source | dataset | .html | .RData |
---|---|---|---|
oecd | PRICES_ALL | 2024-11-06 | 2024-11-05 |
Consumer price indices (CPIs)
Data - OECD
Info
Data on inflation
Title | source | dataset | .html | .RData |
---|---|---|---|---|
Consumer Price Index | bis | CPI | 2024-07-01 | 2022-01-20 |
Consumer Expectations Survey | ecb | CES | 2024-10-08 | 2024-01-12 |
Final consumption expenditure of households by consumption purpose (COICOP 3 digit) | eurostat | nama_10_co3_p3 | 2024-11-05 | 2024-10-09 |
HICP - country weights | eurostat | prc_hicp_cow | 2024-11-05 | 2024-10-08 |
Contributions to euro area annual inflation (in percentage points) | eurostat | prc_hicp_ctrb | 2024-11-05 | 2024-10-08 |
HICP - item weights | eurostat | prc_hicp_inw | 2024-11-05 | 2024-11-05 |
HICP (2015 = 100) - monthly data (annual rate of change) | eurostat | prc_hicp_manr | 2024-11-05 | 2024-10-08 |
HICP (2015 = 100) - monthly data (index) | eurostat | prc_hicp_midx | 2024-11-01 | 2024-11-05 |
HICP (2015 = 100) - monthly data (monthly rate of change) | eurostat | prc_hicp_mmor | 2024-11-05 | 2024-10-08 |
Purchasing power parities (PPPs), price level indices and real expenditures for ESA 2010 aggregates | eurostat | prc_ppp_ind | 2024-11-05 | 2024-10-08 |
Producer prices in industry, total - monthly data | eurostat | sts_inpp_m | 2024-06-24 | 2024-10-08 |
Producer prices in industry, domestic market - monthly data | eurostat | sts_inppd_m | 2024-11-05 | 2024-10-08 |
Producer prices in industry, non domestic market - monthly data | eurostat | sts_inppnd_m | 2024-06-24 | 2024-10-08 |
Consumer Price Index | fred | cpi | 2024-11-01 | 2024-11-01 |
Inflation | fred | inflation | 2024-11-01 | 2024-11-01 |
Consumer Price Index - CPI | imf | CPI | 2024-06-20 | 2020-03-13 |
Producer Prices - MEI_PRICES_PPI | oecd | MEI_PRICES_PPI | 2024-09-15 | 2024-04-15 |
2017 PPP Benchmark results | oecd | PPP2017 | 2024-04-16 | 2023-07-25 |
Consumer price indices (CPIs) | oecd | PRICES_CPI | 2024-04-16 | 2024-04-15 |
Inflation, consumer prices (annual %) | wdi | FP.CPI.TOTL.ZG | 2023-01-15 | 2024-09-18 |
Inflation, GDP deflator (annual %) | wdi | NY.GDP.DEFL.KD.ZG | 2024-09-18 | 2024-09-18 |
Last
Monthly
obsTime | Nobs |
---|---|
2024-09 | 5307 |
Quarterly
obsTime | Nobs |
---|---|
2024-Q3 | 2754 |
Annual
obsTime | Nobs |
---|---|
2024 | 78 |
FREQ
Code
%>%
PRICES_ALL left_join(FREQ, by = "FREQ") %>%
group_by(FREQ, Freq) %>%
summarise(Nobs = sum(!is.na(obsValue))) %>%
arrange(-Nobs) %>%
print_table_conditional
FREQ | Freq | Nobs |
---|---|---|
M | Monthly | 2015431 |
Q | Quarterly | 427347 |
A | Annual | 193145 |
MEASURE
Code
%>%
PRICES_ALL left_join(MEASURE, by = "MEASURE") %>%
group_by(MEASURE, Measure) %>%
summarise(Nobs = sum(!is.na(obsValue))) %>%
arrange(-Nobs) %>%
print_table_conditional
MEASURE | Measure | Nobs |
---|---|---|
CPI | Consumer price index | 2596783 |
IT_W | Item weights | 39140 |
ADJUSTMENT
Code
%>%
PRICES_ALL left_join(ADJUSTMENT, by = "ADJUSTMENT") %>%
group_by(ADJUSTMENT, Adjustment) %>%
summarise(Nobs = sum(!is.na(obsValue))) %>%
arrange(-Nobs) %>%
print_table_conditional
ADJUSTMENT | Adjustment | Nobs |
---|---|---|
N | Neither seasonally adjusted nor calendar adjusted | 2629294 |
S | Seasonally adjusted, not calendar adjusted | 6629 |
METHODOLOGY
Code
%>%
PRICES_ALL left_join(METHODOLOGY, by = "METHODOLOGY") %>%
group_by(METHODOLOGY, Methodology) %>%
summarise(Nobs = sum(!is.na(obsValue))) %>%
arrange(-Nobs) %>%
print_table_conditional
