Financial market data

Data - ECB

Error in readChar(con, 5L, useBytes = TRUE) : 
  impossible d'ouvrir la connexion

Info

source dataset Title .html .rData
ecb FM Financial market data 2026-02-14 2026-02-15

LAST_COMPILE

LAST_COMPILE
2026-02-21

Last

TIME_PERIOD FREQ Nobs
2026-02-21 D 6
2026-01 M 35
2025-Q4 Q 24
2025-06-11 B 6
2025 A 24

Last Day

TITLE TIME_PERIOD OBS_VALUE
Deposit facility - date of changes (raw data) - Change in percentage points compared to previous rate 2026-02-21 -0.25
Deposit facility - date of changes (raw data) - Level 2026-02-21 2.00
Marginal lending facility - date of changes (raw data) - Change in percentage points compared to previous rate 2026-02-21 -0.25
Marginal lending facility - date of changes (raw data) - Level 2026-02-21 2.40
Main refinancing operations - fixed rate tenders (fixed rate) (date of changes) - Level 2026-02-21 2.15
Main refinancing operations - Minimum bid rate/fixed rate (date of changes) - Level 2026-02-21 2.15

PROVIDER_FM_ID

Code
FM %>%
  left_join(PROVIDER_FM_ID,  by = "PROVIDER_FM_ID") %>%
  group_by(PROVIDER_FM_ID, PROVIDER_FM_ID_desc) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

FREQ

Code
FM %>%
  left_join(FREQ,  by = "FREQ") %>%
  group_by(FREQ, Freq) %>%
  summarise(Nobs = n()) %>%
  {if (is_html_output()) print_table(.) else .}
FREQ Freq Nobs
A Annual 927
B Daily - businessweek 386
D Daily 59480
M Monthly 21545
Q Quarterly 3740

REF_AREA

Code
FM %>%
  left_join(REF_AREA,  by = "REF_AREA") %>%
  group_by(REF_AREA, Ref_area) %>%
  summarise(Nobs = n()) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Ref_area))),
         Flag = paste0('<img src="../../icon/flag/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

CURRENCY

Code
FM %>%
  left_join(CURRENCY,  by = "CURRENCY") %>%
  group_by(CURRENCY, Currency) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) print_table(.) else .}
CURRENCY Currency Nobs
EUR Euro 74514
USD US dollar 6277
JPY Japanese yen 3604
GBP UK pound sterling 816
DKK Danish krone 449
SEK Swedish krona 418

PROVIDER_FM

Code
FM %>%
  left_join(PROVIDER_FM,  by = "PROVIDER_FM") %>%
  group_by(PROVIDER_FM, Provider_fm) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) print_table(.) else .}
PROVIDER_FM Provider_fm Nobs
4F ECB 70177
DS DataStream 9935
RT Reuters 5966

INSTRUMENT_FM

Code
FM %>%
  left_join(INSTRUMENT_FM,  by = "INSTRUMENT_FM") %>%
  group_by(INSTRUMENT_FM, Instrument_fm) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) print_table(.) else .}
INSTRUMENT_FM Instrument_fm Nobs
KR Key interest rate 60059
EI Equity/index 9068
BB Benchmark bond 7916
MM Money Market 6221
CY Commodity 1134
BZ Zero-coupon yield bond 861
SP Spread 819

DATA_TYPE_FM

Code
FM %>%
  left_join(DATA_TYPE_FM,  by = "DATA_TYPE_FM") %>%
  group_by(DATA_TYPE_FM, Data_type_fm) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) print_table(.) else .}
DATA_TYPE_FM Data_type_fm Nobs
LEV Level 39857
CHG Change in percentage points compared to previous rate 20009
HSTA Historical close, average of observations through period 15749
YLDA Yield, average of observations through period 4551
YLD Yield 3365
ASKA Ask price or primary activity, average of observations through period 867
YLDE Yield, end of period 861
SPRE Spread, end of period 819

COLLECTION

Code
FM %>%
  left_join(COLLECTION,  by = "COLLECTION") %>%
  group_by(COLLECTION, Collection) %>%
  summarise(Nobs = n()) %>%
  {if (is_html_output()) print_table(.) else .}
COLLECTION Collection Nobs
A Average of observations through period 21188
E End of period 64890

