01")) %>%
left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Country, date, obsValue) %>%
arrange(Country, date) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue/100, color = Country)) +
scale_color_manual(values = c("#002395", "#000000", "#0D5EAF",
"#CE2B37", "#006600", "#FFC400")) +
theme_minimal() + xlab("") + ylab("") +
geom_image(data = . %>%
filter(date == as.Date("2019-01-01")) %>%
mutate(date = as.Date("2020-01-01"),
image = paste0("../../icon/flag/round/", str_to_lower(Country), ".png")),
aes(x = date, y = obsValue/100, image = image), asp = 1.5) +
scale_x_date(breaks = seq(1960, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.9),
legend.title = element_blank(),
legend.direction = "horizontal") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 5),
labels = scales::percent_format(accuracy = 1))
1990-
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "1564",
AGE == "MW",
SEX %in% c("ITA", "DEU", "GRC", "ESP", "PRT", "FRA")) %>%
COUNTRY %>%
year_to_date filter(date >= as.Date("1990-01-01")) %>%
left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Country, date, obsValue) %>%
arrange(Country, date) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue/100, color = Country)) +
scale_color_manual(values = c("#002395", "#000000", "#0D5EAF",
"#CE2B37", "#006600", "#FFC400")) +
theme_minimal() + xlab("") + ylab("") +
geom_image(data = . %>%
filter(date == as.Date("2019-01-01")) %>%
mutate(date = as.Date("2020-01-01"),
image = paste0("../../icon/flag/round/", str_to_lower(Country), ".png")),
aes(x = date, y = obsValue/100, image = image), asp = 1.5) +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.9),
legend.title = element_blank(),
legend.direction = "horizontal") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 5),
labels = scales::percent_format(accuracy = 1))
1980-
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "1564",
AGE == "MW",
SEX %in% c("ITA", "DEU", "GRC", "ESP", "PRT", "FRA")) %>%
COUNTRY %>%
year_to_date filter(date >= as.Date("1980-01-01")) %>%
left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Country, date, obsValue) %>%
arrange(Country, date) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue/100, color = Country)) +
scale_color_manual(values = c("#002395", "#000000", "#0D5EAF",
"#CE2B37", "#006600", "#FFC400")) +
theme_minimal() + xlab("") + ylab("") +
geom_image(data = . %>%
filter(date == as.Date("2019-01-01")) %>%
mutate(date = as.Date("2020-01-01"),
image = paste0("../../icon/flag/round/", str_to_lower(Country), ".png")),
aes(x = date, y = obsValue/100, image = image), asp = 1.5) +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.9),
legend.title = element_blank(),
legend.direction = "horizontal") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 5),
labels = scales::percent_format(accuracy = 1))
EP - Men
FLAGS
2000-
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "1564",
AGE == "MEN",
SEX %in% c("ITA", "DEU", "GRC", "ESP", "PRT", "FRA")) %>%
COUNTRY %>%
year_to_date filter(date >= as.Date("2000-01-01")) %>%
left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Country, date, obsValue) %>%
arrange(Country, date) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue/100, color = Country)) +
scale_color_manual(values = c("#002395", "#000000", "#0D5EAF",
"#CE2B37", "#006600", "#FFC400")) +
theme_minimal() + xlab("") + ylab("Employment / Population (Men, 15-64)") +
geom_image(data = . %>%
filter(date == as.Date("2019-01-01")) %>%
mutate(date = as.Date("2020-01-01"),
image = paste0("../../icon/flag/round/", str_to_lower(Country), ".png")),
aes(x = date, y = obsValue/100, image = image), asp = 1.5) +
scale_x_date(breaks = seq(1960, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 5),
labels = scales::percent_format(accuracy = 1))
