source | dataset | .html | .RData |
---|---|---|---|
eurostat | nama_10_a64_p5 | 2025-01-05 | 2025-01-07 |
eurostat | nama_10_gdp | 2025-01-07 | 2025-01-07 |
Gross capital formation by industry (up to NACE A*64)
Data - Eurostat
Info
Data on inflation
source | dataset | .html | .RData |
---|---|---|---|
bis | CPI | 2024-12-29 | 2022-01-20 |
ecb | CES | 2025-01-07 | 2025-01-07 |
eurostat | nama_10_co3_p3 | 2025-01-05 | 2024-12-14 |
eurostat | prc_hicp_cow | 2025-01-05 | 2024-10-08 |
eurostat | prc_hicp_ctrb | 2025-01-05 | 2024-10-08 |
eurostat | prc_hicp_inw | 2025-01-05 | 2025-01-07 |
eurostat | prc_hicp_manr | 2025-01-07 | 2025-01-07 |
eurostat | prc_hicp_midx | 2024-11-01 | 2025-01-07 |
eurostat | prc_hicp_mmor | 2025-01-05 | 2025-01-07 |
eurostat | prc_ppp_ind | 2025-01-05 | 2024-10-08 |
eurostat | sts_inpp_m | 2024-06-24 | 2025-01-07 |
eurostat | sts_inppd_m | 2025-01-07 | 2025-01-07 |
eurostat | sts_inppnd_m | 2024-06-24 | 2025-01-07 |
fred | cpi | 2025-01-07 | 2025-01-07 |
fred | inflation | 2025-01-07 | 2025-01-07 |
imf | CPI | 2024-06-20 | 2020-03-13 |
oecd | MEI_PRICES_PPI | 2024-09-15 | 2024-04-15 |
oecd | PPP2017 | 2024-04-16 | 2023-07-25 |
oecd | PRICES_CPI | 2024-04-16 | 2024-04-15 |
wdi | FP.CPI.TOTL.ZG | 2023-01-15 | 2024-09-18 |
wdi | NY.GDP.DEFL.KD.ZG | 2024-09-18 | 2024-09-18 |
LAST_COMPILE
LAST_COMPILE |
---|
2025-01-07 |
Last
Code
%>%
nama_10_a64_p5 group_by(time) %>%
summarise(Nobs = n()) %>%
arrange(desc(time)) %>%
head(1) %>%
print_table_conditional()
time | Nobs |
---|---|
2023 | 328115 |
nace_r2
Code
%>%
nama_10_a64_p5 left_join(nace_r2, by = "nace_r2") %>%
group_by(nace_r2, Nace_r2) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
na_item
Code
%>%
nama_10_a64_p5 left_join(na_item, by = "na_item") %>%
group_by(na_item, Na_item) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
na_item | Na_item | Nobs |
---|---|---|
P51G | Gross fixed capital formation | 14999674 |
P5G | Gross capital formation | 542987 |
P52 | Changes in inventories | 167530 |
P52_P53 | Changes in inventories and acquisitions less disposals of valuables | 106085 |
P53 | Acquisitions less disposals of valuables | 77443 |
asset10
Code
%>%
nama_10_a64_p5 left_join(asset10, by = "asset10") %>%
group_by(asset10, Asset10) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
asset10 | Asset10 | Nobs |
---|---|---|
N11G | Total fixed assets (gross) | 1499445 |
N11MG | Machinery and equipment and weapons systems (gross) | 1396013 |
N112G | Other buildings and structures (gross) | 1374447 |
N117G | Intellectual property products (gross) | 1372385 |
N1131G | Transport equipment (gross) | 1366596 |
N11KG | Total Construction (gross) | 1210508 |
N11OG | Other machinery and equipment and weapons systems (gross) | 1097389 |
N1132G | ICT equipment (gross) | 1036303 |
N1173G | Computer software and databases (gross) | 914611 |
N1171G | Research and development (gross) | 800872 |
N111G | Dwellings (gross) | 788251 |
N11321G | Computer hardware (gross) | 751559 |
N115G | Cultivated biological resources (gross) | 699074 |
N11322G | Telecommunications equipment (gross) | 692221 |
N1G | Produced non-financial assets (gross) | 542987 |
N12G | Inventories (gross) | 167530 |
N1MG | Inventories and acquisitions less disposals of valuables (gross) | 106085 |
N13G | Valuables (gross) | 77443 |
unit
Code
%>%
nama_10_a64_p5 left_join(unit, by = "unit") %>%
group_by(unit, Unit) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
time
Code
%>%
nama_10_a64_p5 group_by(time) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
geo
Code
%>%
nama_10_a64_p5 left_join(geo, by = "geo") %>%
group_by(geo, Geo) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
France, Italy, Germany
C - Manufacturing
Code
%>%
nama_10_a64_p5 filter(unit == "CP_MEUR",
%in% c("FR", "IT", "DE"),
geo == "C",
nace_r2 == "N11G") %>%
asset10 left_join(nama_10_gdp %>%
filter(na_item == "B1GQ",
== "CP_MEUR") %>%
unit select(geo, time, gdp = values),
by = c("geo", "time")) %>%
left_join(geo, by = "geo") %>%
%>%