UNIT

Code
FM %>%
  left_join(UNIT,  by = "UNIT") %>%
  group_by(UNIT, Unit) %>%
  summarise(Nobs = n()) %>%
  {if (is_html_output()) print_table(.) else .}
UNIT Unit Nobs
PC Percent 20009
PCPA Percent per annum 56838
POINTS Points 9068
USD US dollar 163

TITLE

Code
FM %>%
  group_by(TITLE) %>%
  summarise(Nobs = n()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

Real Rates

USA, Euro Area

1999

Code
plot <- FM %>%
  filter(PROVIDER_FM_ID %in% c("R_US10YT_RR", "R_U2_10Y")) %>%
  month_to_date %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  mutate(Ref_area = ifelse(REF_AREA == "U2", "Zone euro", "États-Unis")) %>%
  filter(date >= as.Date("1999-01-01")) %>%
  mutate(OBS_VALUE = OBS_VALUE/100) %>%
  ggplot(.) + theme_minimal() + xlab("") + ylab("Taux d'intérêt réels à 10 ans") +
  geom_line(aes(x = date, y = OBS_VALUE, color = Ref_area)) + 
  scale_color_manual(values = c("#B22234", "#003399")) +
  geom_rect(data = nber_recessions %>%
              filter(Peak > as.Date("1999-01-01")), 
            aes(xmin = Peak, xmax = Trough, ymin =-Inf, ymax = +Inf), 
            fill = '#B22234', alpha = 0.1)  +
  geom_rect(data = cepr_recessions %>%
              filter(Peak > as.Date("1999-01-01")), 
            aes(xmin = Peak, xmax = Trough, ymin = -Inf, ymax = +Inf), 
            fill = '#003399', alpha = 0.1)  +
  scale_x_date(breaks = c(seq(1999, 2100, 5), seq(1997, 2100, 5)) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.26, 0.2),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(-10, 50, 1),
                     labels = percent_format(accuracy = 1)) +
  labs(caption = "Source: BCE, Données sur les marchés financiers")
save(plot, file = "FM_files/figure-html/real-rates-USA-EUR-1999-1.RData")
plot

USA, Japan, Euro Area

All

Code
FM %>%
  filter(PROVIDER_FM_ID %in% c("R_US10YT_RR", "R_JP10YT_RR", "R_U2_10Y")) %>%
  month_to_date %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  mutate(Ref_area = ifelse(REF_AREA == "U2", "Europe", Ref_area)) %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  mutate(color = ifelse(REF_AREA == "U2", color2, color)) %>%
  mutate(OBS_VALUE = OBS_VALUE/100) %>%
  ggplot(.) + theme_minimal() + xlab("") + ylab("Real rates, 10-year") +
  geom_line(aes(x = date, y = OBS_VALUE, color = color)) + 
  add_flags(3) + scale_color_identity() +
  scale_x_date(breaks = seq(1900, 2100, 10) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 50, 1),
                     labels = percent_format(accuracy = 1))

2010-

Code
FM %>%
  filter(PROVIDER_FM_ID %in% c("R_US10YT_RR", "R_JP10YT_RR", "R_U2_10Y")) %>%
  month_to_date %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  mutate(Ref_area = ifelse(REF_AREA == "U2", "Europe", Ref_area)) %>%
  filter(date >= as.Date("2010-01-01")) %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  mutate(color = ifelse(REF_AREA == "U2", color2, color)) %>%
  mutate(OBS_VALUE = OBS_VALUE/100) %>%
  ggplot(.) + theme_minimal() + xlab("") + ylab("Real rates, 10-year") +
  geom_line(aes(x = date, y = OBS_VALUE, color = color)) + 
  add_flags(3) + scale_color_identity() +
  scale_x_date(breaks = seq(1960, 2100, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 50, 1),
                     labels = percent_format(accuracy = 1))

