Local Area Unemployment Statistics - LA
Data - BLS
Info
Data on employment
source | dataset | .html | .RData |
---|---|---|---|
2024-05-01 | NA | ||
2024-06-17 | NA | ||
2024-06-17 | NA | ||
2024-06-18 | 2024-06-18 | ||
2024-06-18 | 2024-06-18 | ||
2024-06-19 | 2024-06-08 | ||
2024-06-19 | 2024-06-08 | ||
2024-04-16 | 2024-05-12 | ||
2024-04-16 | 2023-12-10 | ||
2024-06-19 | 2024-04-15 | ||
2024-06-18 | 2024-05-06 |
LAST_DOWNLOAD
LAST_DOWNLOAD |
---|
2022-09-25 |
LAST_COMPILE
LAST_COMPILE |
---|
2024-06-20 |
Last
date | Nobs |
---|---|
2022-08-01 | 310 |
la.area
All
Code
%>%
la.area select(2, 3) %>%
print_table_conditional()
State
Code
%>%
la.area filter(area_type_code == "A") %>%
select(2, 3) %>%
print_table_conditional()
Metropolitan areas
Code
%>%
la.area filter(area_type_code == "B") %>%
select(2, 3) %>%
print_table_conditional()
Metropolitan divisions
Code
%>%
la.area filter(area_type_code == "C") %>%
select(2, 3) %>%
print_table_conditional()
Micropolitan areas
Code
%>%
la.area filter(area_type_code == "D") %>%
select(2, 3) %>%
print_table_conditional()
Combined areas
Code
%>%
la.area filter(area_type_code == "E") %>%
select(2, 3) %>%
print_table_conditional()
Counties and equivalents
Code
%>%
la.area filter(area_type_code == "F") %>%
select(2, 3) %>%
print_table_conditional()
Cities and towns above 25,000 population
Code
%>%
la.area filter(area_type_code == "G") %>%
select(2, 3) %>%
print_table_conditional()
Cities and towns below 25,000 population in New England
Code
%>%
la.area filter(area_type_code == "H") %>%
select(2, 3) %>%
print_table_conditional()
Parts of cities that cross county boundaries
Code
%>%
la.area filter(area_type_code == "I") %>%
select(2, 3) %>%
print_table_conditional()
Multi-entity small labor market areas
Code
%>%
la.area filter(area_type_code == "J") %>%
select(2, 3) %>%
print_table_conditional()
Intrastate parts of interstate areas
Code
%>%
la.area filter(area_type_code == "K") %>%
select(2, 3) %>%
print_table_conditional()
Balance of state areas
Code
%>%
la.area filter(area_type_code == "L") %>%
select(2, 3) %>%
print_table_conditional()
area_code | area_text |
---|---|
BS0600000000000 | Balance of California, state less Los Angeles-Long Beach-Glendale MD |
BS1200000000000 | Balance of Florida, state less Miami-Miami Beach-Kendall MD |
BS1700000000000 | Balance of Illinois, state less Chicago-Naperville-Arlington Heights MD |
BS2600000000000 | Balance of Michigan, state less Detroit-Warren-Dearborn MSA |
BS3600000000000 | Balance of New York, state less New York city |
BS3900000000000 | Balance of Ohio, state less Cleveland-Elyria MSA |
BS5300000000000 | Balance of Washington, state less Seattle-Bellevue-Everett MD |
Census regions
Code
%>%
la.area filter(area_type_code == "M") %>%
select(2, 3) %>%
print_table_conditional()
area_code | area_text |
---|---|
RD9100000000000 | Northeast region |
RD9200000000000 | Midwest region |
RD9300000000000 | South region |
RD9400000000000 | West region |
Census divisions
Code
%>%
la.area filter(area_type_code == "N") %>%
select(2, 3) %>%
print_table_conditional()
area_code | area_text |
---|---|
RD8100000000000 | New England division |
RD8200000000000 | Middle Atlantic division |
RD8300000000000 | East North Central division |
RD8400000000000 | West North Central division |
RD8500000000000 | South Atlantic division |
RD8600000000000 | East South Central division |
RD8700000000000 | West South Central division |
RD8800000000000 | Mountain division |
RD8900000000000 | Pacific division |
la.area_type
Code
%>%
la.area_type print_table_conditional()
area_type_code | areatype_text |
---|---|
A | Statewide |
B | Metropolitan areas |
C | Metropolitan divisions |
D | Micropolitan areas |
E | Combined areas |
F | Counties and equivalents |
G | Cities and towns above 25,000 population |
H | Cities and towns below 25,000 population in New England |
I | Parts of cities that cross county boundaries |
J | Multi-entity small labor market areas |
K | Intrastate parts of interstate areas |
L | Balance of state areas |
M | Census regions |
N | Census divisions |
la.state_region_division
Code
%>%
la.state_region_division print_table_conditional()
la.measure
Code
%>%
la.measure print_table_conditional()
measure_code | measure_text |
---|---|
3 | unemployment rate |
4 | unemployment |
5 | employment |
6 | labor force |
7 | employment-population ratio |
8 | labor force participation rate |