1990-
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "1564",
AGE == "MEN",
SEX %in% c("ITA", "DEU", "GRC", "ESP", "PRT", "FRA")) %>%
COUNTRY %>%
year_to_date filter(date >= as.Date("1990-01-01")) %>%
left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Country, date, obsValue) %>%
arrange(Country, date) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue/100, color = Country)) +
scale_color_manual(values = c("#002395", "#000000", "#0D5EAF",
"#CE2B37", "#006600", "#FFC400")) +
theme_minimal() + xlab("") + ylab("Employment / Population (Men, 15-64)") +
geom_image(data = . %>%
filter(date == as.Date("2019-01-01")) %>%
mutate(date = as.Date("2020-01-01"),
image = paste0("../../icon/flag/round/", str_to_lower(Country), ".png")),
aes(x = date, y = obsValue/100, image = image), asp = 1.5) +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 5),
labels = scales::percent_format(accuracy = 1))
1980-
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "1564",
AGE == "MEN",
SEX %in% c("ITA", "DEU", "GRC", "ESP", "PRT", "FRA")) %>%
COUNTRY %>%
year_to_date filter(date >= as.Date("1980-01-01")) %>%
left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
select(Country, date, obsValue) %>%
arrange(Country, date) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue/100, color = Country)) +
scale_color_manual(values = c("#002395", "#000000", "#0D5EAF",
"#CE2B37", "#006600", "#FFC400")) +
theme_minimal() + xlab("") + ylab("") +
geom_image(data = . %>%
filter(date == as.Date("2019-01-01")) %>%
mutate(date = as.Date("2020-01-01"),
image = paste0("../../icon/flag/round/", str_to_lower(Country), ".png")),
aes(x = date, y = obsValue/100, image = image), asp = 1.5) +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 5),
labels = scales::percent_format(accuracy = 1))
EP - Women
Code
%>%
LFS_SEXAGE_I_R filter(SERIES == "EPR",
== "1564",
AGE == "WOMEN",
SEX %in% c("ITA", "DEU", "GRC", "ESP", "PRT", "FRA")) %>%
COUNTRY %>%
year_to_date filter(date >= as.Date("2000-01-01")) %>%
left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
arrange(date) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue/100, color = Country, linetype = Country)) +
scale_color_manual(values = viridis(7)[1:6]) +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.2),
legend.title = element_blank(),
legend.direction = "horizontal") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 5),
labels = scales::percent_format(accuracy = 1))
France and Germany
LFP 25-54
Code
%>%
LFS_SEXAGE_I_R filter(AGE == "2554",
== "MW",
SEX %in% c("DEU", "FRA"),
COUNTRY == "LFPR") %>%
SERIES left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
%>%
year_to_date mutate(obsValue = obsValue/100) %>%
filter(date >= as.Date("1995-01-01")) %>%
ggplot() + geom_line(aes(x = date, y = obsValue, color = Country)) +
scale_color_manual(values = c("#ED2939", "#000000")) +
theme_minimal() +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.9),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-7, 90, 1),
labels = percent_format(accuracy = 1)) +
ylab("Labor Force Participation Rate (25-54)") + xlab("")
LFP 15-64
Code
%>%
LFS_SEXAGE_I_R filter(AGE == "1564",
== "MW",
SEX %in% c("DEU", "FRA"),
COUNTRY == "LFPR") %>%
SERIES left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
%>%
year_to_date mutate(obsValue = obsValue/100) %>%
filter(date >= as.Date("1995-01-01")) %>%
ggplot() + geom_line(aes(x = date, y = obsValue, color = Country)) +
scale_color_manual(values = c("#ED2939", "#000000")) +
theme_minimal() +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.9),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-7, 90, 1),
labels = percent_format(accuracy = 1)) +
ylab("Labor Force Participation Rate (15-64)") + xlab("")
LFP 65+
Code
%>%
