Internal Liquidity Management

Data - ECB

Info

source dataset .html .RData
ecb ILM 2025-06-06 2025-06-06

Data on monetary policy

source dataset .html .RData
bdf FM 2025-05-24 2025-05-24
bdf MIR 2025-03-09 2025-01-22
bdf MIR1 2025-03-09 2025-01-22
bis CBPOL 2024-12-29 2024-12-29
ecb BSI 2025-05-21 2025-05-28
ecb BSI_PUB 2025-05-18 2025-05-30
ecb FM 2025-06-06 2025-06-06
ecb ILM 2025-06-06 2025-06-06
ecb ILM_PUB 2025-05-18 2024-09-10
ecb liq_daily 2025-06-06 2025-06-06
ecb MIR 2025-06-06 2025-06-05
ecb RAI 2025-05-18 2025-05-30
ecb SUP 2025-05-18 2025-05-18
ecb YC 2025-05-18 2025-05-21
ecb YC_PUB 2025-06-06 2025-06-06
eurostat ei_mfir_m 2025-05-24 2025-05-24
eurostat irt_st_m 2025-05-24 2025-05-24
fred r 2025-05-30 2025-05-30
oecd MEI 2024-04-16 2025-02-25
oecd MEI_FIN 2024-09-15 2025-02-25

LAST_COMPILE

LAST_COMPILE
2025-06-06

Last

Code
ILM %>%
  group_by(TIME_PERIOD, FREQ) %>%
  summarise(Nobs = n()) %>%
  arrange(desc(TIME_PERIOD)) %>%
  head(5) %>%
  print_table_conditional()
TIME_PERIOD FREQ Nobs
2025-W22 W 35
2025-W21 W 35
2025-W20 W 35
2025-W19 W 35
2025-W18 W 35

Info

FREQ

Code
ILM %>%
  left_join(FREQ,  by = "FREQ") %>%
  group_by(FREQ, Freq) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) print_table(.) else .}
FREQ Freq Nobs
M Monthly 122203
W Weekly 47066
D Daily 22380

REF_AREA

Code
ILM %>%
  left_join(REF_AREA,  by = "REF_AREA") %>%
  group_by(REF_AREA, Ref_area) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

BS_REP_SECTOR

Code
ILM %>%
  left_join(BS_REP_SECTOR,  by = "BS_REP_SECTOR") %>%
  group_by(BS_REP_SECTOR, Bs_rep_sector) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

BS_ITEM

Code
ILM %>%
  left_join(BS_ITEM,  by = "BS_ITEM") %>%
  group_by(BS_ITEM, Bs_item) %>%
  summarise(Nobs = n()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

KEY

Code
ILM %>%
  group_by(KEY, TITLE) %>%
  summarise(Nobs = n()) %>%
  mutate(KEY = paste0('<a  target=_blank href=https://data.ecb.europa.eu/data/datasets/ILM/', KEY, ' >', KEY, '</a>')) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

Daily

List of datasets

Code
ILM %>%
  filter(FREQ == "D") %>%
  group_by(KEY, TITLE) %>%
  summarise(Nobs = n()) %>%
  mutate(KEY = paste0("[", KEY, "](https://data.ecb.europa.eu/data/datasets/ILM/", KEY, ')')) %>%
  print_table_conditional()
KEY TITLE Nobs
[ILM.D.U2.C.A050500.U2.EUR] https://data.ecb.europa.eu/data/datasets/ILM/ILM.D.U2.C.A050500.U2.EUR)|
[ILM.D.U2.C.BMK1.U2.EUR](ht ps://data.ecb.europa.eu/data/datasets/ILM/ILM.D.U2.C.BMK1.U2.EUR)| Be chmark
[ILM.D.U2.C.EXLIQ.U2.EUR](h tps://data.ecb.europa.eu/data/datasets/ILM/ILM.D.U2.C.EXLIQ.U2.EUR)|
[ILM.D.U2.C.FAAF1.Z5.Z01](h tps://data.ecb.europa.eu/data/datasets/ILM/ILM.D.U2.C.FAAF1.Z5.Z01)|
[ILM.D.U2.C.FAAF2.Z5.Z01](h tps://data.ecb.europa.eu/data/datasets/ILM/ILM.D.U2.C.FAAF2.Z5.Z01)|
[ILM.D.U2.C.L020100.U2.EUR] https://data.ecb.europa.eu/data/datasets/ILM/ILM.D.U2.C.L020100.U2.EUR)|
[ILM.D.U2.C.L020200.U2.EUR] https://data.ecb.europa.eu/data/datasets/ILM/ILM.D.U2.C.L020200.U2.EUR)|
[ILM.D.U2.C.MRR.U2.EUR](htt s://data.ecb.europa.eu/data/datasets/ILM/ILM.D.U2.C.MRR.U2.EUR)| Mini
[ILM.D.U2.C.NLIQ.U2.EUR](ht ps://data.ecb.europa.eu/data/datasets/ILM/ILM.D.U2.C.NLIQ.U2.EUR)| Net liquidity ffect
[ILM.D.U2.C.TOMO.U2.EUR](ht ps://data.ecb.europa.eu/data/datasets/ILM/ILM.D.U2.C.TOMO.U2.EUR)| Open market

