Gross capital formation by industry (up to NACE A*64)

Data - Eurostat

Info

source dataset .html .RData
eurostat nama_10_a64_p5 2024-11-05 2024-11-08
eurostat nama_10_gdp 2024-11-05 2024-10-08

Data on inflation

source dataset .html .RData
bis CPI 2024-07-01 2022-01-20
ecb CES 2024-10-08 2024-01-12
eurostat nama_10_co3_p3 2024-11-05 2024-10-09
eurostat prc_hicp_cow 2024-11-05 2024-10-08
eurostat prc_hicp_ctrb 2024-11-05 2024-10-08
eurostat prc_hicp_inw 2024-11-05 2024-11-08
eurostat prc_hicp_manr 2024-11-05 2024-10-08
eurostat prc_hicp_midx 2024-11-01 2024-11-08
eurostat prc_hicp_mmor 2024-11-05 2024-11-08
eurostat prc_ppp_ind 2024-11-05 2024-10-08
eurostat sts_inpp_m 2024-06-24 2024-10-08
eurostat sts_inppd_m 2024-11-05 2024-10-08
eurostat sts_inppnd_m 2024-06-24 2024-10-08
fred cpi 2024-11-01 2024-11-01
fred inflation 2024-11-01 2024-11-01
imf CPI 2024-06-20 2020-03-13
oecd MEI_PRICES_PPI 2024-09-15 2024-04-15
oecd PPP2017 2024-04-16 2023-07-25
oecd PRICES_CPI 2024-04-16 2024-04-15
wdi FP.CPI.TOTL.ZG 2023-01-15 2024-09-18
wdi NY.GDP.DEFL.KD.ZG 2024-09-18 2024-09-18

LAST_COMPILE

LAST_COMPILE
2024-11-08

Last

Code
nama_10_a64_p5 %>%
  group_by(time) %>%
  summarise(Nobs = n()) %>%
  arrange(desc(time)) %>%
  head(1) %>%
  print_table_conditional()
time Nobs
2023 212904

nace_r2

Code
nama_10_a64_p5 %>%
  left_join(nace_r2, by = "nace_r2") %>%
  group_by(nace_r2, Nace_r2) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

na_item

Code
nama_10_a64_p5 %>%
  left_join(na_item, by = "na_item") %>%
  group_by(na_item, Na_item) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) print_table(.) else .}
na_item Na_item Nobs
P51G Gross fixed capital formation 12212675
P5G Gross capital formation 498954
P52 Changes in inventories 181943
P52_P53 Changes in inventories and acquisitions less disposals of valuables 112470
P53 Acquisitions less disposals of valuables 84138

asset10

Code
nama_10_a64_p5 %>%
  left_join(asset10, by = "asset10") %>%
  group_by(asset10, Asset10) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) print_table(.) else .}
asset10 Asset10 Nobs
N11G Total fixed assets (gross) 1280543
N11MG Machinery and equipment and weapons systems (gross) 1217610
N112G Other buildings and structures (gross) 1199798
N1131G Transport equipment (gross) 1194824
N117G Intellectual property products (gross) 1152268
N11OG Other machinery and equipment and weapons systems (gross) 949851
N1132G ICT equipment (gross) 905137
N11KG Total Construction (gross) 864617
N111G Dwellings (gross) 703969
N115G Cultivated biological resources (gross) 647563
N1173G Computer software and databases (gross) 635827
N1171G Research and development (gross) 554453
N1G Produced non-financial assets (gross) 498954
N11321G Computer hardware (gross) 465353
N11322G Telecommunications equipment (gross) 440862
N12G Inventories (gross) 181943
N1MG Inventories and acquisitions less disposals of valuables (gross) 112470
N13G Valuables (gross) 84138

unit

Code
nama_10_a64_p5 %>%
  left_join(unit, by = "unit") %>%
  group_by(unit, Unit) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

time

Code
nama_10_a64_p5 %>%
  group_by(time) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

geo

Code
nama_10_a64_p5 %>%
  left_join(geo, by = "geo") %>%
  group_by(geo, Geo) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