year_to_date filter(date >= as.Date("1995-01-01")) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/gdp) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot theme_minimal() + add_3flags +
scale_color_identity() + xlab("") + ylab("% of GDP") +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.2, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 200, .1),
labels = scales::percent_format(accuracy = .1))
B-E - Energy
Code
%>%
nama_10_a64_p5 filter(unit == "CP_MEUR",
%in% c("FR", "IT", "DE"),
geo == "B-E",
nace_r2 == "N11G") %>%
asset10 left_join(nama_10_gdp %>%
filter(na_item == "B1GQ",
== "CP_MEUR") %>%
unit select(geo, time, gdp = values),
by = c("geo", "time")) %>%
left_join(geo, by = "geo") %>%
%>%
year_to_date filter(date >= as.Date("1995-01-01")) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/gdp) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot theme_minimal() + add_3flags +
scale_color_identity() + xlab("") + ylab("% of GDP") +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.2, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 200, .1),
labels = scales::percent_format(accuracy = .1))
France, Italy, United Kingdom, Spain, Germany
TOTAL investment
N11G - Total
Table
Code
%>%
nama_10_a64_p5 filter(unit == "CP_MEUR",
%in% c("FR", "NL", "IT", "ES", "DE"),
geo == "N11G",
asset10 == "2021") %>%
time left_join(nama_10_gdp %>%
filter(na_item == "B1GQ",
== "CP_MEUR") %>%
unit select(geo, time, gdp = values),
by = c("geo", "time")) %>%
left_join(geo, by = "geo") %>%
left_join(nace_r2, by = "nace_r2") %>%
mutate(values = 100*values/gdp) %>%
select_if(~ n_distinct(.) > 1) %>%
select(-geo, -gdp) %>%
spread(Geo, values) %>%
arrange(-France) %>%
print_table_conditional()
TOTAL - All sectors
Code
%>%
nama_10_a64_p5 filter(unit == "CP_MEUR",
%in% c("FR", "NL", "IT", "ES", "DE"),
geo == "TOTAL",
nace_r2 == "N11G") %>%
asset10 left_join(nama_10_gdp %>%
filter(na_item == "B1GQ",
== "CP_MEUR") %>%
unit select(geo, time, gdp = values),
by = c("geo", "time")) %>%
left_join(geo, by = "geo") %>%
%>%
year_to_date filter(date >= as.Date("1995-01-01")) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/gdp) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot theme_minimal() + add_5flags +
scale_color_identity() + xlab("") + ylab("% of GDP") +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.2, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 200, 1),
labels = scales::percent_format(accuracy = 1))
J - Information - communication
Code
%>%
nama_10_a64_p5 filter(unit == "CP_MEUR",
%in% c("FR", "NL", "IT", "ES", "DE"),
geo == "J",
nace_r2 == "N11G") %>%
asset10 left_join(nama_10_gdp %>%
filter(na_item == "B1GQ",
== "CP_MEUR") %>%
unit select(geo, time, gdp = values),
by = c("geo", "time")) %>%
left_join(geo, by = "geo") %>%
%>%
year_to_date filter(date >= as.Date("1995-01-01")) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/gdp) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot theme_minimal() + add_5flags +
scale_color_identity() + xlab("") + ylab("J - Information - communication\n% of GDP") +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.2, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 200, .1),
labels = scales::percent_format(accuracy = .1))
C - Manufacturing
Code
%>%
nama_10_a64_p5 filter(unit == "CP_MEUR",
%in% c("FR", "NL", "IT", "ES", "DE"),
geo == "C",
nace_r2 == "N11G") %>%
asset10 left_join(nama_10_gdp %>%
filter(na_item == "B1GQ",
== "CP_MEUR") %>%
unit select(geo, time, gdp = values),
by = c("geo", "time")) %>%
left_join(geo, by = "geo") %>%
%>%
year_to_date filter(date >= as.Date("1995-01-01")) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/gdp) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot theme_minimal() + add_5flags +
scale_color_identity() + xlab("") + ylab("% of GDP") +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.2, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 200, .1),
labels = scales::percent_format(accuracy = .1))
M - Professional, scientific and technical activities