LFS_SEXAGE_I_R filter(AGE == "6599",
== "MW",
SEX %in% c("DEU", "FRA"),
COUNTRY == "LFPR") %>%
SERIES left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
%>%
year_to_date mutate(obsValue = obsValue/100) %>%
filter(date >= as.Date("1995-01-01")) %>%
ggplot() + geom_line(aes(x = date, y = obsValue, color = Country, linetype = Country)) +
scale_color_manual(values = c("#ED2939", "#000000")) +
theme_minimal() +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.9),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-7, 90, 1),
labels = percent_format(accuracy = 1)) +
ylab("Labor Force Participation Rate (65+)") + xlab("")
LFP 65-69
Code
%>%
LFS_SEXAGE_I_R filter(AGE == "6569",
== "MW",
SEX %in% c("DEU", "FRA"),
COUNTRY == "LFPR") %>%
SERIES left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
%>%
year_to_date mutate(obsValue = obsValue/100) %>%
filter(date >= as.Date("1995-01-01")) %>%
ggplot() + geom_line(aes(x = date, y = obsValue, color = Country, linetype = Country)) +
scale_color_manual(values = c("#ED2939", "#000000")) +
theme_minimal() +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.9),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-7, 90, 1),
labels = percent_format(accuracy = 1)) +
ylab("Labor Force Participation Rate (65-69)") + xlab("")
EP 65-69
Code
%>%
LFS_SEXAGE_I_R filter(AGE == "6569",
== "MW",
SEX %in% c("DEU", "FRA"),
COUNTRY == "EPR") %>%
SERIES left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
%>%
year_to_date mutate(obsValue = obsValue/100) %>%
filter(date >= as.Date("1995-01-01")) %>%
ggplot() + geom_line(aes(x = date, y = obsValue, color = Country, linetype = Country)) +
scale_color_manual(values = c("#ED2939", "#000000")) +
theme_minimal() +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.9),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-7, 90, 1),
labels = percent_format(accuracy = 1)) +
ylab("Employment/Population Ratio (65-69)") + xlab("")
EP 25-54
Code
%>%
LFS_SEXAGE_I_R filter(AGE == "2554",
== "MW",
SEX %in% c("DEU", "FRA"),
COUNTRY == "EPR") %>%
SERIES left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
%>%
year_to_date mutate(obsValue = obsValue/100) %>%
filter(date >= as.Date("1995-01-01")) %>%
ggplot() + geom_line(aes(x = date, y = obsValue, color = Country)) +
scale_color_manual(values = c("#ED2939", "#000000")) +
theme_minimal() +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.9),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-7, 90, 1),
labels = percent_format(accuracy = 1)) +
ylab("Employment / Population Ratio (25-54)") + xlab("")
LFP, 25-54, Women
Code
%>%
LFS_SEXAGE_I_R filter(AGE == "2554",
== "WOMEN",
SEX %in% c("DEU", "FRA"),
COUNTRY == "LFPR") %>%
SERIES left_join(LFS_SEXAGE_I_R_var$COUNTRY, by = "COUNTRY") %>%
%>%
year_to_date mutate(obsValue = obsValue/100) %>%
filter(date >= as.Date("1995-01-01")) %>%
ggplot() + geom_line(aes(x = date, y = obsValue, color = Country)) +
scale_color_manual(values = c("#ED2939", "#000000")) +
theme_minimal() +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.9),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-7, 90, 1),
labels = percent_format(accuracy = 1)) +
ylab("Labor Force Participation Rate (25-54)") + xlab("")
Germany (Men, Women, All)
Code
%>%
LFS_SEXAGE_I_R filter(AGE == "2554",
%in% c("MW", "MEN", "WOMEN"),
SEX %in% c("DEU"),
COUNTRY == "EPR") %>%
SERIES left_join(LFS_SEXAGE_I_R_var$SEX, by = "SEX") %>%
%>%
year_to_date mutate(obsValue = obsValue/100) %>%
ggplot() + geom_line(aes(x = date, y = obsValue, color = Sex)) +
theme_minimal() +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.75, 0.2),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(10, 100, 5),
labels = percent_format(accuracy = 1)) +
ylab("Employment / Population Ratio (25-54)") + xlab("")