Gross capital formation by industry (up to NACE A*64)

Data - Eurostat

Info

source dataset .html .RData
eurostat nama_10_a64_p5 2025-02-01 2025-05-18
eurostat nama_10_gdp 2025-02-01 2025-05-18

Data on inflation

source dataset .html .RData
bis CPI 2024-12-29 2022-01-20
ecb CES 2025-05-18 2025-03-31
eurostat nama_10_co3_p3 2025-03-20 2025-05-18
eurostat prc_hicp_cow 2025-02-01 2025-05-18
eurostat prc_hicp_ctrb 2025-02-01 2025-05-18
eurostat prc_hicp_inw 2025-01-26 2025-05-18
eurostat prc_hicp_manr 2025-04-02 2025-05-18
eurostat prc_hicp_midx 2025-03-31 2025-05-18
eurostat prc_hicp_mmor 2025-02-01 2025-05-18
eurostat prc_ppp_ind 2025-02-01 2025-05-18
eurostat sts_inpp_m 2024-06-24 2025-05-18
eurostat sts_inppd_m 2025-03-19 2025-05-18
eurostat sts_inppnd_m 2024-06-24 2025-05-18
fred cpi 2025-05-18 2025-05-18
fred inflation 2025-04-20 2025-05-18
imf CPI 2024-06-20 2020-03-13
oecd MEI_PRICES_PPI 2024-09-15 2024-04-15
oecd PPP2017 2024-04-16 2023-07-25
oecd PRICES_CPI 2024-04-16 2024-04-15
wdi FP.CPI.TOTL.ZG 2023-01-15 2025-03-09
wdi NY.GDP.DEFL.KD.ZG 2025-03-09 2025-03-09

LAST_COMPILE

LAST_COMPILE
2025-05-18

Last

Code
nama_10_a64_p5 %>%
  group_by(time) %>%
  summarise(Nobs = n()) %>%
  arrange(desc(time)) %>%
  head(1) %>%
  print_table_conditional()
time Nobs
2024 39608

nace_r2

Code
nama_10_a64_p5 %>%
  left_join(nace_r2, by = "nace_r2") %>%
  group_by(nace_r2, Nace_r2) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

na_item

Code
nama_10_a64_p5 %>%
  left_join(na_item, by = "na_item") %>%
  group_by(na_item, Na_item) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) print_table(.) else .}
na_item Na_item Nobs
P51G Gross fixed capital formation 16870930
P5G Gross capital formation 570452
P52 Changes in inventories 157809
P52_P53 Changes in inventories and acquisitions less disposals of valuables 86800
P53 Acquisitions less disposals of valuables 62723

asset10

Code
nama_10_a64_p5 %>%
  left_join(asset10, by = "asset10") %>%
  group_by(asset10, Asset10) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) print_table(.) else .}
asset10 Asset10 Nobs
N11G Total fixed assets (gross) 1590905
N11MG Machinery and equipment and weapons systems (gross) 1548508
N112G Other buildings and structures (gross) 1526310
N117G Intellectual property products (gross) 1520131
N1131G Transport equipment (gross) 1514959
N11KG Total Construction (gross) 1418624
N11OG Other machinery and equipment and weapons systems (gross) 1207387
N1132G ICT equipment (gross) 1170988
N1173G Computer software and databases (gross) 1070321
N1171G Research and development (gross) 962767
N11321G Computer hardware (gross) 919910
N111G Dwellings (gross) 881045
N11322G Telecommunications equipment (gross) 811268
N115G Cultivated biological resources (gross) 727807
N1G Produced non-financial assets (gross) 570452
N12G Inventories (gross) 157809
N1MG Inventories and acquisitions less disposals of valuables (gross) 86800
N13G Valuables (gross) 62723

unit

Code
nama_10_a64_p5 %>%
  left_join(unit, by = "unit") %>%
  group_by(unit, Unit) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

time

Code
nama_10_a64_p5 %>%
  group_by(time) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

geo

Code
nama_10_a64_p5 %>%
  left_join(geo, by = "geo") %>%
  group_by(geo, Geo) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

