Supervisory Banking Statistics

Data - ECB

Error in readChar(con, 5L, useBytes = TRUE) : 
  impossible d'ouvrir la connexion

Info

source dataset .html .RData
ecb SUP 2024-12-28 2024-12-29

Data on monetary policy

source dataset Title Download Compile
ecb SUP Supervisory Banking Statistics 2024-12-29 [2024-12-28]
bdf FM Marché financier, taux 2024-12-28 [2024-12-28]
bdf MIR Taux d'intérêt - Zone euro 2024-07-01 [2024-07-26]
bdf MIR1 Taux d'intérêt - France 2024-12-09 [2024-11-29]
bis CBPOL Policy Rates, Daily 2024-12-29 [2024-12-19]
ecb BSI Balance Sheet Items 2024-11-19 [2024-12-29]
ecb BSI_PUB Balance Sheet Items - Published series 2024-12-29 [2024-12-29]
ecb FM Financial market data 2024-12-29 [2024-12-29]
ecb ILM Internal Liquidity Management 2024-12-29 [2024-12-29]
ecb ILM_PUB Internal Liquidity Management - Published series 2024-09-10 [2024-12-29]
ecb MIR MFI Interest Rate Statistics 2024-12-29 [2024-06-19]
ecb RAI Risk Assessment Indicators 2024-12-29 [2024-12-29]
ecb YC Financial market data - yield curve 2024-11-19 [2024-12-28]
ecb YC_PUB Financial market data - yield curve - Published series 2024-12-29 [2024-12-28]
ecb liq_daily Daily Liquidity 2024-09-11 [2024-12-29]
eurostat ei_mfir_m Interest rates - monthly data 2024-12-28 [2024-12-28]
eurostat irt_st_m Money market interest rates - monthly data 2024-12-29 [2024-12-28]
fred r Interest Rates 2024-12-29 [2024-12-29]
oecd MEI Main Economic Indicators 2024-06-30 [2024-04-16]
oecd MEI_FIN Monthly Monetary and Financial Statistics (MEI) 2024-12-22 [2024-09-15]

LAST_COMPILE

LAST_COMPILE
2024-12-29

Last

Code
SUP %>%
  group_by(TIME_PERIOD, FREQ) %>%
  summarise(Nobs = n()) %>%
  ungroup %>%
  group_by(FREQ) %>%
  arrange(desc(TIME_PERIOD)) %>%
  filter(row_number() == 1) %>%
  print_table_conditional()
TIME_PERIOD FREQ Nobs
2024-S1 H 1768
2024-Q3 Q 11949

Info

  • Data Structure Definition (DSD). html

TITLE

Code
SUP %>%
  group_by(TITLE) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

BS_SUFFIX

Code
SUP %>%
  left_join(BS_SUFFIX,  by = "BS_SUFFIX") %>%
  group_by(BS_SUFFIX, Bs_suffix) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()
BS_SUFFIX Bs_suffix Nobs
E Euro 306353
PCT Percentage 101917
LAF NA 28127
Z Not applicable 13993

CB_EXP_TYPE

Code
SUP %>%
  left_join(CB_EXP_TYPE,  by = "CB_EXP_TYPE") %>%
  group_by(CB_EXP_TYPE, Cb_exp_type) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()
CB_EXP_TYPE Cb_exp_type Nobs
ALL All exposures 304317
_Z Not applicable 104997
N_ Non-performing exposures 16355
ST2 Assets with significant increase in credit risk since initial recognition but not credit-impaired (Stage 2) 8624
P_ Performing exposures 4236
NFM Non-performing exposures with forbearance measures 3842
PFM Performing exposures with forbearance measures 3835
ST1 Assets without significant increase in credit risk since initial recognition (Stage 1) 1504
ST3 Credit-impaired assets (Stage 3) 1504
PCI Purchased or originated credit-impaired financial assets 1176

CB_ITEM

Code
SUP %>%
  left_join(CB_ITEM,  by = "CB_ITEM") %>%
  group_by(CB_ITEM, Cb_item) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()

SBS_DI_1

Code
SUP %>%
  left_join(SBS_DI_1,  by = "SBS_DI_1") %>%
  group_by(SBS_DI_1, Sbs_di_1) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()
SBS_DI_1 Sbs_di_1 Nobs
SII Significant institutions 346497
LSI Less significant institutions 103893