All
Code
%>%
nama_10_a64_p5 filter(unit == "CP_MEUR",
%in% c("FR", "NL", "IT", "ES", "DE"),
geo == "M",
nace_r2 == "N11G") %>%
asset10 left_join(nama_10_gdp %>%
filter(na_item == "B1GQ",
== "CP_MEUR") %>%
unit select(geo, time, gdp = values),
by = c("geo", "time")) %>%
left_join(geo, by = "geo") %>%
%>%
year_to_date filter(date >= as.Date("1995-01-01")) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/gdp) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot theme_minimal() + add_5flags +
scale_color_identity() + xlab("") + ylab("M - Professional, scientific and technical activities\n% of GDP") +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.2, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 200, .1),
labels = scales::percent_format(accuracy = .1))
N117G
Code
%>%
nama_10_a64_p5 filter(unit == "CP_MEUR",
%in% c("FR", "NL", "IT", "ES", "DE"),
geo == "M",
nace_r2 == "N117G") %>%
asset10 left_join(nama_10_gdp %>%
filter(na_item == "B1GQ",
== "CP_MEUR") %>%
unit select(geo, time, gdp = values),
by = c("geo", "time")) %>%
left_join(geo, by = "geo") %>%
%>%
year_to_date filter(date >= as.Date("1995-01-01")) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/gdp) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot theme_minimal() + add_5flags +
scale_color_identity() + xlab("") + ylab("M - Professional, scientific and technical activities\n% of GDP") +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.2, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 200, .1),
labels = scales::percent_format(accuracy = .1))
B-E - Industry
Code
%>%
nama_10_a64_p5 filter(unit == "CP_MEUR",
%in% c("FR", "NL", "IT", "ES", "DE"),
geo == "B-E",
nace_r2 == "N11G") %>%
asset10 left_join(nama_10_gdp %>%
filter(na_item == "B1GQ",
== "CP_MEUR") %>%
unit select(geo, time, gdp = values),
by = c("geo", "time")) %>%
left_join(geo, by = "geo") %>%
%>%
year_to_date filter(date >= as.Date("1995-01-01")) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/gdp) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot theme_minimal() + add_5flags +
scale_color_identity() + xlab("") + ylab("% of GDP") +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.2, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 200, .1),
labels = scales::percent_format(accuracy = .1))
F - Construction
Code
%>%
nama_10_a64_p5 filter(unit == "CP_MEUR",
%in% c("FR", "NL", "IT", "CH", "DE"),
geo == "F",
nace_r2 == "N11G") %>%
asset10 left_join(nama_10_gdp %>%
filter(na_item == "B1GQ",
== "CP_MEUR") %>%
unit select(geo, time, gdp = values),
by = c("geo", "time")) %>%
left_join(geo, by = "geo") %>%
%>%
year_to_date filter(date >= as.Date("1995-01-01")) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/gdp) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot theme_minimal() + add_4flags +
scale_color_identity() + xlab("") + ylab("% of GDP") +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.2, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 200, .1),
labels = scales::percent_format(accuracy = .1))
C20 - Chemicals
Code
%>%
nama_10_a64_p5 filter(unit == "CP_MEUR",
%in% c("FR", "NL", "IT", "ES", "DE"),
geo == "C20",
nace_r2 == "N11G") %>%
asset10 left_join(nama_10_gdp %>%
filter(na_item == "B1GQ",
== "CP_MEUR") %>%
unit select(geo, time, gdp = values),
by = c("geo", "time")) %>%
left_join(geo, by = "geo") %>%
%>%
year_to_date filter(date >= as.Date("1995-01-01")) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/gdp) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot theme_minimal() + add_3flags +
scale_color_identity() + xlab("") + ylab("% of GDP") +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.2, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 200, .1),
labels = scales::percent_format(accuracy = .1))
N117G - Intellectual property products (gross)
Code
%>%
nama_10_a64_p5 filter(unit == "CP_MEUR",
%in% c("FR", "NL", "IT", "ES", "DE"),
geo == "TOTAL",
nace_r2 == "N117G") %>%
asset10 left_join(nama_10_gdp %>%
filter(na_item == "B1GQ",
== "CP_MEUR") %>%