Main Refinancing operation

France, Germany, Italy

Code
ILM %>%
  filter(KEY %in% c("ILM.M.FR.N.A050100.U2.EUR",
                    "ILM.M.DE.N.A050100.U2.EUR",
                    "ILM.M.IT.N.A050100.U2.EUR")) %>%
  month_to_date %>%
  mutate(OBS_VALUE = OBS_VALUE/1000) %>%
  ggplot + geom_line(aes(x = date, y = OBS_VALUE, color = TITLE)) +
  ylab("") + xlab("") + theme_minimal() +
  theme(legend.position = c(0.45, 0.9),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = seq(0, 10000, 2),
                labels = dollar_format(acc = 1, pre = "", su = " Bn€")) +
  scale_x_date(breaks = as.Date(paste0(seq(1940, 2100,  1), "-01-01")),
               labels = date_format("%Y"))

Eurosystem

Monthly

Code
ILM %>%
  filter(KEY %in% c("ILM.M.U2.C.A050100.U2.EUR")) %>%
  month_to_date %>%
  mutate(OBS_VALUE = OBS_VALUE/1000) %>%
  ggplot + geom_line(aes(x = date, y = OBS_VALUE, color = TITLE)) +
  ylab("") + xlab("") + theme_minimal() +
  theme(legend.position = c(0.45, 0.9),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = seq(0, 10000, 20),
                labels = dollar_format(acc = 1, pre = "", su = " Bn€")) +
  scale_x_date(breaks = as.Date(paste0(seq(1940, 2100,  2), "-01-01")),
               labels = date_format("%Y"))

Weekly

Code
ILM %>%
  filter(KEY %in% c("ILM.W.U2.C.A050100.U2.EUR")) %>%
  arrange(desc(TIME_PERIOD)) %>%
  week_to_date %>%
  mutate(OBS_VALUE = OBS_VALUE/1000) %>%
  ggplot + geom_line(aes(x = date, y = OBS_VALUE)) +
  ylab("Main refinancing operation - Eurosystem") + xlab("") + theme_minimal() +
  theme(legend.position = c(0.45, 0.9),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = seq(0, 10000, 20),
                labels = dollar_format(acc = 1, pre = "", su = " Bn€")) +
  scale_x_date(breaks = as.Date(paste0(seq(1940, 2100,  2), "-01-01")),
               labels = date_format("%Y"))

Total Assets

France, Germany, Italy

Code
ILM %>%
  filter(KEY %in% c("ILM.M.DE.N.T000000.Z5.Z01",
                    "ILM.M.FR.N.T000000.Z5.Z01",
                    "ILM.M.IT.N.T000000.Z5.Z01")) %>%
  month_to_date %>%
  mutate(OBS_VALUE = OBS_VALUE/1000) %>%
  ggplot + geom_line(aes(x = date, y = OBS_VALUE, color = TITLE)) +
  ylab("") + xlab("") + theme_minimal() +
  theme(legend.position = c(0.45, 0.9),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = seq(0, 10000, 200),
                labels = dollar_format(acc = 1, pre = "", su = " Bn€")) +
  scale_x_date(breaks = as.Date(paste0(seq(1940, 2100,  1), "-01-01")),
               labels = date_format("%Y"))

