Consumer price indices (CPIs)

Data - OECD

Info

source dataset .html .RData
oecd PRICES_ALL 2024-11-06 2024-11-05

Data on inflation

Title source dataset .html .RData
Consumer Price Index bis CPI 2024-07-01 2022-01-20
Consumer Expectations Survey ecb CES 2024-10-08 2024-01-12
Final consumption expenditure of households by consumption purpose (COICOP 3 digit) eurostat nama_10_co3_p3 2024-11-05 2024-10-09
HICP - country weights eurostat prc_hicp_cow 2024-11-05 2024-10-08
Contributions to euro area annual inflation (in percentage points) eurostat prc_hicp_ctrb 2024-11-05 2024-10-08
HICP - item weights eurostat prc_hicp_inw 2024-11-05 2024-11-05
HICP (2015 = 100) - monthly data (annual rate of change) eurostat prc_hicp_manr 2024-11-05 2024-10-08
HICP (2015 = 100) - monthly data (index) eurostat prc_hicp_midx 2024-11-01 2024-11-05
HICP (2015 = 100) - monthly data (monthly rate of change) eurostat prc_hicp_mmor 2024-11-05 2024-10-08
Purchasing power parities (PPPs), price level indices and real expenditures for ESA 2010 aggregates eurostat prc_ppp_ind 2024-11-05 2024-10-08
Producer prices in industry, total - monthly data eurostat sts_inpp_m 2024-06-24 2024-10-08
Producer prices in industry, domestic market - monthly data eurostat sts_inppd_m 2024-11-05 2024-10-08
Producer prices in industry, non domestic market - monthly data eurostat sts_inppnd_m 2024-06-24 2024-10-08
Consumer Price Index fred cpi 2024-11-01 2024-11-01
Inflation fred inflation 2024-11-01 2024-11-01
Consumer Price Index - CPI imf CPI 2024-06-20 2020-03-13
Producer Prices - MEI_PRICES_PPI oecd MEI_PRICES_PPI 2024-09-15 2024-04-15
2017 PPP Benchmark results oecd PPP2017 2024-04-16 2023-07-25
Consumer price indices (CPIs) oecd PRICES_CPI 2024-04-16 2024-04-15
Inflation, consumer prices (annual %) wdi FP.CPI.TOTL.ZG 2023-01-15 2024-09-18
Inflation, GDP deflator (annual %) wdi NY.GDP.DEFL.KD.ZG 2024-09-18 2024-09-18

Last

Monthly

obsTime Nobs
2024-09 5307

Quarterly

obsTime Nobs
2024-Q3 2754

Annual

obsTime Nobs
2024 78

FREQ

Code
PRICES_ALL %>%
  left_join(FREQ, by = "FREQ") %>%
  group_by(FREQ, Freq) %>%
  summarise(Nobs = sum(!is.na(obsValue))) %>%
  arrange(-Nobs) %>%
  print_table_conditional
FREQ Freq Nobs
M Monthly 2015431
Q Quarterly 427347
A Annual 193145

MEASURE

Code
PRICES_ALL %>%
  left_join(MEASURE, by = "MEASURE") %>%
  group_by(MEASURE, Measure) %>%
  summarise(Nobs = sum(!is.na(obsValue))) %>%
  arrange(-Nobs) %>%
  print_table_conditional
MEASURE Measure Nobs
CPI Consumer price index 2596783
IT_W Item weights 39140

ADJUSTMENT

Code
PRICES_ALL %>%
  left_join(ADJUSTMENT, by = "ADJUSTMENT") %>%
  group_by(ADJUSTMENT, Adjustment) %>%
  summarise(Nobs = sum(!is.na(obsValue))) %>%
  arrange(-Nobs) %>%
  print_table_conditional
ADJUSTMENT Adjustment Nobs
N Neither seasonally adjusted nor calendar adjusted 2629294
S Seasonally adjusted, not calendar adjusted 6629

METHODOLOGY

Code
PRICES_ALL %>%
  left_join(METHODOLOGY, by = "METHODOLOGY") %>%
  group_by(METHODOLOGY, Methodology) %>%
  summarise(Nobs = sum(!is.na(obsValue))) %>%
  arrange(-Nobs) %>%
  print_table_conditional
METHODOLOGY Methodology Nobs
N National 1901078
HICP Eurostat harmonised index of consumer prices (HICP) 734845