SBS_BREAKDOWN

Code
SUP %>%
  left_join(SBS_BREAKDOWN,  by = "SBS_BREAKDOWN") %>%
  group_by(SBS_BREAKDOWN, Sbs_breakdown) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()
SBS_BREAKDOWN Sbs_breakdown Nobs
_T Total 261130
AMC Classification by business model - asset manager & custodian 11193
CWH Classification by business model - corporate/wholesale lenders 11193
DEV Classification by business model - development/promotional lenders 11193
DIV Classification by business model - diversified lenders 11193
NC Classification by business model - others/ not classified 11193
RCCL Classification by business model - retail lenders and consumer credit lenders 11193
UNI Classification by business model - universal and investment banks 11193
GSIB Classification by size/business model - G-SIBs 8225
SL30 Classification by size - banks with total assets less than 30 billion of EUR 8225
SM20 Classification by size - banks with total assets more than 200 billion of EUR 8225
ST10 Classification by size - banks with total assets between 30 billion and 100 billion of EUR 8225
ST20 Classification by size - banks with total assets between 100 billion and 200 billion of EUR 8225
LORI Classification by risk - banks with low risk 7913
MHRI Classification by risk - banks with medium, high risk and non-rated 7913
SML Classification by business model - small market lenders 7913
DOM Classification by geographical diversification - banks with significant domestic exposures 7897
EEA Classification by geographical diversification - banks with largest non-domestic exposures in non-SSM EEA 7897
NEEA Classification by geographical diversification - banks with largest non-domestic exposures in non-EEA Europe 7897
ROW Classification by geographical diversification - banks with largest non-domestic exposures in RoW 7897
SSM Classification by geographical diversification - banks with largest non-domestic exposures in the SSM 7897
CSCB Classification by business model-central savings and cooperative banks 3280
EML Classification by business model-emerging markets lenders 3280

COUNT_AREA

Code
SUP %>%
  left_join(COUNT_AREA,  by = "COUNT_AREA") %>%
  group_by(COUNT_AREA, Count_area) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()

FREQ

Code
SUP %>%
  left_join(FREQ,  by = "FREQ") %>%
  group_by(FREQ, Freq) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()
FREQ Freq Nobs
Q Quarterly 431350
H Half-yearly 19040

REF_AREA

Code
SUP %>%
  left_join(REF_AREA,  by = "REF_AREA") %>%
  group_by(REF_AREA, Ref_area) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()
REF_AREA Ref_area Nobs
B01 EU countries participating in the Single Supervisory Mechanism (SSM) (changing composition) 214751
AT Austria 11607
BE Belgium 11607
CY Cyprus 11607
DE Germany 11607
EE Estonia 11607
ES Spain 11607
FI Finland 11607
FR France 11607
GR Greece 11607
IE Ireland 11607
IT Italy 11607
LT Lithuania 11607
LU Luxembourg 11607
LV Latvia 11607
MT Malta 11607
NL Netherlands 11607
PT Portugal 11607
SI Slovenia 11607
SK Slovakia 11607
BG Bulgaria 7553
HR Croatia 7553

COUNTERPART_SECTOR

Code
SUP %>%
  left_join(COUNTERPART_SECTOR,  by = "COUNTERPART_SECTOR") %>%
  group_by(COUNTERPART_SECTOR, Counterpart_sector) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()
COUNTERPART_SECTOR Counterpart_sector Nobs
_Z Not applicable 353146
S13 General government 25887
S11 Non financial corporations 21135
S14 Households 19711
S12R Other financial corporations 10637
S122Z Deposit-taking corporations except the central bank and excluding electronic money institutions principally engaged in financial intermediation 6840
S121 Central bank 6809
S1V Non-financial corporations, households and NPISH 6225

TIME_FORMAT

Code
SUP %>%
  group_by(TIME_FORMAT) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()
TIME_FORMAT Nobs
P3M 431350
P6M 19040

Performance Indicators

https://www.bankingsupervision.europa.eu/banking/statistics/html/index.en.html

Return on equity

Graph

significant institutions (SIs) and less significant institutions (LSIs):

Code
SUP %>%
  filter(grepl("Return on equity", TITLE),
         REF_AREA %in% c("U2", "FR", "IT", "DE"),
         BS_SUFFIX == "PCT") %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  left_join(SBS_DI_1,  by = "SBS_DI_1") %>%
  quarter_to_date %>%
  select_if(~ n_distinct(.) > 1) %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  mutate(OBS_VALUE = OBS_VALUE/100) %>%
  ggplot(.) + theme_minimal() + xlab("") + ylab("Return on equity") +
  geom_line(aes(x = date, y = OBS_VALUE, color = color, linetype = Sbs_di_1)) + 
  add_flags(7) + scale_color_identity() +
  scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-100, 100, 2),
                     labels = percent_format(accuracy = 1)) +
  theme(legend.position = c(0.25, 0.90),
        legend.title = element_blank())