France, Germany, Italy

Code
ILM %>%
  filter(KEY %in% c("ILM.M.FR.N.L020000.U2.EUR",
                    "ILM.M.DE.N.L020000.U2.EUR",
                    "ILM.M.IT.N.L020000.U2.EUR")) %>%
  month_to_date %>%
  mutate(OBS_VALUE = OBS_VALUE/1000) %>%
  ggplot + geom_line(aes(x = date, y = OBS_VALUE, color = TITLE)) +
  ylab("") + xlab("") + theme_minimal() +
  theme(legend.position = c(0.45, 0.9),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = seq(0, 10000, 200),
                labels = dollar_format(acc = 1, pre = "", su = " Bn€")) +
  scale_x_date(breaks = as.Date(paste0(seq(1940, 2100,  1), "-01-01")),
               labels = date_format("%Y"))

Liabilities to euro area credit institutions related to monetary policy operations denominated in euro

Base money

Linear

Code
ILM %>%
  filter(KEY %in% c("ILM.M.U2.C.LT00001.Z5.EUR",
                    "ILM.M.U2.C.L020100.U2.EUR")) %>%
  month_to_date %>%
  mutate(OBS_VALUE = OBS_VALUE/1000) %>%
  ggplot + geom_line(aes(x = date, y = OBS_VALUE, color = TITLE)) +
  ylab("") + xlab("") + theme_minimal() +
  theme(legend.position = c(0.45, 0.9),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = seq(0, 10000, 500),
                labels = dollar_format(acc = 1, pre = "", su = " Bn€")) +
  scale_x_date(breaks = as.Date(paste0(seq(1940, 2100,  2), "-01-01")),
               labels = date_format("%Y"))

Log

Code
ILM %>%
  filter(KEY %in% c("ILM.M.U2.C.LT00001.Z5.EUR",
                    "ILM.M.U2.C.L020100.U2.EUR")) %>%
  month_to_date %>%
  mutate(OBS_VALUE = OBS_VALUE/1000) %>%
  ggplot + geom_line(aes(x = date, y = OBS_VALUE, color = TITLE)) +
  ylab("Required and Excess reserves") + xlab("") + theme_minimal() +
  theme(legend.position = c(0.45, 0.9),
        legend.title = element_blank()) +
  scale_y_log10(breaks = 10^(seq(0, 10, 1)),
                labels = dollar_format(acc = 1, pre = "", su = " Bn€")) +
  scale_x_date(breaks = as.Date(paste0(seq(1940, 2100,  2), "-01-01")),
               labels = date_format("%Y"))

Banknotes in circulation - Differences

Code
ILM %>%
  filter(KEY %in% c("ILM.M.4F.E.L010000.Z5.EUR",
                    "ILM.M.U2.C.L010000.Z5.EUR")) %>%
  month_to_date %>%
  mutate(OBS_VALUE = OBS_VALUE/1000) %>%
  ggplot + geom_line(aes(x = date, y = OBS_VALUE, color = TITLE)) +
  ylab("Liquidity-providing factors") + xlab("") + theme_minimal() +
  theme(legend.position = c(0.45, 0.8),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = seq(0, 10000, 200),
                labels = dollar_format(acc = 1, pre = "", su = " Bn€")) +
  scale_x_date(breaks = as.Date(paste0(seq(1940, 2100,  2), "-01-01")),
               labels = date_format("%Y"))

Liquidity

https://data.ecb.europa.eu/publications/ecbeurosystem-policy-and-exchange-rates/3030613

Liquidity-providing factors

Individual

Bn€

Code
ILM %>%
  filter(KEY %in% c("ILM.M.U2.C.AN00001.Z5.Z0Z",
                    "ILM.M.U2.C.A050100.U2.EUR",
                    "ILM.M.U2.C.A050200.U2.EUR",
                    "ILM.M.U2.C.A050500.U2.EUR",
                    "ILM.M.U2.C.A050A00.U2.EUR")) %>%
  month_to_date %>%
  mutate(OBS_VALUE = OBS_VALUE/1000) %>%
  ggplot + geom_line(aes(x = date, y = OBS_VALUE, color = TITLE)) +
  ylab("Liquidity-providing factors
") + xlab("") + theme_minimal() +
  theme(legend.position = c(0.45, 0.8),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = seq(0, 10000, 500),
                labels = dollar_format(acc = 1, pre = "", su = " Bn€")) +
  scale_x_date(breaks = as.Date(paste0(seq(1940, 2100,  2), "-01-01")),
               labels = date_format("%Y"))