UNIT_MEASURE

Code
PRICES_ALL %>%
  left_join(UNIT_MEASURE, by = "UNIT_MEASURE") %>%
  group_by(UNIT_MEASURE, Unit_measure) %>%
  summarise(Nobs = sum(!is.na(obsValue))) %>%
  arrange(-Nobs) %>%
  print_table_conditional
UNIT_MEASURE Unit_measure Nobs
IX Index 831893
PC Percentage change 818717
PA Percent per annum 803760
PD Percentage points 142413
10P3EXP_CNSMR Per 1 000 of consumer expenditure 39140

EXPENDITURE

Code
PRICES_ALL %>%
  left_join(EXPENDITURE, by = "EXPENDITURE") %>%
  group_by(EXPENDITURE, Expenditure) %>%
  summarise(Nobs = sum(!is.na(obsValue))) %>%
  arrange(-Nobs) %>%
  print_table_conditional
EXPENDITURE Expenditure Nobs
_T Total 192661
CP01 Food and non-alcoholic beverages 161942
CP045_0722 Energy 142594
CP045 Electricity, gas and other fuels 112424
CP041 Actual rentals for housing 109471
_TXCP01_NRG All items non-food non-energy 108319
CP02 Alcoholic beverages, tobacco and narcotics 104079
CP04 Housing, water, electricity, gas and other fuels 104079
CP08 Communication 104079
CP06 Health 103824
CP03 Clothing and footwear 103494
CP05 Furnishings, household equipment and routine household maintenance 103494
CP09 Recreation and culture 103494
CP0722 Fuels and lubricants for personal transport equipment 103200
CP11 Restaurants and hotels 103045
CP07 Transport 102729
CP12 Miscellaneous goods and services 102705
CP10 Education 101359
SERV Services 97777
CP043 Maintenance and repair of the dwelling 94058
CP044 Water supply and miscellaneous services relating to the dwelling 93139
CP041T043X042 Housing excluding imputed rentals for housing 52237
GD Goods 50266
CP041T043 Housing 48699
_TXNRG_01_02 Overall index excluding energy, food, alcohol and tobacco 34744
SERVXCP041_042_0432 Services less housing 31294
CP042 Imputed rentals for housing 31005
SERVXCP041_0432 Services less housing (Housing excluding imputed rentals for housing) 29515
CPRES Residuals 6197

TRANSFORMATION

Code
PRICES_ALL %>%
  left_join(TRANSFORMATION, by = "TRANSFORMATION") %>%
  group_by(TRANSFORMATION, Transformation) %>%
  summarise(Nobs = sum(!is.na(obsValue))) %>%
  arrange(-Nobs) %>%
  print_table_conditional
TRANSFORMATION Transformation Nobs
_Z Not applicable 871033
G1 Growth rate, period on period 818717
GY Growth rate, over 1 year 803760
GOY Contribution to growth rate, over 1 year 142413

REF_AREA

Code
PRICES_ALL %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  group_by(REF_AREA, Ref_area) %>%
  summarise(Nobs = sum(!is.na(obsValue))) %>%
  arrange(-Nobs) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(Ref_area)),
         Flag = paste0('<img src="../../icon/flag/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

obsTime

Code
PRICES_ALL %>%
  filter(!is.na(obsValue)) %>%
  group_by(obsTime) %>%
  summarise(Nobs = n()) %>%
  arrange(desc(obsTime)) %>%
  print_table_conditional

Europe vs. US

1996-

Code
PRICES_ALL %>%
  filter(EXPENDITURE == "_T",
         REF_AREA %in% c("EA20", "USA"),
         ADJUSTMENT == "N",
         MEASURE == "CPI",
         TRANSFORMATION == "_Z",
         FREQ == "M") %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  left_join(METHODOLOGY, by = "METHODOLOGY") %>%
  month_to_date() %>%
  filter(date >= as.Date("1996-01-01")) %>%
  group_by(Ref_area, Methodology) %>%
  arrange(date) %>%
  mutate(obsValue = 100*obsValue/obsValue[1]) %>%
  mutate(Ref_area = ifelse(REF_AREA == "EA20", "Europe", Ref_area)) %>%
  left_join(colors, by = c("Ref_area"  = "country")) %>%
  ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color, linetype = Methodology)) + 
  scale_color_identity() +
  scale_linetype_manual(values = c("dashed", "solid")) + add_4flags +
  theme_minimal() + xlab("") + ylab("Price Index") +
  scale_x_date(breaks = seq(1960, 2100, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.35, 0.8),
        legend.title = element_blank(),
        axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) + 
  scale_y_log10(breaks = seq(10, 200, 5))