2015-

Code
FM %>%
  filter(PROVIDER_FM_ID %in% c("R_US10YT_RR", "R_JP10YT_RR", "R_U2_10Y")) %>%
  month_to_date %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  mutate(Ref_area = ifelse(REF_AREA == "U2", "Europe", Ref_area)) %>%
  filter(date >= as.Date("2015-01-01")) %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  mutate(color = ifelse(REF_AREA == "U2", color2, color)) %>%
  mutate(OBS_VALUE = OBS_VALUE/100) %>%
  ggplot(.) + theme_minimal() + xlab("") + ylab("Real rates, 10-year") +
  geom_line(aes(x = date, y = OBS_VALUE, color = color)) + 
  add_flags(3) + scale_color_identity() +
  scale_x_date(breaks = seq(1960, 2100, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 50, 1),
                     labels = percent_format(accuracy = 1))

2017-

Code
FM %>%
  filter(PROVIDER_FM_ID %in% c("R_US10YT_RR", "R_JP10YT_RR", "R_U2_10Y")) %>%
  month_to_date %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  mutate(Ref_area = ifelse(REF_AREA == "U2", "Europe", Ref_area)) %>%
  filter(date >= as.Date("2017-01-01")) %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  mutate(color = ifelse(REF_AREA == "U2", color2, color)) %>%
  mutate(OBS_VALUE = OBS_VALUE/100) %>%
  ggplot(.) + theme_minimal() + xlab("") + ylab("Real rates, 10-year") +
  geom_line(aes(x = date, y = OBS_VALUE, color = color)) + 
  add_flags(3) + scale_color_identity() +
  scale_x_date(breaks = seq(1960, 2100, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 50, 1),
                     labels = percent_format(accuracy = 1))

ECB Key Interest rates

EONIA

All

Code
FM %>%
  filter(PROVIDER_FM_ID %in% c("DFR", "MLFR", "MRR_RT", "EONIA"),
         FREQ == "M") %>%
  month_to_date %>%
  left_join(PROVIDER_FM_ID,  by = "PROVIDER_FM_ID") %>%
  ggplot(.) + 
  geom_line(aes(x = date, y = OBS_VALUE / 100, color = PROVIDER_FM_ID_desc)) + 
  theme_minimal() + xlab("") + ylab("Interest Rates (%)") +
  scale_x_date(breaks = seq(1960, 2025, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 50, 1),
                     labels = percent_format(accuracy = 1)) +
  theme(legend.position = c(0.45, 0.92),
        legend.title = element_blank())

Deposit Facility, Marginal Lending Facility

All

Code
FM %>%
  filter(PROVIDER_FM_ID %in% c("DFR", "MLFR", "MRR_RT", "MRR_FR", "MRR_MBR", "MRR"),
         DATA_TYPE_FM == "LEV",
         FREQ == "D") %>%
  day_to_date %>%
  left_join(PROVIDER_FM_ID,  by = "PROVIDER_FM_ID") %>%
  ggplot(.) + 
  geom_line(aes(x = date, y = OBS_VALUE / 100, color = PROVIDER_FM_ID_desc)) + 
  theme_minimal() + xlab("") + ylab("Interest Rates (%)") +
  scale_x_date(breaks = seq(1960, 2025, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 50, 1),
                     labels = percent_format(accuracy = 1)) +
  theme(legend.position = c(0.45, 0.92),
        legend.title = element_blank())

Deposit Facility, Marginal Lending Facility

All

Code
FM %>%
  filter(PROVIDER_FM_ID %in% c("DFR", "MLFR", "MRR_RT"),
         DATA_TYPE_FM == "LEV",
         FREQ == "D") %>%
  day_to_date %>%
  mutate(Provider_fm_id = factor(PROVIDER_FM_ID,
                                 levels = c("MLFR", "MRR_RT", "DFR"),
                                 labels = c("ECB Marginal lending facility",
                                            "ECB Main refinancing operations",
                                            "ECB Deposit facility"))) %>%
  left_join(PROVIDER_FM_ID,  by = "PROVIDER_FM_ID") %>%
  ggplot(.) + 
  geom_line(aes(x = date, y = OBS_VALUE / 100, color = Provider_fm_id)) + 
  theme_minimal() + xlab("") + ylab("Interest Rates (%)") +
  scale_x_date(breaks = seq(1960, 2025, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 50, 1),
                     labels = percent_format(accuracy = 1)) +
  theme(legend.position = c(0.65, 0.92),
        legend.title = element_blank()) +
  geom_hline(yintercept = 3.75/100, linetype = "dashed")