9 | civilian noninstitutional population |
la.seasonal
Code
%>%
la.seasonal print_table_conditional()
seasonal_code | seasonal_text |
---|---|
S | Seasonally Adjusted |
U | Not Seasonally Adjusted |
Longest Series
Code
%>%
la.series arrange(begin_year) %>%
head(100) %>%
select(series_id, series_title, begin_year, end_year) %>%
print_table_conditional()
State
Arkansas, California, Nevada
Code
3.AllStatesS %>%
la.data.left_join(la.series, by = "series_id") %>%
left_join(la.area, by = c("area_code", "area_type_code")) %>%
filter(measure_code == 3,
== "A",
area_type_code %in% c("California", "Arkansas", "Nevada")) %>%
area_text %>%
month_to_date #filter(date <= as.Date("2020-01-01")) %>%
ggplot() + theme_minimal() + xlab("") + ylab("") +
geom_line(aes(x = date, y = value / 100, color = area_text)) +
theme(legend.position = c(0.10, 0.85),
legend.title = element_blank()) +
scale_x_date(breaks = as.Date(paste0(seq(1970, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
labels = scales::percent_format(accuracy = 1))
Metropolitan
Abilene, Akron
Code
60.Metro %>%
la.data.left_join(la.series, by = "series_id") %>%
left_join(la.measure, by = "measure_code") %>%
select(-area_type_code) %>%
left_join(la.area, by = "area_code") %>%
left_join(la.area_type, by = "area_type_code") %>%
filter(measure_text == "unemployment rate",
== "B",
area_type_code %in% c("Abilene, TX Metropolitan Statistical Area",
area_text "Akron, OH Metropolitan Statistical Area")) %>%
%>%
month_to_date ggplot() + theme_minimal() + xlab("") + ylab("") +
geom_line(aes(x = date, y = as.numeric(value) / 100, color = area_text)) +
theme(legend.position = c(0.30, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
labels = scales::percent_format(accuracy = 1)) +
scale_x_date(breaks = as.Date(paste0(seq(1970, 2100, 5), "-01-01")),
labels = date_format("%Y"))
Combined
Los Angeles
Code
63.Combined %>%
la.data.left_join(la.series, by = "series_id") %>%
left_join(la.measure, by = "measure_code") %>%
select(-area_type_code) %>%
left_join(la.area, by = "area_code") %>%
left_join(la.area_type, by = "area_type_code") %>%
filter(measure_text == "unemployment rate",
== "E",
area_type_code grepl("Los Angeles", area_text) |
grepl("New York", area_text) |
grepl("Chicago", area_text)) %>%
%>%
month_to_date #filter(date <= as.Date("2020-01-01")) %>%
ggplot() + theme_minimal() + xlab("") + ylab("") +
geom_line(aes(x = date, y = as.numeric(value) / 100, color = area_text)) +
theme(legend.position = c(0.30, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
labels = scales::percent_format(accuracy = 1)) +
scale_x_date(breaks = as.Date(paste0(seq(1970, 2100, 5), "-01-01")),
labels = date_format("%Y"))
Cross-Section
U.S. MSAs
99-06
(ref:us-msas-phillips-99-06) U.S. MSAs Phillips curve (99-06)
Code
<- la.data.60.Metro %>%
data2_MSA left_join(la.series, by = "series_id") %>%
left_join(la.measure, by = "measure_code") %>%
select(-area_type_code) %>%
left_join(la.area, by = "area_code") %>%
left_join(la.area_type, by = "area_type_code") %>%
filter(measure_text == "unemployment rate",
== "B") %>%
area_type_code mutate(fips = area_code %>% substr(5, 9) %>% as.numeric,
value = as.numeric(value),
month = period %>% substr(2, 3),
date = paste0(year, "-", month, "-01") %>% as.Date) %>%
arrange(fips, date) %>%
filter(date %in% as.Date(paste0(c(1999, 2006), "-01-01"))) %>%
group_by(fips) %>%
mutate(unr_d1 = 0.01*(value - lag(value, 1))) %>%
filter(!is.na(unr_d1)) %>%
select(fips, unr_d1) %>%
left_join(freddie_CBSA %>%
filter(date %in% as.Date(paste0(c(1999, 2006), "-01-01")),
== "HOUSE_freddie_S") %>%
variable select(date, fips = cbsa_code, cbsa_name, value) %>%
group_by(fips) %>%
arrange(date) %>%
mutate(HP_d1ln = log(value) - lag(log(value), 1)) %>%
filter(!is.na(HP_d1ln)) %>%
select(fips, cbsa_name, HP_d1ln),
by = "fips") %>%
na.omit
%>%
data2_MSA ggplot(.) + geom_point(aes(unr_d1, HP_d1ln)) + theme_minimal() +
xlab(expression(Delta~"Unemployment Rate 99-06")) +
ylab(expression(Delta~"House Prices 99-06")) +
scale_x_continuous(breaks = 0.01*seq(-20, 20, 2),
labels = scales::percent_format(accuracy = 1)) +
scale_y_continuous(breaks = 0.01*seq(-100, 150, 10),
labels = scales::percent_format(accuracy = 1)) +
geom_text_repel(aes(x = unr_d1, y = HP_d1ln, label = cbsa_name),
data = data2_MSA %>% filter(HP_d1ln<=0.1 | unr_d1 >0.04 | unr_d1 <= -0.06)) +
stat_smooth(aes(unr_d1, HP_d1ln), linetype = 2, method = "lm", color = viridis(3)[2])