1996-

Code
PRICES_ALL %>%
  filter(EXPENDITURE == "_T",
         REF_AREA %in% c("EA20", "USA"),
         ADJUSTMENT == "N",
         MEASURE == "CPI",
         TRANSFORMATION == "_Z",
         FREQ == "M") %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  left_join(METHODOLOGY, by = "METHODOLOGY") %>%
  month_to_date() %>%
  filter(date >= as.Date("2002-01-01")) %>%
  group_by(Ref_area, Methodology) %>%
  arrange(date) %>%
  mutate(obsValue = 100*obsValue/obsValue[1]) %>%
  mutate(Ref_area = ifelse(REF_AREA == "EA20", "Europe", Ref_area)) %>%
  left_join(colors, by = c("Ref_area"  = "country")) %>%
  ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color, linetype = Methodology)) + 
  scale_color_identity() +
  scale_linetype_manual(values = c("dashed", "solid")) + add_4flags +
  theme_minimal() + xlab("") + ylab("Price Index") +
  scale_x_date(breaks = seq(1960, 2100, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.35, 0.8),
        legend.title = element_blank(),
        axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) + 
  scale_y_log10(breaks = seq(10, 200, 5))

2017-

Code
PRICES_ALL %>%
  filter(EXPENDITURE == "_T",
         REF_AREA %in% c("EA20", "USA"),
         ADJUSTMENT == "N",
         MEASURE == "CPI",
         TRANSFORMATION == "_Z",
         FREQ == "M") %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  left_join(METHODOLOGY, by = "METHODOLOGY") %>%
  month_to_date() %>%
  filter(date >= as.Date("2017-01-01")) %>%
  group_by(Ref_area, Methodology) %>%
  arrange(date) %>%
  mutate(obsValue = 100*obsValue/obsValue[1]) %>%
  mutate(Ref_area = ifelse(REF_AREA == "EA20", "Europe", Ref_area)) %>%
  left_join(colors, by = c("Ref_area"  = "country")) %>%
  ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color, linetype = Methodology)) + 
  scale_color_identity() +
  scale_linetype_manual(values = c("dashed", "solid")) + add_4flags +
  theme_minimal() + xlab("") + ylab("Price Index") +
  scale_x_date(breaks = seq(1960, 2100, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.35, 0.8),
        legend.title = element_blank(),
        axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) + 
  scale_y_log10(breaks = seq(10, 200, 5))

France vs. Germany

1996-

Code
PRICES_ALL %>%
  filter(EXPENDITURE == "_T",
         REF_AREA %in% c("FRA", "DEU"),
         ADJUSTMENT == "N",
         MEASURE == "CPI",
         TRANSFORMATION == "_Z",
         FREQ == "M") %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  left_join(METHODOLOGY, by = "METHODOLOGY") %>%
  month_to_date() %>%
  filter(date >= as.Date("1996-01-01")) %>%
  group_by(Ref_area, Methodology) %>%
  arrange(date) %>%
  mutate(obsValue = 100*obsValue/obsValue[1]) %>%
  left_join(colors, by = c("Ref_area"  = "country")) %>%
  ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color, linetype = Methodology)) + 
  scale_color_identity() +
  scale_linetype_manual(values = c("dashed", "solid")) + add_4flags +
  theme_minimal() + xlab("") + ylab("Price Index") +
  scale_x_date(breaks = seq(1960, 2100, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.35, 0.8),
        legend.title = element_blank(),
        axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) + 
  scale_y_log10(breaks = seq(10, 200, 5))

