Money market interest rates - monthly data
Data - Eurostat
Info
Data on interest rates
source | dataset | Title | .html | .rData |
---|---|---|---|---|
eurostat | irt_st_m | Money market interest rates - monthly data | 2025-10-10 | 2025-10-09 |
bdf | FM | Marché financier, taux | 2025-08-28 | 2025-08-28 |
bdf | MIR | Taux d'intérêt - Zone euro | 2025-08-28 | 2025-08-04 |
bdf | MIR1 | Taux d'intérêt - France | 2025-08-28 | 2025-08-04 |
bis | CBPOL_D | Policy Rates, Daily | 2025-10-10 | 2025-08-20 |
bis | CBPOL_M | Policy Rates, Monthly | 2025-10-10 | 2024-04-19 |
ecb | FM | Financial market data | 2025-10-09 | 2025-08-29 |
ecb | MIR | MFI Interest Rate Statistics | 2025-10-09 | 2025-08-29 |
eurostat | ei_mfir_m | Interest rates - monthly data | 2025-10-10 | 2025-10-10 |
eurostat | irt_lt_mcby_d | EMU convergence criterion series - daily data | 2025-10-10 | 2025-07-24 |
fred | r | Interest Rates | 2025-10-09 | 2025-10-09 |
oecd | MEI | Main Economic Indicators | 2024-04-16 | 2025-07-24 |
oecd | MEI_FIN | Monthly Monetary and Financial Statistics (MEI) | 2024-09-15 | 2025-07-24 |
wdi | FR.INR.DPST | Deposit interest rate (%) | 2022-09-27 | 2025-09-27 |
wdi | FR.INR.LEND | Lending interest rate (%) | 2025-10-10 | 2025-09-27 |
wdi | FR.INR.RINR | Real interest rate (%) | 2025-05-24 | 2025-09-27 |
LAST_COMPILE
LAST_COMPILE |
---|
2025-10-11 |
Last
Code
%>%
irt_st_m group_by(time) %>%
summarise(Nobs = n()) %>%
arrange(desc(time)) %>%
head(1) %>%
print_table_conditional()
time | Nobs |
---|---|
2025M09 | 35 |
int_rt
Code
%>%
irt_st_m left_join(int_rt, by = "int_rt") %>%
group_by(int_rt, Int_rt) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
int_rt | Int_rt | Nobs |
---|---|---|
IRT_M3 | 3-month rate | 5341 |
IRT_DTD | Day-to-day rate | 4578 |
IRT_M1 | 1-month rate | 4220 |
IRT_M6 | 6-month rate | 4205 |
IRT_M12 | 12-month rate | 3743 |
geo
Code
%>%
irt_st_m left_join(geo, by = "geo") %>%
group_by(geo, Geo) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
time
Code
%>%
irt_st_m group_by(time) %>%
summarise(Nobs = n()) %>%
arrange(desc(time)) %>%
print_table_conditional
Interest Rates
Table
Code
%>%
irt_st_m filter(int_rt %in% c("IRT_M12"),
%in% c("2000M01", "2005M01", "2010M01", "2020M01", "2021M04")) %>%
time select_if(~ n_distinct(.) > 1) %>%
left_join(geo, by = "geo") %>%
spread(time, values) %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
UK, SE, DK, EA
All
Code
%>%
irt_st_m filter(int_rt %in% c("IRT_M12"),
%in% c("UK", "SE", "DK", "EA")) %>%
geo left_join(geo, by = "geo") %>%
%>%
month_to_date mutate(values = values / 100,
Geo = ifelse(geo == "EA", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot scale_color_identity() + theme_minimal() + add_3flags +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
xlab("") + ylab("1 year") +
scale_y_continuous(breaks = 0.01*seq(-30, 30, 1),
labels = percent_format(a = 1)) +
geom_hline(yintercept = 0, linetype = "dashed", color = "black")
2000-
Code
%>%
irt_st_m filter(int_rt %in% c("IRT_M12"),
%in% c("UK", "SE", "DK", "EA")) %>%
geo left_join(geo, by = "geo") %>%
%>%
month_to_date filter(date >= as.Date("2000-01-01")) %>%
mutate(values = values / 100,
Geo = ifelse(geo == "EA", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot scale_color_identity() + theme_minimal() + add_3flags +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
xlab("") + ylab("1 year") +
scale_y_continuous(breaks = 0.01*seq(-30, 30, 1),
labels = percent_format(a = 1)) +
geom_hline(yintercept = 0, linetype = "dashed", color = "black")
2018-
Code
%>%
irt_st_m filter(int_rt %in% c("IRT_M12"),
%in% c("UK", "SE", "DK", "EA")) %>%
geo left_join(geo, by = "geo") %>%
%>%
month_to_date filter(date >= as.Date("2018-01-01")) %>%
mutate(values = values / 100,
Geo = ifelse(geo == "EA", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot scale_color_identity() + theme_minimal() + add_3flags +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2100, 1), "-01-01")),
labels = date_format("%Y")) +
xlab("") + ylab("1 year") +
scale_y_continuous(breaks = 0.01*seq(-30, 30, 1),
labels = percent_format(a = 1)) +
geom_hline(yintercept = 0, linetype = "dashed", color = "black")