METHODOLOGY | Methodology | Nobs |
---|---|---|
N | National | 1901078 |
HICP | Eurostat harmonised index of consumer prices (HICP) | 734845 |
UNIT_MEASURE
Code
%>%
PRICES_ALL left_join(UNIT_MEASURE, by = "UNIT_MEASURE") %>%
group_by(UNIT_MEASURE, Unit_measure) %>%
summarise(Nobs = sum(!is.na(obsValue))) %>%
arrange(-Nobs) %>%
print_table_conditional
UNIT_MEASURE | Unit_measure | Nobs |
---|---|---|
IX | Index | 831893 |
PC | Percentage change | 818717 |
PA | Percent per annum | 803760 |
PD | Percentage points | 142413 |
10P3EXP_CNSMR | Per 1 000 of consumer expenditure | 39140 |
EXPENDITURE
Code
%>%
PRICES_ALL left_join(EXPENDITURE, by = "EXPENDITURE") %>%
group_by(EXPENDITURE, Expenditure) %>%
summarise(Nobs = sum(!is.na(obsValue))) %>%
arrange(-Nobs) %>%
print_table_conditional
EXPENDITURE | Expenditure | Nobs |
---|---|---|
_T | Total | 192661 |
CP01 | Food and non-alcoholic beverages | 161942 |
CP045_0722 | Energy | 142594 |
CP045 | Electricity, gas and other fuels | 112424 |
CP041 | Actual rentals for housing | 109471 |
_TXCP01_NRG | All items non-food non-energy | 108319 |
CP02 | Alcoholic beverages, tobacco and narcotics | 104079 |
CP04 | Housing, water, electricity, gas and other fuels | 104079 |
CP08 | Communication | 104079 |
CP06 | Health | 103824 |
CP03 | Clothing and footwear | 103494 |
CP05 | Furnishings, household equipment and routine household maintenance | 103494 |
CP09 | Recreation and culture | 103494 |
CP0722 | Fuels and lubricants for personal transport equipment | 103200 |
CP11 | Restaurants and hotels | 103045 |
CP07 | Transport | 102729 |
CP12 | Miscellaneous goods and services | 102705 |
CP10 | Education | 101359 |
SERV | Services | 97777 |
CP043 | Maintenance and repair of the dwelling | 94058 |
CP044 | Water supply and miscellaneous services relating to the dwelling | 93139 |
CP041T043X042 | Housing excluding imputed rentals for housing | 52237 |
GD | Goods | 50266 |
CP041T043 | Housing | 48699 |
_TXNRG_01_02 | Overall index excluding energy, food, alcohol and tobacco | 34744 |
SERVXCP041_042_0432 | Services less housing | 31294 |
CP042 | Imputed rentals for housing | 31005 |
SERVXCP041_0432 | Services less housing (Housing excluding imputed rentals for housing) | 29515 |
CPRES | Residuals | 6197 |
TRANSFORMATION
Code
%>%
PRICES_ALL left_join(TRANSFORMATION, by = "TRANSFORMATION") %>%
group_by(TRANSFORMATION, Transformation) %>%
summarise(Nobs = sum(!is.na(obsValue))) %>%
arrange(-Nobs) %>%
print_table_conditional
TRANSFORMATION | Transformation | Nobs |
---|---|---|
_Z | Not applicable | 871033 |
G1 | Growth rate, period on period | 818717 |
GY | Growth rate, over 1 year | 803760 |
GOY | Contribution to growth rate, over 1 year | 142413 |
REF_AREA
Code
%>%
PRICES_ALL left_join(REF_AREA, by = "REF_AREA") %>%
group_by(REF_AREA, Ref_area) %>%
summarise(Nobs = sum(!is.na(obsValue))) %>%
arrange(-Nobs) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(Ref_area)),
Flag = paste0('<img src="../../icon/flag/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
obsTime
Code
%>%
PRICES_ALL filter(!is.na(obsValue)) %>%
group_by(obsTime) %>%
summarise(Nobs = n()) %>%
arrange(desc(obsTime)) %>%
print_table_conditional
Europe vs. US
1996-
Code
%>%
PRICES_ALL filter(EXPENDITURE == "_T",
%in% c("EA20", "USA"),
REF_AREA == "N",
ADJUSTMENT == "CPI",
MEASURE == "_Z",
TRANSFORMATION == "M") %>%
FREQ left_join(REF_AREA, by = "REF_AREA") %>%
left_join(METHODOLOGY, by = "METHODOLOGY") %>%
month_to_date() %>%