2010

Code
dates_ecb <- FM %>%
  filter(PROVIDER_FM_ID == "DFR") %>%
  day_to_date %>%
  mutate(OBS_VALUE = OBS_VALUE-lag(OBS_VALUE)) %>%
  filter(OBS_VALUE != 0) %>%
  pull(date)
FM %>%
  filter(PROVIDER_FM_ID %in% c("DFR", "MLFR", "MRR_RT"),
         DATA_TYPE_FM == "LEV",
         FREQ == "D") %>%
  day_to_date %>%
  left_join(PROVIDER_FM_ID,  by = "PROVIDER_FM_ID") %>%
  mutate(Provider_fm_id = factor(PROVIDER_FM_ID,
                                 levels = c("MLFR", "MRR_RT", "DFR"),
                                 labels = c("ECB Marginal lending facility",
                                            "ECB Main refinancing operations - Minimum bid rate/fixed rate",
                                            "ECB Deposit facility"))) %>%
  filter(date >= as.Date("2010-01-01"))%>%
  ggplot(.) + 
  geom_line(aes(x = date, y = OBS_VALUE / 100, color = Provider_fm_id)) + 
  theme_minimal() + xlab("") + ylab("Interest Rates (%)") +
  scale_x_date(breaks = dates_ecb,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 50, 0.5),
                     labels = percent_format(accuracy = .1)) +
  theme(legend.position = c(0.45, 0.92),
        legend.title = element_blank())

2016-

Code
FM %>%
  filter(PROVIDER_FM_ID %in% c("DFR", "MLFR", "MRR_RT"),
         DATA_TYPE_FM == "LEV",
         FREQ == "D") %>%
  day_to_date %>%
  left_join(PROVIDER_FM_ID,  by = "PROVIDER_FM_ID") %>%
  filter(date >= as.Date("2016-01-01"))%>%
  mutate(Provider_fm_id = factor(PROVIDER_FM_ID,
                                 levels = c("MLFR", "MRR_RT", "DFR"),
                                 labels = c("ECB Marginal lending facility",
                                            "ECB Main refinancing operations - Minimum bid rate/fixed rate",
                                            "ECB Deposit facility"))) %>%
  ggplot(.) + 
  geom_line(aes(x = date, y = OBS_VALUE / 100, color = Provider_fm_id)) + 
  theme_minimal() + xlab("") + ylab("Interest Rates (%)") +
  scale_x_date(breaks = seq(1960, 2025, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 50, 1),
                     labels = percent_format(accuracy = 1)) +
  theme(legend.position = c(0.45, 0.92),
        legend.title = element_blank())