France, Italy, Germany

C - Manufacturing

Code
nama_10_a64_p5 %>%
  filter(unit == "CP_MEUR",
         geo %in% c("FR", "IT", "DE"),
         nace_r2 == "C",
         asset10 == "N11G") %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CP_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/gdp) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_3flags +
  scale_color_identity() + xlab("") + ylab("% of GDP") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 200, .1),
                     labels = scales::percent_format(accuracy = .1))

B-E - Energy

Code
nama_10_a64_p5 %>%
  filter(unit == "CP_MEUR",
         geo %in% c("FR", "IT", "DE"),
         nace_r2 == "B-E",
         asset10 == "N11G") %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CP_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/gdp) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_3flags +
  scale_color_identity() + xlab("") + ylab("% of GDP") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 200, .1),
                     labels = scales::percent_format(accuracy = .1))

France, Italy, United Kingdom, Spain, Germany

TOTAL investment

N11G - Total

Table

Code
nama_10_a64_p5 %>%
  filter(unit == "CP_MEUR",
         geo %in% c("FR", "NL", "IT", "ES", "DE"),
         asset10 == "N11G",
         time == "2021") %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CP_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  left_join(nace_r2, by = "nace_r2") %>%
  mutate(values = 100*values/gdp) %>%
  select_if(~ n_distinct(.) > 1) %>%
  select(-geo, -gdp) %>%
  spread(Geo, values) %>%
  arrange(-France) %>%
  print_table_conditional()

TOTAL - All sectors

Code
nama_10_a64_p5 %>%
  filter(unit == "CP_MEUR",
         geo %in% c("FR", "NL", "IT", "ES", "DE"),
         nace_r2 == "TOTAL",
         asset10 == "N11G") %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CP_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/gdp) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("% of GDP") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 200, 1),
                     labels = scales::percent_format(accuracy = 1))

J - Information - communication

Code
nama_10_a64_p5 %>%
  filter(unit == "CP_MEUR",
         geo %in% c("FR", "NL", "IT", "ES", "DE"),
         nace_r2 == "J",
         asset10 == "N11G") %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CP_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/gdp) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("J - Information - communication\n% of GDP") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 200, .1),
                     labels = scales::percent_format(accuracy = .1))

C - Manufacturing

Code
nama_10_a64_p5 %>%
  filter(unit == "CP_MEUR",
         geo %in% c("FR", "NL", "IT", "ES", "DE"),
         nace_r2 == "C",
         asset10 == "N11G") %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CP_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/gdp) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("% of GDP") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 200, .1),
                     labels = scales::percent_format(accuracy = .1))

M - Professional, scientific and technical activities

All
Code
nama_10_a64_p5 %>%
  filter(unit == "CP_MEUR",
         geo %in% c("FR", "NL", "IT", "ES", "DE"),
         nace_r2 == "M",
         asset10 == "N11G") %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CP_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/gdp) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("M - Professional, scientific and technical activities\n% of GDP") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 200, .1),
                     labels = scales::percent_format(accuracy = .1))

N117G
Code
nama_10_a64_p5 %>%
  filter(unit == "CP_MEUR",
         geo %in% c("FR", "NL", "IT", "ES", "DE"),
         nace_r2 == "M",
         asset10 == "N117G") %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CP_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/gdp) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("M - Professional, scientific and technical activities\n% of GDP") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 200, .1),
                     labels = scales::percent_format(accuracy = .1))

O - Public administration and defence; compulsory social security

Code
nama_10_a64_p5 %>%
  filter(unit == "CP_MEUR",
         geo %in% c("FR", "NL", "IT", "ES", "DE"),
         nace_r2 == "O",
         asset10 == "N11G") %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CP_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/gdp) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("% of GDP") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 200, .1),
                     labels = scales::percent_format(accuracy = .1))