filter(date >= as.Date("1996-01-01")) %>%
group_by(Ref_area, Methodology) %>%
arrange(date) %>%
mutate(obsValue = 100*obsValue/obsValue[1]) %>%
mutate(Ref_area = ifelse(REF_AREA == "EA20", "Europe", Ref_area)) %>%
left_join(colors, by = c("Ref_area" = "country")) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color, linetype = Methodology)) +
scale_color_identity() +
scale_linetype_manual(values = c("dashed", "solid")) + add_4flags +
theme_minimal() + xlab("") + ylab("Price Index") +
scale_x_date(breaks = seq(1960, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.35, 0.8),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_y_log10(breaks = seq(10, 200, 5))
1996-
Code
%>%
PRICES_ALL filter(EXPENDITURE == "_T",
%in% c("EA20", "USA"),
REF_AREA == "N",
ADJUSTMENT == "CPI",
MEASURE == "_Z",
TRANSFORMATION == "M") %>%
FREQ left_join(REF_AREA, by = "REF_AREA") %>%
left_join(METHODOLOGY, by = "METHODOLOGY") %>%
month_to_date() %>%
filter(date >= as.Date("2002-01-01")) %>%
group_by(Ref_area, Methodology) %>%
arrange(date) %>%
mutate(obsValue = 100*obsValue/obsValue[1]) %>%
mutate(Ref_area = ifelse(REF_AREA == "EA20", "Europe", Ref_area)) %>%
left_join(colors, by = c("Ref_area" = "country")) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color, linetype = Methodology)) +
scale_color_identity() +
scale_linetype_manual(values = c("dashed", "solid")) + add_4flags +
theme_minimal() + xlab("") + ylab("Price Index") +
scale_x_date(breaks = seq(1960, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.35, 0.8),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_y_log10(breaks = seq(10, 200, 5))
2017-
Code
%>%
PRICES_ALL filter(EXPENDITURE == "_T",
%in% c("EA20", "USA"),
REF_AREA == "N",
ADJUSTMENT == "CPI",
MEASURE == "_Z",
TRANSFORMATION == "M") %>%
FREQ left_join(REF_AREA, by = "REF_AREA") %>%
left_join(METHODOLOGY, by = "METHODOLOGY") %>%
month_to_date() %>%
filter(date >= as.Date("2017-01-01")) %>%
group_by(Ref_area, Methodology) %>%
arrange(date) %>%
mutate(obsValue = 100*obsValue/obsValue[1]) %>%
mutate(Ref_area = ifelse(REF_AREA == "EA20", "Europe", Ref_area)) %>%
left_join(colors, by = c("Ref_area" = "country")) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color, linetype = Methodology)) +
scale_color_identity() +
scale_linetype_manual(values = c("dashed", "solid")) + add_4flags +
theme_minimal() + xlab("") + ylab("Price Index") +
scale_x_date(breaks = seq(1960, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.35, 0.8),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_y_log10(breaks = seq(10, 200, 5))
France vs. Germany
1996-
Code
%>%
PRICES_ALL filter(EXPENDITURE == "_T",
%in% c("FRA", "DEU"),
REF_AREA == "N",
ADJUSTMENT == "CPI",
MEASURE == "_Z",
TRANSFORMATION == "M") %>%
FREQ left_join(REF_AREA, by = "REF_AREA") %>%
left_join(METHODOLOGY, by = "METHODOLOGY") %>%
month_to_date() %>%
filter(date >= as.Date("1996-01-01")) %>%
group_by(Ref_area, Methodology) %>%
arrange(date) %>%
mutate(obsValue = 100*obsValue/obsValue[1]) %>%
left_join(colors, by = c("Ref_area" = "country")) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color, linetype = Methodology)) +
scale_color_identity() +
scale_linetype_manual(values = c("dashed", "solid")) + add_4flags +
theme_minimal() + xlab("") + ylab("Price Index") +
scale_x_date(breaks = seq(1960, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.35, 0.8),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_y_log10(breaks = seq(10, 200, 5))
2017-
Code
%>%
PRICES_ALL filter(EXPENDITURE == "_T",