2022-

Code
FM %>%
  filter(PROVIDER_FM_ID %in% c("DFR", "MLFR", "MRR_RT"),
         DATA_TYPE_FM == "LEV",
         FREQ == "D") %>%
  day_to_date %>%
  filter(date >= as.Date("2022-01-01")) %>%
  add_row(date = as.Date("2025-06-11"), PROVIDER_FM_ID = "DFR", OBS_VALUE = 2) %>%
  add_row(date = as.Date("2025-06-11"), PROVIDER_FM_ID = "MRR_RT", OBS_VALUE = 2.15) %>%
  add_row(date = as.Date("2025-06-11"), PROVIDER_FM_ID = "MLFR", OBS_VALUE = 2.4) %>%
  add_row(date = as.Date("2025-06-10"), PROVIDER_FM_ID = "DFR", OBS_VALUE = 2.25) %>%
  add_row(date = as.Date("2025-06-10"), PROVIDER_FM_ID = "MRR_RT", OBS_VALUE = 2.4) %>%
  add_row(date = as.Date("2025-06-10"), PROVIDER_FM_ID = "MLFR", OBS_VALUE = 2.65) %>%
  arrange(desc(date)) %>%
  #add_row(date = as.Date("2024-09-17"), PROVIDER_FM_ID = "DFR", OBS_VALUE = 3.5) %>%
  #add_row(date = as.Date("2024-09-17"), PROVIDER_FM_ID = "MRR_RT", OBS_VALUE = 3.65) %>%
  #add_row(date = as.Date("2024-09-17"), PROVIDER_FM_ID = "MLFR", OBS_VALUE = 3.9) %>%
  left_join(PROVIDER_FM_ID,  by = "PROVIDER_FM_ID") %>%
  mutate(Provider_fm_id = factor(PROVIDER_FM_ID,
                                 levels = c("MLFR", "MRR_RT", "DFR"),
                                 labels = c("ECB Marginal lending facility",
                                            "ECB Main refinancing operations - Minimum bid rate/fixed rate",
                                            "ECB Deposit facility"))) %>%
  ggplot(.) + 
  geom_line(aes(x = date, y = OBS_VALUE / 100, color = Provider_fm_id)) + 
  theme_minimal() + xlab("") + ylab("Interest Rates (%)") +
  scale_x_date(breaks = c(dates_ecb),
               labels = date_format("%d %B %Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 50, 0.5),
                     labels = percent_format(accuracy = .1)) +
  theme(legend.position = c(0.65, 0.2),
        legend.title = element_blank(),
        axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
  geom_label_repel(data = . %>% filter(date == max(date)),
                   aes(x = date, y = OBS_VALUE / 100, label = percent(OBS_VALUE / 100, acc = 0.01), color = Provider_fm_id))

2022 - Dates of change

  • Schedules for the meetings of the Governing Council. html

  • Key ECB interest rates: Dates of change. html

Code
FM %>%
  filter(PROVIDER_FM_ID %in% c("DFR", "MLFR", "MRR_RT"),
         DATA_TYPE_FM == "LEV",
         FREQ == "D") %>%
  day_to_date %>%
  left_join(PROVIDER_FM_ID,  by = "PROVIDER_FM_ID") %>%
  mutate(Provider_fm_id = factor(PROVIDER_FM_ID,
                                 levels = c("MLFR", "MRR_RT", "DFR"),
                                 labels = c("ECB Marginal lending facility",
                                            "ECB Main refinancing operations",
                                            "ECB Deposit facility"))) %>%
  filter(date >= as.Date("2022-07-01")) %>%
  ggplot(.) + 
  geom_line(aes(x = date, y = OBS_VALUE / 100, color = Provider_fm_id)) + 
  theme_minimal() + xlab("") + ylab("Interest Rates (%)") +
  scale_x_date(breaks = c(dates_ecb, Sys.Date()),
               labels = date_format("%d %B %Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 50, 0.5),
                     labels = percent_format(accuracy = .1)) +
  theme(legend.position = c(0.7, 0.2),
        legend.title = element_blank(),
        axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))

Around September 2022

Code
FM %>%
  filter(PROVIDER_FM_ID %in% c("DFR", "MLFR", "MRR_RT"),
         DATA_TYPE_FM == "LEV",
         FREQ == "D") %>%
  day_to_date %>%
  left_join(PROVIDER_FM_ID,  by = "PROVIDER_FM_ID") %>%
  filter(date >= as.Date("2022-09-05"),
         date <= as.Date("2022-09-20")) %>%
  ggplot(.) + 
  geom_line(aes(x = date, y = OBS_VALUE / 100, color = PROVIDER_FM_ID_desc)) + 
  theme_minimal() + xlab("") + ylab("Interest Rates (%)") +
  scale_x_date(breaks = seq(from = as.Date("2022-01-01"), as.Date("2026-01-01"), by = "1 day"),
               labels = date_format("%d %b %Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 50, 0.25),
                     labels = percent_format(accuracy = .01)) +
  theme(legend.position = c(0.4, 0.92),
        legend.title = element_blank(),
        axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))