France, Italy, Germany

C - Manufacturing

Code
nama_10_a64_p5 %>%
  filter(unit == "CP_MEUR",
         geo %in% c("FR", "IT", "DE"),
         nace_r2 == "C",
         asset10 == "N11G") %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CP_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/gdp) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_3flags +
  scale_color_identity() + xlab("") + ylab("% of GDP") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 200, .1),
                     labels = scales::percent_format(accuracy = .1))

B-E - Energy

Code
nama_10_a64_p5 %>%
  filter(unit == "CP_MEUR",
         geo %in% c("FR", "IT", "DE"),
         nace_r2 == "B-E",
         asset10 == "N11G") %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CP_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/gdp) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_3flags +
  scale_color_identity() + xlab("") + ylab("% of GDP") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 200, .1),
                     labels = scales::percent_format(accuracy = .1))

France, Italy, United Kingdom, Spain, Germany

TOTAL investment

N11G - Total

Table

Code
nama_10_a64_p5 %>%
  filter(unit == "CP_MEUR",
         geo %in% c("FR", "NL", "IT", "ES", "DE"),
         asset10 == "N11G",
         time == "2021") %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CP_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  left_join(nace_r2, by = "nace_r2") %>%
  mutate(values = 100*values/gdp) %>%
  select_if(~ n_distinct(.) > 1) %>%
  select(-geo, -gdp) %>%
  spread(Geo, values) %>%
  arrange(-France) %>%
  print_table_conditional()

TOTAL - All sectors

Code
nama_10_a64_p5 %>%
  filter(unit == "CP_MEUR",
         geo %in% c("FR", "NL", "IT", "ES", "DE"),
         nace_r2 == "TOTAL",
         asset10 == "N11G") %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CP_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/gdp) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("% of GDP") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 200, 1),
                     labels = scales::percent_format(accuracy = 1))

J - Information - communication

Code
nama_10_a64_p5 %>%
  filter(unit == "CP_MEUR",
         geo %in% c("FR", "NL", "IT", "ES", "DE"),
         nace_r2 == "J",
         asset10 == "N11G") %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CP_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/gdp) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("J - Information - communication\n% of GDP") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 200, .1),
                     labels = scales::percent_format(accuracy = .1))

C - Manufacturing

Code
nama_10_a64_p5 %>%
  filter(unit == "CP_MEUR",
         geo %in% c("FR", "NL", "IT", "ES", "DE"),
         nace_r2 == "C",
         asset10 == "N11G") %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CP_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/gdp) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("% of GDP") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 200, .1),
                     labels = scales::percent_format(accuracy = .1))

M - Professional, scientific and technical activities

All
Code
nama_10_a64_p5 %>%
  filter(unit == "CP_MEUR",
         geo %in% c("FR", "NL", "IT", "ES", "DE"),
         nace_r2 == "M",
         asset10 == "N11G") %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CP_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/gdp) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("M - Professional, scientific and technical activities\n% of GDP") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 200, .1),
                     labels = scales::percent_format(accuracy = .1))

N117G
Code
nama_10_a64_p5 %>%
  filter(unit == "CP_MEUR",
         geo %in% c("FR", "NL", "IT", "ES", "DE"),
         nace_r2 == "M",
         asset10 == "N117G") %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CP_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/gdp) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("M - Professional, scientific and technical activities\n% of GDP") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 200, .1),
                     labels = scales::percent_format(accuracy = .1))

O - Public administration and defence; compulsory social security

Code
nama_10_a64_p5 %>%
  filter(unit == "CP_MEUR",
         geo %in% c("FR", "NL", "IT", "ES", "DE"),
         nace_r2 == "O",
         asset10 == "N11G") %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CP_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/gdp) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("% of GDP") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 200, .1),
                     labels = scales::percent_format(accuracy = .1))

B-E - Industry

Code
nama_10_a64_p5 %>%
  filter(unit == "CP_MEUR",
         geo %in% c("FR", "NL", "IT", "ES", "DE"),
         nace_r2 == "B-E",
         asset10 == "N11G") %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CP_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/gdp) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("% of GDP") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 200, .1),
                     labels = scales::percent_format(accuracy = .1))