unit select(geo, time, gdp = values),
by = c("geo", "time")) %>%
left_join(geo, by = "geo") %>%
%>%
year_to_date filter(date >= as.Date("1995-01-01")) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/gdp) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot theme_minimal() + add_5flags +
scale_color_identity() + xlab("") + ylab("% of GDP") +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.2, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 200, 1),
labels = scales::percent_format(accuracy = 1))
N1132G - ICT equipment (gross)
Code
%>%
nama_10_a64_p5 filter(unit == "CP_MEUR",
%in% c("FR", "NL", "IT", "ES", "DE"),
geo == "TOTAL",
nace_r2 == "N1132G") %>%
asset10 left_join(nama_10_gdp %>%
filter(na_item == "B1GQ",
== "CP_MEUR") %>%
unit select(geo, time, gdp = values),
by = c("geo", "time")) %>%
left_join(geo, by = "geo") %>%
%>%
year_to_date filter(date >= as.Date("1995-01-01")) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/gdp) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot theme_minimal() + add_5flags +
scale_color_identity() + xlab("") + ylab("% of GDP") +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.2, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 200, .2),
labels = scales::percent_format(accuracy = .1))
Investissement en France
Long
Code
%>%
nama_10_a64_p5 filter(geo == "FR",
== "P51G",
na_item == "CP_MEUR",
unit == "2018") %>%
time left_join(asset10, by = "asset10") %>%
left_join(nace_r2, by = "nace_r2") %>%
select(nace_r2, Nace_r2, asset10, Asset10, values) %>%
arrange(-values) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
Large
Code
%>%
nama_10_a64_p5 filter(geo == "FR",
== "P51G",
na_item == "CP_MEUR",
unit == "2018") %>%
time left_join(nace_r2, by = "nace_r2") %>%
select(nace_r2, Nace_r2, asset10, values) %>%
spread(asset10, values) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
France, Germany, Italy, Netherlands, Spain
N11G - All
Code
%>%
nama_10_a64_p5 filter(unit == "PD15_EUR",
%in% c("FR", "NL", "IT", "DE", "ES"),
geo == "TOTAL",
nace_r2 == "N11G") %>%
asset10 left_join(geo, by = "geo") %>%
%>%
year_to_date filter(date >= as.Date("1995-01-01")) %>%
left_join(colors, by = c("Geo" = "country")) %>%
group_by(Geo) %>%
mutate(values = 100*values/values[date == as.Date("1995-01-01")]) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot theme_minimal() + add_5flags +
scale_color_identity() + xlab("") + ylab("") +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2022, 2), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.2, 0.85),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 300, 10))
N1132G - ICT equipment (gross)
Code
%>%
nama_10_a64_p5 filter(unit == "PD15_EUR",
%in% c("FR", "NL", "IT", "DE", "ES"),
geo == "TOTAL",
nace_r2 == "N1132G") %>%
asset10 left_join(geo, by = "geo") %>%
%>%
year_to_date filter(date >= as.Date("1995-01-01")) %>%
left_join(colors, by = c("Geo" = "country")) %>%
group_by(Geo) %>%
mutate(values = 100*values/values[date == as.Date("1995-01-01")]) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot theme_minimal() + add_5flags +
scale_color_identity() + xlab("") + ylab("") +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2022, 2), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.2, 0.85),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 300, 10))
Information -communication
Code
%>%
nama_10_a64_p5 filter(unit == "PD15_EUR",
%in% c("FR", "NL", "IT", "DE", "ES"),
geo == "J",
nace_r2 == "N11G") %>%
asset10 left_join(geo, by = "geo") %>%
%>%
year_to_date filter(date >= as.Date("1995-01-01")) %>%
left_join(colors, by = c("Geo" = "country")) %>%
group_by(Geo) %>%
mutate(values = 100*values/values[date == as.Date("1995-01-01")]) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot theme_minimal() + add_5flags +
scale_color_identity() + xlab("") + ylab("") +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2022, 2), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.2, 0.85),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 300, 10))