Years of GDP

Code
ILM %>%
  filter(KEY %in% c("ILM.M.U2.C.AN00001.Z5.Z0Z",
                    "ILM.M.U2.C.A050100.U2.EUR",
                    "ILM.M.U2.C.A050200.U2.EUR",
                    "ILM.M.U2.C.A050500.U2.EUR",
                    "ILM.M.U2.C.A050A00.U2.EUR")) %>%
  month_to_date %>%
  mutate(OBS_VALUE = OBS_VALUE/1000) %>%
  left_join(B1GQ %>% mutate(date = date + months(3)), by = "date") %>%
  mutate(B1GQ_i = spline(x = date, y = B1GQ, xout = date)$y) %>%
  mutate(OBS_VALUE = OBS_VALUE/B1GQ_i) %>%
  ggplot + geom_line(aes(x = date, y = OBS_VALUE, color = TITLE)) +
  ylab("Liquidity-providing factors (years of GDP)") + xlab("") + theme_minimal() +
  theme(legend.position = c(0.4, 0.8),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(-5, 100, 5)) +
  scale_x_date(breaks = as.Date(paste0(seq(1940, 2100,  2), "-01-01")),
               labels = date_format("%Y"))

Stacked

Bn€

Code
ILM %>%
  filter(KEY %in% c("ILM.M.U2.C.AN00001.Z5.Z0Z",
                    "ILM.M.U2.C.A050100.U2.EUR",
                    "ILM.M.U2.C.A050200.U2.EUR",
                    "ILM.M.U2.C.A050500.U2.EUR",
                    "ILM.M.U2.C.A050A00.U2.EUR")) %>%
  month_to_date %>%
  mutate(OBS_VALUE = OBS_VALUE/1000) %>%
  arrange(date) %>%
  mutate(TITLE = ifelse(BS_ITEM == "A050A00", "Other liquidity providing operations", TITLE),
         TITLE = gsub(" - Eurosystem", "", TITLE)) %>%
  ggplot + geom_area(aes(x = date, y = OBS_VALUE, fill = TITLE), alpha = 0.5) +
  ylab("Liquidity-providing factors") + xlab("") + theme_minimal() +
  theme(legend.position = c(0.3, 0.75),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = seq(0, 10000, 500),
                labels = dollar_format(acc = 1, pre = "", su = " Bn€")) +
  scale_x_date(breaks = as.Date(paste0(seq(1940, 2100,  2), "-01-01")),
               labels = date_format("%Y"))

Years of GDP

Code
ILM %>%
  filter(KEY %in% c("ILM.M.U2.C.AN00001.Z5.Z0Z",
                    "ILM.M.U2.C.A050100.U2.EUR",
                    "ILM.M.U2.C.A050200.U2.EUR",
                    "ILM.M.U2.C.A050500.U2.EUR",
                    "ILM.M.U2.C.A050A00.U2.EUR")) %>%
  month_to_date %>%
  mutate(OBS_VALUE = OBS_VALUE/1000) %>%
  left_join(B1GQ %>% mutate(date = date + months(3)), by = "date") %>%
  mutate(B1GQ_i = spline(x = date, y = B1GQ, xout = date)$y) %>%
  mutate(OBS_VALUE = OBS_VALUE/B1GQ_i) %>%
  ggplot + geom_area(aes(x = date, y = OBS_VALUE, fill = TITLE), alpha = 0.5) +
  ylab("Liquidity-providing factors (years of GDP)") + xlab("") + theme_minimal() +
  theme(legend.position = c(0.4, 0.8),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(-5, 100, 5)) +
  scale_x_date(breaks = as.Date(paste0(seq(1940, 2100,  2), "-01-01")),
               labels = date_format("%Y"))