Japan

1970-

Code
FM %>%
  filter(PROVIDER_FM_ID %in% c("JP10YT_RR", "R_JP10YT_RR")) %>%
  month_to_date %>%
  left_join(PROVIDER_FM_ID,  by = "PROVIDER_FM_ID") %>%
  ggplot(.) + 
  geom_line(aes(x = date, y = OBS_VALUE / 100, color = PROVIDER_FM_ID_desc)) + 
  theme_minimal() + xlab("") + ylab("Interest Rates (%)") +
  scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-50, 50, 2),
                     labels = percent_format(accuracy = 1)) +
  theme(legend.position = c(0.75, 0.9),
        legend.title = element_blank())

2000-

Code
FM %>%
  filter(PROVIDER_FM_ID %in% c("JP10YT_RR", "R_JP10YT_RR")) %>%
  month_to_date %>%
  filter(date >= as.Date("2000-01-01")) %>%
  left_join(PROVIDER_FM_ID,  by = "PROVIDER_FM_ID") %>%
  ggplot(.) + 
  geom_line(aes(x = date, y = OBS_VALUE / 100, color = PROVIDER_FM_ID_desc)) + 
  theme_minimal() + xlab("") + ylab("Interest Rates (%)") +
  scale_x_date(breaks = seq(1960, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-50, 50, 1),
                     labels = percent_format(accuracy = 1)) +
  
  theme(legend.position = c(0.75, 0.9),
        legend.title = element_blank())

United States

1970-

Code
FM %>%
  filter(PROVIDER_FM_ID %in% c("US10YT_RR", "R_US10YT_RR")) %>%
  month_to_date %>%
  left_join(PROVIDER_FM_ID,  by = "PROVIDER_FM_ID") %>%
  ggplot(.) + 
  geom_line(aes(x = date, y = OBS_VALUE / 100, color = PROVIDER_FM_ID_desc)) + 
  theme_minimal() + xlab("") + ylab("Interest Rates (%)") +
  scale_x_date(breaks = seq(1900, 2100, 10) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-50, 50, 2),
                     labels = percent_format(accuracy = 1)) +
  
  theme(legend.position = c(0.75, 0.9),
        legend.title = element_blank())

2000-

Code
FM %>%
  filter(PROVIDER_FM_ID %in% c("US10YT_RR", "R_US10YT_RR")) %>%
  month_to_date %>%
  filter(date >= as.Date("2000-01-01")) %>%
  left_join(PROVIDER_FM_ID,  by = "PROVIDER_FM_ID") %>%
  ggplot(.) + 
  geom_line(aes(x = date, y = OBS_VALUE / 100, color = PROVIDER_FM_ID_desc)) + 
  theme_minimal() + xlab("") + ylab("Interest Rates (%)") +
  scale_x_date(breaks = seq(1960, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-50, 50, 1),
                     labels = percent_format(accuracy = 1)) +
  
  theme(legend.position = c(0.75, 0.9),
        legend.title = element_blank())

Euro area

1970-

Code
FM %>%
  filter(PROVIDER_FM_ID %in% c("U2_10Y", "R_U2_10Y")) %>%
  month_to_date %>%
  left_join(PROVIDER_FM_ID,  by = "PROVIDER_FM_ID") %>%
  ggplot(.) + 
  geom_line(aes(x = date, y = OBS_VALUE / 100, color = PROVIDER_FM_ID_desc)) + 
  theme_minimal() + xlab("") + ylab("Interest Rates (%)") +
  scale_x_date(breaks = seq(1900, 2100, 10) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-50, 50, 2),
                     labels = percent_format(accuracy = 1)) +
  
  theme(legend.position = c(0.75, 0.9),
        legend.title = element_blank())

2000-

Code
FM %>%
  filter(PROVIDER_FM_ID %in% c("U2_10Y", "R_U2_10Y")) %>%
  month_to_date %>%
  filter(date >= as.Date("2000-01-01")) %>%
  left_join(PROVIDER_FM_ID,  by = "PROVIDER_FM_ID") %>%
  ggplot(.) + 
  geom_line(aes(x = date, y = OBS_VALUE / 100, color = PROVIDER_FM_ID_desc)) + 
  theme_minimal() + xlab("") + ylab("Interest Rates (%)") +
  scale_x_date(breaks = seq(1960, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-50, 50, 1),
                     labels = percent_format(accuracy = 1)) +
  
  theme(legend.position = c(0.35, 0.2),
        legend.title = element_blank())

