| source | dataset | Title | .html | .rData |
|---|---|---|---|---|
| wdi | NY.GDP.MKTP.KD | GDP (constant 2015 USD) | 2026-01-29 | 2026-01-29 |
GDP (constant 2015 USD)
Data - WDI
Info
Data on macro
| source | dataset | Title | .html | .rData |
|---|---|---|---|---|
| eurostat | nama_10_a10 | Gross value added and income by A*10 industry breakdowns | 2026-01-29 | 2026-01-29 |
| eurostat | nama_10_a10_e | Employment by A*10 industry breakdowns | 2026-01-29 | 2026-01-29 |
| eurostat | nama_10_gdp | GDP and main components (output, expenditure and income) | 2026-01-29 | 2026-01-29 |
| eurostat | nama_10_lp_ulc | Labour productivity and unit labour costs | 2026-01-29 | 2026-01-29 |
| eurostat | namq_10_a10 | Gross value added and income A*10 industry breakdowns | 2026-01-29 | 2026-01-29 |
| eurostat | namq_10_a10_e | Employment A*10 industry breakdowns | 2025-05-24 | 2026-01-29 |
| eurostat | namq_10_gdp | GDP and main components (output, expenditure and income) | 2025-10-27 | 2026-01-29 |
| eurostat | namq_10_lp_ulc | Labour productivity and unit labour costs | 2026-01-29 | 2026-01-29 |
| eurostat | namq_10_pc | Main GDP aggregates per capita | 2026-01-29 | 2026-01-29 |
| eurostat | nasa_10_nf_tr | Non-financial transactions | 2026-01-29 | 2026-01-29 |
| eurostat | nasq_10_nf_tr | Non-financial transactions | 2026-01-29 | 2026-01-29 |
| fred | gdp | Gross Domestic Product | 2026-01-29 | 2026-01-29 |
| oecd | QNA | Quarterly National Accounts | 2024-06-06 | 2025-05-24 |
| oecd | SNA_TABLE1 | Gross domestic product (GDP) | 2026-01-16 | 2025-05-24 |
| oecd | SNA_TABLE14A | Non-financial accounts by sectors | 2026-01-16 | 2024-06-30 |
| oecd | SNA_TABLE2 | Disposable income and net lending - net borrowing | 2024-07-01 | 2024-04-11 |
| oecd | SNA_TABLE6A | Value added and its components by activity, ISIC rev4 | 2024-07-01 | 2024-06-30 |
| wdi | NE.RSB.GNFS.ZS | External balance on goods and services (% of GDP) | 2026-01-29 | 2026-01-29 |
| wdi | NY.GDP.MKTP.CD | GDP (current USD) | 2026-01-29 | 2026-01-29 |
| wdi | NY.GDP.MKTP.PP.CD | GDP, PPP (current international D) | 2026-01-29 | 2026-01-29 |
| wdi | NY.GDP.PCAP.CD | GDP per capita (current USD) | 2026-01-29 | 2026-01-29 |
| wdi | NY.GDP.PCAP.KD | GDP per capita (constant 2015 USD) | 2026-01-29 | 2026-01-29 |
| wdi | NY.GDP.PCAP.PP.CD | GDP per capita, PPP (current international D) | 2026-01-29 | 2026-01-29 |
| wdi | NY.GDP.PCAP.PP.KD | GDP per capita, PPP (constant 2011 international D) | 2026-01-29 | 2026-01-29 |
LAST_COMPILE
| LAST_COMPILE |
|---|
| 2026-01-30 |
Last
Code
NY.GDP.MKTP.KD %>%
group_by(year) %>%
summarise(Nobs = n()) %>%
arrange(desc(year)) %>%
head(1) %>%
print_table_conditional()| year | Nobs |
|---|---|
| 2024 | 240 |
Nobs - Javascript
Code
NY.GDP.MKTP.KD %>%
left_join(iso2c, by = "iso2c") %>%
group_by(iso2c, Iso2c) %>%
mutate(value = round(value/(10^9))) %>%
summarise(Nobs = n(),
`Year 1` = first(year),
`GDP 1 (Bn)` = first(value) %>% paste0("$ ", .),
`Year 2` = last(year),
`GDP 2 (Bn)` = last(value) %>% paste0("$ ", .)) %>%
arrange(-Nobs) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(Iso2c)),
Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}Output - Countries
Png
Code
ig_b("wdi", "NY.GDP.MKTP.KD_ex1-75")
Javascript
Code
NY.GDP.MKTP.KD %>%
right_join(iso2c %>%
filter((region != "Aggregates") & (region != "NA")),
by = "iso2c") %>%
group_by(iso2c, Iso2c) %>%
mutate(value = round(value/(10^9))) %>%
summarise(`Year` = last(year),
`GDP (Bn)` = last(value)) %>%
arrange(-`GDP (Bn)`) %>%
mutate(`GDP (Bn)` = paste0("$ ", format(`GDP (Bn)`, big.mark = ","), " Bn")) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(Iso2c)),
Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}Euro Area vs. US
Base 100
Code
NY.GDP.MKTP.KD %>%
left_join(iso2c, by = "iso2c") %>%
year_to_date %>%
filter(iso2c %in% c("XC", "US"),
date >= as.Date("2008-01-01")) %>%
group_by(iso2c) %>%
arrange(date) %>%
mutate(value = 100*value/value[1]) %>%
mutate(Iso2c = ifelse(iso2c == "XC", "Europe", Iso2c)) %>%
left_join(colors, by = c("Iso2c" = "country")) %>%
mutate(color = ifelse(iso2c == "US", color2, color)) %>%
ggplot(.) + theme_minimal() + scale_color_identity() +
geom_line(aes(x = date, y = value, color = color)) +
add_2flags +
scale_x_date(breaks = seq(1950, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(70, 200, 5)) +
xlab("") + ylab("PIB en $ (100 = 2008)")
Avec dollars
Code
NY.GDP.MKTP.KD %>%
left_join(iso2c, by = "iso2c") %>%
year_to_date %>%
filter(iso2c %in% c("XC", "US"),
date >= as.Date("2008-01-01")) %>%
group_by(iso2c) %>%
arrange(date) %>%
mutate(Iso2c = ifelse(iso2c == "XC", "Europe", Iso2c)) %>%
left_join(colors, by = c("Iso2c" = "country")) %>%
mutate(color = ifelse(iso2c == "US", color2, color)) %>%
ungroup %>%
mutate(dollar = value/10^9,
value = 100*value/value[2]) %>%
ggplot(.) + theme_minimal() + scale_color_identity() +
geom_line(aes(x = date, y = value, color = color)) +
add_2flags +
scale_x_date(breaks = seq(1950, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(10, 200, 5)) +
xlab("") + ylab("PIB en $ (100 = Zone Euro, 2008)") +
geom_text_repel(data = . %>% filter(year(date) %in% seq(2008, 2022, 2)),
aes(x = date, y = value, label = paste0("$", round(dollar, digits = -2), " Md")))