B-E - Industry

Code
nama_10_a64_p5 %>%
  filter(unit == "CP_MEUR",
         geo %in% c("FR", "NL", "IT", "ES", "DE"),
         nace_r2 == "B-E",
         asset10 == "N11G") %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CP_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/gdp) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("% of GDP") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 200, .1),
                     labels = scales::percent_format(accuracy = .1))

F - Construction

Code
nama_10_a64_p5 %>%
  filter(unit == "CP_MEUR",
         geo %in% c("FR", "NL", "IT", "CH", "DE"),
         nace_r2 == "F",
         asset10 == "N11G") %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CP_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/gdp) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_4flags +
  scale_color_identity() + xlab("") + ylab("% of GDP") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 200, .1),
                     labels = scales::percent_format(accuracy = .1))

C20 - Chemicals

Code
nama_10_a64_p5 %>%
  filter(unit == "CP_MEUR",
         geo %in% c("FR", "NL", "IT", "ES", "DE"),
         nace_r2 == "C20",
         asset10 == "N11G") %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CP_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/gdp) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_3flags +
  scale_color_identity() + xlab("") + ylab("% of GDP") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 200, .1),
                     labels = scales::percent_format(accuracy = .1))

N117G - Intellectual property products (gross)

Code
nama_10_a64_p5 %>%
  filter(unit == "CP_MEUR",
         geo %in% c("FR", "NL", "IT", "ES", "DE"),
         nace_r2 == "TOTAL",
         asset10 == "N117G") %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CP_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/gdp) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("% of GDP") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 200, 1),
                     labels = scales::percent_format(accuracy = 1))

N1132G - ICT equipment (gross)

Code
nama_10_a64_p5 %>%
  filter(unit == "CP_MEUR",
         geo %in% c("FR", "NL", "IT", "ES", "DE"),
         nace_r2 == "TOTAL",
         asset10 == "N1132G") %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CP_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/gdp) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("% of GDP") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 200, .2),
                     labels = scales::percent_format(accuracy = .1))

Investissement en France

Long

Code
nama_10_a64_p5 %>%
  filter(geo == "FR",
         na_item == "P51G",
         unit == "CP_MEUR",
         time == "2018") %>%
  left_join(asset10, by = "asset10") %>%
  left_join(nace_r2, by = "nace_r2") %>%
  select(nace_r2, Nace_r2, asset10, Asset10, values) %>%
  arrange(-values) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

Large

Code
nama_10_a64_p5 %>%
  filter(geo == "FR",
         na_item == "P51G",
         unit == "CP_MEUR",
         time == "2018") %>%
  left_join(nace_r2, by = "nace_r2") %>%
  select(nace_r2, Nace_r2, asset10, values) %>%
  spread(asset10, values) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

France, Germany, Italy, Netherlands, Spain

N11G - All

Code
nama_10_a64_p5 %>%
  filter(unit == "PD15_EUR",
         geo %in% c("FR", "NL", "IT", "DE", "ES"),
         nace_r2 == "TOTAL",
         asset10 == "N11G") %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  group_by(Geo) %>%
  mutate(values = 100*values/values[date == as.Date("1995-01-01")]) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2022, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(10, 300, 10))

N1132G - ICT equipment (gross)

Code
nama_10_a64_p5 %>%
  filter(unit == "PD15_EUR",
         geo %in% c("FR", "NL", "IT", "DE", "ES"),
         nace_r2 == "TOTAL",
         asset10 == "N1132G") %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  group_by(Geo) %>%
  mutate(values = 100*values/values[date == as.Date("1995-01-01")]) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2022, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(10, 300, 10))

Information -communication

Code
nama_10_a64_p5 %>%
  filter(unit == "PD15_EUR",
         geo %in% c("FR", "NL", "IT", "DE", "ES"),
         nace_r2 == "J",
         asset10 == "N11G") %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  group_by(Geo) %>%
  mutate(values = 100*values/values[date == as.Date("1995-01-01")]) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2022, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(10, 300, 10))