2015-

Code
FM %>%
  filter(PROVIDER_FM_ID %in% c("U2_10Y", "R_U2_10Y")) %>%
  month_to_date %>%
  filter(date >= as.Date("2015-01-01")) %>%
  left_join(PROVIDER_FM_ID,  by = "PROVIDER_FM_ID") %>%
  ggplot(.) + 
  geom_line(aes(x = date, y = OBS_VALUE / 100, color = PROVIDER_FM_ID_desc)) + 
  theme_minimal() + xlab("") + ylab("Interest Rates (%)") +
  scale_x_date(breaks = seq(1960, 2100, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-50, 50, 1),
                     labels = percent_format(accuracy = 1)) +
  
  theme(legend.position = c(0.35, 0.2),
        legend.title = element_blank())

More…

Data on monetary policy

source dataset Title .html .rData
bdf FM Marché financier, taux 2026-02-15 2026-02-15
ecb FM Financial market data 2026-02-14 2026-02-15
bdf MIR Taux d'intérêt - Zone euro 2026-02-15 2025-08-04
bdf MIR1 Taux d'intérêt - France 2026-02-15 2025-08-04
bis CBPOL Policy Rates, Daily 2026-01-11 2026-02-15
ecb BSI Balance Sheet Items 2026-02-14 2026-01-11
ecb BSI_PUB Balance Sheet Items - Published series 2026-02-14 2026-02-15
ecb ILM Internal Liquidity Management 2026-02-14 2026-02-15
ecb ILM_PUB Internal Liquidity Management - Published series 2026-02-14 2026-02-15
ecb MIR MFI Interest Rate Statistics 2026-02-14 2026-02-15
ecb RAI Risk Assessment Indicators 2026-02-14 2026-02-15
ecb SUP Supervisory Banking Statistics 2025-12-19 2026-02-14
ecb YC Financial market data - yield curve 2026-02-14 2026-01-11
ecb YC_PUB Financial market data - yield curve - Published series 2026-02-14 2026-02-14
ecb liq_daily Daily Liquidity 2026-02-14 2025-06-06
eurostat ei_mfir_m Interest rates - monthly data 2026-02-16 2026-02-15
eurostat irt_st_m Money market interest rates - monthly data 2026-02-16 2026-02-15
fred r Interest Rates 2026-02-15 2026-02-15
oecd MEI Main Economic Indicators 2024-04-16 2025-07-24
oecd MEI_FIN Monthly Monetary and Financial Statistics (MEI) 2024-09-15 2025-07-24

Data on interest rates

source dataset Title .html .rData
bdf FM Marché financier, taux 2026-02-15 2026-02-15
ecb FM Financial market data 2026-02-14 2026-02-15
bdf MIR Taux d'intérêt - Zone euro 2026-02-15 2025-08-04
bdf MIR1 Taux d'intérêt - France 2026-02-15 2025-08-04
bis CBPOL_D Policy Rates, Daily 2026-01-11 2025-08-20
bis CBPOL_M Policy Rates, Monthly 2026-01-11 2024-04-19
ecb MIR MFI Interest Rate Statistics 2026-02-14 2026-02-15
eurostat ei_mfir_m Interest rates - monthly data 2026-02-16 2026-02-15
eurostat irt_lt_mcby_d EMU convergence criterion series - daily data 2026-02-16 2025-07-24
eurostat irt_st_m Money market interest rates - monthly data 2026-02-16 2026-02-15
fred r Interest Rates 2026-02-15 2026-02-15
oecd MEI Main Economic Indicators 2024-04-16 2025-07-24
oecd MEI_FIN Monthly Monetary and Financial Statistics (MEI) 2024-09-15 2025-07-24
wdi FR.INR.DPST Deposit interest rate (%) 2022-09-27 2026-02-15
wdi FR.INR.LEND Lending interest rate (%) 2026-02-15 2026-02-15
wdi FR.INR.RINR Real interest rate (%) 2026-01-11 2026-02-15