%in% c("FRA", "DEU"),
REF_AREA == "N",
ADJUSTMENT == "CPI",
MEASURE == "_Z",
TRANSFORMATION == "M") %>%
FREQ left_join(REF_AREA, by = "REF_AREA") %>%
left_join(METHODOLOGY, by = "METHODOLOGY") %>%
month_to_date() %>%
filter(date >= as.Date("2017-01-01")) %>%
group_by(Ref_area, Methodology) %>%
arrange(date) %>%
mutate(obsValue = 100*obsValue/obsValue[1]) %>%
left_join(colors, by = c("Ref_area" = "country")) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color, linetype = Methodology)) +
scale_color_identity() +
scale_linetype_manual(values = c("dashed", "solid")) + add_4flags +
theme_minimal() + xlab("") + ylab("Price Index") +
scale_x_date(breaks = seq(1960, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.35, 0.8),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_y_log10(breaks = seq(10, 200, 5))
France vs. USA
1996-
Code
%>%
PRICES_ALL filter(EXPENDITURE == "_T",
%in% c("FRA", "USA"),
REF_AREA == "N",
ADJUSTMENT == "CPI",
MEASURE == "_Z",
TRANSFORMATION == "M") %>%
FREQ left_join(REF_AREA, by = "REF_AREA") %>%
left_join(METHODOLOGY, by = "METHODOLOGY") %>%
month_to_date() %>%
filter(date >= as.Date("1996-01-01")) %>%
group_by(Ref_area, Methodology) %>%
arrange(date) %>%
mutate(obsValue = 100*obsValue/obsValue[1]) %>%
left_join(colors, by = c("Ref_area" = "country")) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color, linetype = Methodology)) +
scale_color_identity() +
scale_linetype_manual(values = c("dashed", "solid")) + add_4flags +
theme_minimal() + xlab("") + ylab("Price Index") +
scale_x_date(breaks = seq(1960, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.35, 0.8),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_y_log10(breaks = seq(10, 200, 5))
2017-
Code
%>%
PRICES_ALL filter(EXPENDITURE == "_T",
%in% c("FRA", "USA"),
REF_AREA == "N",
ADJUSTMENT == "CPI",
MEASURE == "_Z",
TRANSFORMATION == "M") %>%
FREQ left_join(REF_AREA, by = "REF_AREA") %>%
left_join(METHODOLOGY, by = "METHODOLOGY") %>%
month_to_date() %>%
filter(date >= as.Date("2017-01-01")) %>%
group_by(Ref_area, Methodology) %>%
arrange(date) %>%
mutate(obsValue = 100*obsValue/obsValue[1]) %>%
left_join(colors, by = c("Ref_area" = "country")) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color, linetype = Methodology)) +
scale_color_identity() +
scale_linetype_manual(values = c("dashed", "solid")) + add_4flags +
theme_minimal() + xlab("") + ylab("Price Index") +
scale_x_date(breaks = seq(1960, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.35, 0.8),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_y_log10(breaks = seq(10, 200, 5))
2019-
Code
%>%
PRICES_ALL filter(EXPENDITURE == "_T",
%in% c("FRA", "USA"),
REF_AREA == "N",
ADJUSTMENT == "CPI",
MEASURE == "_Z",
TRANSFORMATION == "M") %>%
FREQ left_join(REF_AREA, by = "REF_AREA") %>%
left_join(METHODOLOGY, by = "METHODOLOGY") %>%
month_to_date() %>%
filter(date >= as.Date("2019-01-01")) %>%
group_by(Ref_area, Methodology) %>%
arrange(date) %>%
mutate(obsValue = 100*obsValue/obsValue[1]) %>%
left_join(colors, by = c("Ref_area" = "country")) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color, linetype = Methodology)) +
scale_color_identity() +
scale_linetype_manual(values = c("dashed", "solid")) + add_4flags +
theme_minimal() + xlab("") + ylab("Price Index") +
scale_x_date(breaks = seq(1960, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.35, 0.8),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_y_log10(breaks = seq(10, 200, 5))