Liquidity-absorbing factors

Individual

Bn€

Code
ILM %>%
  filter(KEY %in% c("ILM.M.U2.C.L020200.U2.EUR",
                    "ILM.M.U2.C.L020300.U2.EUR",
                    "ILM.M.U2.C.L010000.Z5.EUR",
                    "ILM.M.U2.C.L050100.U2.EUR",
                    "ILM.M.U2.C.AN00002.Z5.Z0Z")) %>%
  month_to_date %>%
  mutate(OBS_VALUE = OBS_VALUE/1000) %>%
  ggplot + geom_line(aes(x = date, y = OBS_VALUE, color = TITLE)) +
  ylab("Liquidity-absorbing factors") + xlab("") + theme_minimal() +
  theme(legend.position = c(0.45, 0.8),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = seq(0, 10000, 500),
                labels = dollar_format(acc = 1, pre = "", su = " Bn€")) +
  scale_x_date(breaks = as.Date(paste0(seq(1940, 2100,  2), "-01-01")),
               labels = date_format("%Y"))

Years of GDP

Code
ILM %>%
  filter(KEY %in% c("ILM.M.U2.C.L020200.U2.EUR",
                    "ILM.M.U2.C.L020300.U2.EUR",
                    "ILM.M.U2.C.L010000.Z5.EUR",
                    "ILM.M.U2.C.L050100.U2.EUR",
                    "ILM.M.U2.C.AN00002.Z5.Z0Z")) %>%
  month_to_date %>%
  mutate(OBS_VALUE = OBS_VALUE/1000) %>%
  left_join(B1GQ %>% mutate(date = date + months(3)), by = "date") %>%
  mutate(B1GQ_i = spline(x = date, y = B1GQ, xout = date)$y) %>%
  mutate(OBS_VALUE = OBS_VALUE/B1GQ_i) %>%
  ggplot + geom_line(aes(x = date, y = OBS_VALUE, color = TITLE)) +
  ylab("Liquidity-providing factors (years of GDP)") + xlab("") + theme_minimal() +
  theme(legend.position = c(0.4, 0.8),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(-5, 100, 5)) +
  scale_x_date(breaks = as.Date(paste0(seq(1940, 2100,  2), "-01-01")),
               labels = date_format("%Y"))

Stacked

Bn€

Code
ILM %>%
  filter(KEY %in% c("ILM.M.U2.C.L020200.U2.EUR",
                    "ILM.M.U2.C.L020300.U2.EUR",
                    "ILM.M.U2.C.L010000.Z5.EUR",
                    "ILM.M.U2.C.L050100.U2.EUR",
                    "ILM.M.U2.C.AN00002.Z5.Z0Z")) %>%
  month_to_date %>%
  mutate(OBS_VALUE = OBS_VALUE/1000) %>%
  ggplot + geom_col(aes(x = date, y = OBS_VALUE, fill = TITLE)) +
  ylab("Liquidity-absorbing factors") + xlab("") + theme_minimal() +
  theme(legend.position = c(0.45, 0.8),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = seq(0, 10000, 500),
                labels = dollar_format(acc = 1, pre = "", su = " Bn€")) +
  scale_x_date(breaks = as.Date(paste0(seq(1940, 2100,  2), "-01-01")),
               labels = date_format("%Y"))

Years of GDP

Code
ILM %>%
  filter(KEY %in% c("ILM.M.U2.C.L020200.U2.EUR",
                    "ILM.M.U2.C.L020300.U2.EUR",
                    "ILM.M.U2.C.L010000.Z5.EUR",
                    "ILM.M.U2.C.L050100.U2.EUR",
                    "ILM.M.U2.C.AN00002.Z5.Z0Z")) %>%
  month_to_date %>%
  mutate(OBS_VALUE = OBS_VALUE/1000) %>%
  left_join(B1GQ %>% mutate(date = date + months(3)), by = "date") %>%
  mutate(B1GQ_i = spline(x = date, y = B1GQ, xout = date)$y) %>%
  mutate(OBS_VALUE = OBS_VALUE/B1GQ_i) %>%
  ggplot + geom_col(aes(x = date, y = OBS_VALUE, fill = TITLE)) +
  ylab("Liquidity-providing factors (years of GDP)") + xlab("") + theme_minimal() +
  theme(legend.position = c(0.4, 0.8),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(-5, 100, 5)) +
  scale_x_date(breaks = as.Date(paste0(seq(1940, 2100,  2), "-01-01")),
               labels = date_format("%Y"))