Monthly Monetary and Financial Statistics (MEI)
Data - OECD
Info
Data on interest rates
source | dataset | .html | .RData |
---|---|---|---|
2024-07-26 | 2024-06-18 | ||
2024-07-26 | 2024-07-01 | ||
2024-07-26 | 2024-07-01 | ||
2024-09-13 | 2024-05-10 | ||
2024-08-09 | 2024-04-19 | ||
2024-09-14 | 2024-09-14 | ||
2024-06-19 | 2024-09-14 | ||
2024-09-14 | 2024-09-14 | ||
2024-09-14 | 2024-08-28 | ||
2024-09-14 | 2024-09-14 | ||
2024-09-14 | 2024-09-14 | ||
2024-04-16 | 2024-06-30 | ||
2024-09-11 | 2024-05-21 | ||
2024-08-28 | 2024-09-15 |
LAST_COMPILE
LAST_COMPILE |
---|
2024-09-15 |
Last
obsTime | Nobs |
---|---|
2024-01 | 214 |
Nobs - Javascript
Code
%>%
MEI_FIN left_join(MEI_FIN_var$SUBJECT, by = "SUBJECT") %>%
if (!is_html_output()) mutate(., Subject = substr(Subject, 1, 87)) else .} %>%
{group_by(SUBJECT, Subject, FREQUENCY) %>%
filter(!is.na(obsValue)) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
Relative consumer price indices - CCRETT01
FRA, DEU, ITA, USA - Monthly
Code
%>%
MEI_FIN left_join(MEI_FIN_var$LOCATION, by = "LOCATION") %>%
filter(SUBJECT == "CCRETT01",
== "M",
FREQUENCY %in% c("FRA", "DEU", "ITA", "USA")) %>%
LOCATION %>%
month_to_date left_join(colors, by = c("Location" = "country")) %>%
mutate(color = ifelse(LOCATION == "USA", color2, color)) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
theme_minimal() + xlab("") + ylab("Relative consumer price indices") +
scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
+ scale_color_identity() +
add_4flags scale_y_continuous(breaks = seq(-10, 300, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
All Countries
Code
%>%
MEI_FIN left_join(MEI_FIN_var$LOCATION, by = "LOCATION") %>%
filter(SUBJECT == "CCRETT01") %>%
group_by(LOCATION, Location, FREQUENCY) %>%
summarise(Nobs = n(),
obsTime1 = first(obsTime),
obsTime2 = last(obsTime)) %>%
arrange(-Nobs) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
LT Interest Rates
France, Germany, Japan
Code
%>%
MEI_FIN filter(LOCATION %in% c("FRA", "DEU", "JPN"),
== "IRLT",
SUBJECT == "M") %>%
FREQUENCY %>%
month_to_date filter(date >= as.Date("2010-01-01")) %>%
left_join(MEI_FIN_var$LOCATION, by = "LOCATION") %>%
left_join(colors, by = c("Location" = "country")) %>%
mutate(obsValue = obsValue / 100) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
scale_color_identity() +
theme_minimal() + xlab("") + ylab("Long-Term Interest Rates (%)") +
+
add_3flags scale_x_date(breaks = seq(1960, 2024, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 50, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = "none") +
geom_hline(yintercept = 0, linetype = "dashed")
2019-2021
Code
%>%
MEI_FIN filter(LOCATION %in% c("FRA", "DEU", "JPN"),
== "IRLT",
SUBJECT == "M") %>%
FREQUENCY %>%
month_to_date filter(date >= as.Date("2014-02-01")) %>%
left_join(MEI_FIN_var$LOCATION, by = "LOCATION") %>%
group_by(LOCATION) %>%
mutate(obsValue = obsValue / 100) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = Location)) +
theme_minimal() + xlab("") + ylab("Taux Nominal sur la Dette, 10 ans (%)") +
+
add_3flags scale_x_date(breaks = "1 year",
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 50, .2),
labels = percent_format(accuracy = .1)) +
scale_color_manual(values = c("#002395", "#000000", "#BC002D")) +
theme(legend.position = "none") +
geom_hline(yintercept = 0, linetype = "dashed")
France, United States, Germany, Japan
All
Code
%>%
MEI_FIN filter(LOCATION %in% c("FRA", "USA", "DEU", "JPN"),
== "IRLT",
SUBJECT == "M") %>%
FREQUENCY %>%
month_to_date left_join(MEI_FIN_var$LOCATION, by = "LOCATION") %>%
left_join(colors, by = c("Location" = "country")) %>%
group_by(LOCATION) %>%
mutate(obsValue = obsValue / 100) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
+
add_4flags theme_minimal() + xlab("") + ylab("Long-Term Interest Rates (%)") +
scale_x_date(breaks = seq(1960, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 50, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.8, 0.80),
legend.title = element_blank()) +
scale_color_identity()
1990-
Code
%>%
MEI_FIN filter(LOCATION %in% c("FRA", "USA", "DEU", "JPN"),
== "IRLT",
SUBJECT == "M") %>%
FREQUENCY %>%
month_to_date filter(date >= as.Date("1990-01-01")) %>%
left_join(MEI_FIN_var$LOCATION, by = "LOCATION") %>%
left_join(colors, by = c("Location" = "country")) %>%
group_by(LOCATION) %>%
mutate(obsValue = obsValue / 100) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
scale_color_identity() + add_4flags +
theme_minimal() + xlab("") + ylab("Long-Term Interest Rates (%)") +
scale_x_date(breaks = seq(1960, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 50, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.8, 0.80),