F - Construction

Code
nama_10_a64_p5 %>%
  filter(unit == "CP_MEUR",
         geo %in% c("FR", "NL", "IT", "CH", "DE"),
         nace_r2 == "F",
         asset10 == "N11G") %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CP_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/gdp) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_4flags +
  scale_color_identity() + xlab("") + ylab("% of GDP") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 200, .1),
                     labels = scales::percent_format(accuracy = .1))

C20 - Chemicals

Code
nama_10_a64_p5 %>%
  filter(unit == "CP_MEUR",
         geo %in% c("FR", "NL", "IT", "ES", "DE"),
         nace_r2 == "C20",
         asset10 == "N11G") %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CP_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/gdp) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_3flags +
  scale_color_identity() + xlab("") + ylab("% of GDP") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 200, .1),
                     labels = scales::percent_format(accuracy = .1))

N117G - Intellectual property products (gross)

Code
nama_10_a64_p5 %>%
  filter(unit == "CP_MEUR",
         geo %in% c("FR", "NL", "IT", "ES", "DE"),
         nace_r2 == "TOTAL",
         asset10 == "N117G") %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CP_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/gdp) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("% of GDP") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 200, 1),
                     labels = scales::percent_format(accuracy = 1))

N1132G - ICT equipment (gross)

Code
nama_10_a64_p5 %>%
  filter(unit == "CP_MEUR",
         geo %in% c("FR", "NL", "IT", "ES", "DE"),
         nace_r2 == "TOTAL",
         asset10 == "N1132G") %>%
  left_join(nama_10_gdp %>%
              filter(na_item == "B1GQ",
                     unit == "CP_MEUR") %>%
              select(geo, time, gdp = values), 
            by = c("geo", "time")) %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/gdp) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("% of GDP") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 200, .2),
                     labels = scales::percent_format(accuracy = .1))

Investissement en France

Long

Code
nama_10_a64_p5 %>%
  filter(geo == "FR",
         na_item == "P51G",
         unit == "CP_MEUR",
         time == "2018") %>%
  left_join(asset10, by = "asset10") %>%
  left_join(nace_r2, by = "nace_r2") %>%
  select(nace_r2, Nace_r2, asset10, Asset10, values) %>%
  arrange(-values) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

Large

Code
nama_10_a64_p5 %>%
  filter(geo == "FR",
         na_item == "P51G",
         unit == "CP_MEUR",
         time == "2018") %>%
  left_join(nace_r2, by = "nace_r2") %>%
  select(nace_r2, Nace_r2, asset10, values) %>%
  spread(asset10, values) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

France, Germany, Italy, Netherlands, Spain

N11G - All

Code
nama_10_a64_p5 %>%
  filter(unit == "PD15_EUR",
         geo %in% c("FR", "NL", "IT", "DE", "ES"),
         nace_r2 == "TOTAL",
         asset10 == "N11G") %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  group_by(Geo) %>%
  mutate(values = 100*values/values[date == as.Date("1995-01-01")]) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2022, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(10, 300, 10))

N1132G - ICT equipment (gross)

Code
nama_10_a64_p5 %>%
  filter(unit == "PD15_EUR",
         geo %in% c("FR", "NL", "IT", "DE", "ES"),
         nace_r2 == "TOTAL",
         asset10 == "N1132G") %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  group_by(Geo) %>%
  mutate(values = 100*values/values[date == as.Date("1995-01-01")]) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2022, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(10, 300, 10))

Information -communication

Code
nama_10_a64_p5 %>%
  filter(unit == "PD15_EUR",
         geo %in% c("FR", "NL", "IT", "DE", "ES"),
         nace_r2 == "J",
         asset10 == "N11G") %>%
  left_join(geo, by = "geo") %>%
  year_to_date %>%
  filter(date >= as.Date("1995-01-01")) %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  group_by(Geo) %>%
  mutate(values = 100*values/values[date == as.Date("1995-01-01")]) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) +
  theme_minimal()  + add_5flags +
  scale_color_identity() + xlab("") + ylab("") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2022, 2), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(10, 300, 10))