2017-

Code
PRICES_ALL %>%
  filter(EXPENDITURE == "_T",
         REF_AREA %in% c("FRA", "DEU"),
         ADJUSTMENT == "N",
         MEASURE == "CPI",
         TRANSFORMATION == "_Z",
         FREQ == "M") %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  left_join(METHODOLOGY, by = "METHODOLOGY") %>%
  month_to_date() %>%
  filter(date >= as.Date("2017-01-01")) %>%
  group_by(Ref_area, Methodology) %>%
  arrange(date) %>%
  mutate(obsValue = 100*obsValue/obsValue[1]) %>%
  left_join(colors, by = c("Ref_area"  = "country")) %>%
  ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color, linetype = Methodology)) + 
  scale_color_identity() +
  scale_linetype_manual(values = c("dashed", "solid")) + add_4flags +
  theme_minimal() + xlab("") + ylab("Price Index") +
  scale_x_date(breaks = seq(1960, 2100, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.35, 0.8),
        legend.title = element_blank(),
        axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) + 
  scale_y_log10(breaks = seq(10, 200, 5))

France vs. USA

1996-

Code
PRICES_ALL %>%
  filter(EXPENDITURE == "_T",
         REF_AREA %in% c("FRA", "USA"),
         ADJUSTMENT == "N",
         MEASURE == "CPI",
         TRANSFORMATION == "_Z",
         FREQ == "M") %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  left_join(METHODOLOGY, by = "METHODOLOGY") %>%
  month_to_date() %>%
  filter(date >= as.Date("1996-01-01")) %>%
  group_by(Ref_area, Methodology) %>%
  arrange(date) %>%
  mutate(obsValue = 100*obsValue/obsValue[1]) %>%
  left_join(colors, by = c("Ref_area"  = "country")) %>%
  ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color, linetype = Methodology)) + 
  scale_color_identity() +
  scale_linetype_manual(values = c("dashed", "solid")) + add_4flags +
  theme_minimal() + xlab("") + ylab("Price Index") +
  scale_x_date(breaks = seq(1960, 2100, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.35, 0.8),
        legend.title = element_blank(),
        axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) + 
  scale_y_log10(breaks = seq(10, 200, 5))

2017-

Code
PRICES_ALL %>%
  filter(EXPENDITURE == "_T",
         REF_AREA %in% c("FRA", "USA"),
         ADJUSTMENT == "N",
         MEASURE == "CPI",
         TRANSFORMATION == "_Z",
         FREQ == "M") %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  left_join(METHODOLOGY, by = "METHODOLOGY") %>%
  month_to_date() %>%
  filter(date >= as.Date("2017-01-01")) %>%
  group_by(Ref_area, Methodology) %>%
  arrange(date) %>%
  mutate(obsValue = 100*obsValue/obsValue[1]) %>%
  left_join(colors, by = c("Ref_area"  = "country")) %>%
  ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color, linetype = Methodology)) + 
  scale_color_identity() +
  scale_linetype_manual(values = c("dashed", "solid")) + add_4flags +
  theme_minimal() + xlab("") + ylab("Price Index") +
  scale_x_date(breaks = seq(1960, 2100, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.35, 0.8),
        legend.title = element_blank(),
        axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) + 
  scale_y_log10(breaks = seq(10, 200, 5))

2019-

Code
PRICES_ALL %>%
  filter(EXPENDITURE == "_T",
         REF_AREA %in% c("FRA", "USA"),
         ADJUSTMENT == "N",
         MEASURE == "CPI",
         TRANSFORMATION == "_Z",
         FREQ == "M") %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  left_join(METHODOLOGY, by = "METHODOLOGY") %>%
  month_to_date() %>%
  filter(date >= as.Date("2019-01-01")) %>%
  group_by(Ref_area, Methodology) %>%
  arrange(date) %>%
  mutate(obsValue = 100*obsValue/obsValue[1]) %>%
  left_join(colors, by = c("Ref_area"  = "country")) %>%
  ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color, linetype = Methodology)) + 
  scale_color_identity() +
  scale_linetype_manual(values = c("dashed", "solid")) + add_4flags +
  theme_minimal() + xlab("") + ylab("Price Index") +
  scale_x_date(breaks = seq(1960, 2100, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.35, 0.8),
        legend.title = element_blank(),
        axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) + 
  scale_y_log10(breaks = seq(10, 200, 5))