legend.title = element_blank())
2010-
Code
%>%
MEI_FIN filter(LOCATION %in% c("FRA", "USA", "DEU", "JPN"),
== "IRLT",
SUBJECT == "M") %>%
FREQUENCY %>%
month_to_date filter(date >= as.Date("2010-01-01")) %>%
left_join(MEI_FIN_var$LOCATION, by = "LOCATION") %>%
left_join(colors, by = c("Location" = "country")) %>%
group_by(LOCATION) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue / 100, color = color)) +
theme_minimal() + xlab("") + ylab("Long-Term Interest Rates (%)") +
geom_image(data = . %>%
filter(date == as.Date("2014-01-01")) %>%
mutate(image = paste0("../../icon/flag/round/", str_to_lower(gsub(" ", "-", Location)), ".png")),
aes(x = date, y = obsValue / 100, image = image), asp = 1.5) +
scale_x_date(breaks = seq(1960, 2024, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 50, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = "none") +
scale_color_identity()
Last 10 years
Code
%>%
MEI_FIN filter(LOCATION %in% c("FRA", "USA", "DEU", "JPN"),
== "IRLT",
SUBJECT == "M") %>%
FREQUENCY %>%
month_to_date filter(date >= Sys.Date() - years(10)) %>%
left_join(MEI_FIN_var$LOCATION, by = "LOCATION") %>%
left_join(colors, by = c("Location" = "country")) %>%
group_by(LOCATION) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue / 100, color = color)) +
theme_minimal() + xlab("") + ylab("Long-Term Interest Rates (%)") +
geom_image(data = . %>%
filter(date == as.Date("2014-01-01")) %>%
mutate(image = paste0("../../icon/flag/round/", str_to_lower(gsub(" ", "-", Location)), ".png")),
aes(x = date, y = obsValue / 100, image = image), asp = 1.5) +
scale_x_date(breaks = seq(1960, 2024, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 50, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = "none") +
scale_color_identity()
Short-term Rates
France, United States, Germany, Japan
All
Code
%>%
MEI_FIN filter(LOCATION %in% c("FRA", "USA", "DEU", "JPN"),
== "IR3TIB",
SUBJECT == "M") %>%
FREQUENCY %>%
month_to_date left_join(MEI_FIN_var$LOCATION, by = "LOCATION") %>%
left_join(colors, by = c("Location" = "country")) %>%
group_by(LOCATION) %>%
mutate(obsValue = obsValue / 100) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
+
add_4flags theme_minimal() + xlab("") + ylab("Short-Term Interest Rates (%)") +
scale_x_date(breaks = seq(1960, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 50, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.8, 0.80),
legend.title = element_blank()) +
scale_color_identity()
1990-
Code
%>%
MEI_FIN filter(LOCATION %in% c("FRA", "USA", "DEU", "JPN"),
== "IR3TIB",
SUBJECT == "M") %>%
FREQUENCY %>%
month_to_date filter(date >= as.Date("1990-01-01")) %>%
left_join(MEI_FIN_var$LOCATION, by = "LOCATION") %>%
left_join(colors, by = c("Location" = "country")) %>%
group_by(LOCATION) %>%
mutate(obsValue = obsValue / 100) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
scale_color_identity() + add_4flags +
theme_minimal() + xlab("") + ylab("Long-Term Interest Rates (%)") +
scale_x_date(breaks = seq(1960, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 50, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.8, 0.80),
legend.title = element_blank())
2010-
Code
%>%
MEI_FIN filter(LOCATION %in% c("FRA", "USA", "DEU", "JPN"),
== "IR3TIB",
SUBJECT == "M") %>%
FREQUENCY %>%
month_to_date filter(date >= as.Date("2010-01-01")) %>%
left_join(MEI_FIN_var$LOCATION, by = "LOCATION") %>%
left_join(colors, by = c("Location" = "country")) %>%
group_by(LOCATION) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue / 100, color = color)) +
theme_minimal() + xlab("") + ylab("Short-Term Interest Rates (%)") +
geom_image(data = . %>%
filter(date == as.Date("2014-01-01")) %>%
mutate(image = paste0("../../icon/flag/round/", str_to_lower(gsub(" ", "-", Location)), ".png")),
aes(x = date, y = obsValue / 100, image = image), asp = 1.5) +
scale_x_date(breaks = seq(1960, 2024, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 50, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = "none") +
scale_color_identity()
Last 10 years
Code
%>%
MEI_FIN filter(LOCATION %in% c("FRA", "USA", "DEU", "JPN"),
== "IR3TIB",
SUBJECT == "M") %>%
FREQUENCY %>%
month_to_date filter(date >= Sys.Date() - years(10)) %>%
left_join(MEI_FIN_var$LOCATION, by = "LOCATION") %>%
left_join(colors, by = c("Location" = "country")) %>%
group_by(LOCATION) %>%
mutate(obsValue = obsValue / 100) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
theme_minimal() + xlab("") + ylab("Short-Term Interest Rates (%)") + add_3flags +
scale_x_date(breaks = seq(1960, 2024, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 50, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = "none") +
scale_color_identity()