Cost-to-income ratio

Code
SUP %>%
  filter(grepl("Cost-to-income ratio", TITLE),
         REF_AREA %in% c("U2", "FR", "IT", "DE"),
         BS_SUFFIX == "PCT") %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  left_join(SBS_DI_1,  by = "SBS_DI_1") %>%
  quarter_to_date %>%
  select_if(~ n_distinct(.) > 1) %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  mutate(OBS_VALUE = OBS_VALUE/100) %>%
  ggplot(.) + theme_minimal() + xlab("") + ylab("Cost-to-income Ratio") +
  geom_line(aes(x = date, y = OBS_VALUE, color = color, linetype = Sbs_di_1)) + 
  add_flags(7) + scale_color_identity() +
  scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 100, 10),
                     labels = percent_format(accuracy = .1)) +
  theme(legend.position = c(0.25, 0.90),
        legend.title = element_blank())

Net interest income

FR, IT, DE

Code
SUP %>%
  filter(grepl("Net interest income", TITLE),
         REF_AREA %in% c("U2", "FR", "IT", "DE"),
         BS_SUFFIX == "PCT") %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  left_join(SBS_DI_1,  by = "SBS_DI_1") %>%
  quarter_to_date %>%
  select_if(~ n_distinct(.) > 1) %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  mutate(OBS_VALUE = OBS_VALUE/100) %>%
  ggplot(.) + theme_minimal() + xlab("") + ylab("Net Interest Income/Total operating income") +
  geom_line(aes(x = date, y = OBS_VALUE, color = color, linetype = Sbs_di_1)) + 
  add_flags(7) + scale_color_identity() +
  scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 100, 10),
                     labels = percent_format(accuracy = .1)) +
  theme(legend.position = c(0.25, 0.90),
        legend.title = element_blank())

FR, IT, DE, ES, NL, SI

Net interest margin

FR, IT, DE

Code
SUP %>%
  filter(grepl("Net interest margin", TITLE),
         REF_AREA %in% c("U2", "FR", "IT", "DE")) %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  left_join(SBS_DI_1,  by = "SBS_DI_1") %>%
  quarter_to_date %>%
  select_if(~ n_distinct(.) > 1) %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  mutate(OBS_VALUE = OBS_VALUE/100) %>%
  ggplot(.) + theme_minimal() + xlab("") + ylab("Net Interest Margin") +
  geom_line(aes(x = date, y = OBS_VALUE, color = color, linetype = Sbs_di_1)) + 
  add_flags(6) + scale_color_identity() +
  scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 50, 0.1),
                     labels = percent_format(accuracy = .1)) +
  theme(legend.position = c(0.25, 0.90),
        legend.title = element_blank())

FR, IT, DE, ES, NL, SI

Code
SUP %>%
  filter(grepl("Net interest margin", TITLE),
         REF_AREA %in% c("U2", "FR", "IT", "DE", "ES", "NL", "SI"),
         SBS_DI_1 == "SII") %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  quarter_to_date %>%
  arrange(desc(date)) %>%
  left_join(SBS_DI_1,  by = "SBS_DI_1") %>%
  select_if(~ n_distinct(.) > 1) %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  mutate(OBS_VALUE = OBS_VALUE/100) %>%
  ggplot(.) + theme_minimal() + xlab("") + ylab("Net Interest Margin") +
  geom_line(aes(x = date, y = OBS_VALUE, color = color)) + 
  add_flags(6) + scale_color_identity() +
  scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 50, 0.1),
                     labels = percent_format(accuracy = .1)) +
  theme(legend.position = c(0.25, 0.90),
        legend.title = element_blank())

FR, IT, DE, ES, NL, BE, AT, PT

2015-

Code
SUP %>%
  filter(grepl("Net interest margin", TITLE),
         REF_AREA %in% c("U2", "FR", "IT", "DE", "ES", "NL", "BE", "AT", "PT"),
         SBS_DI_1 == "SII") %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  quarter_to_date %>%
  arrange(desc(date)) %>%
  left_join(SBS_DI_1,  by = "SBS_DI_1") %>%
  select_if(~ n_distinct(.) > 1) %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  mutate(OBS_VALUE = OBS_VALUE/100) %>%
  mutate(color = ifelse(REF_AREA == "FR", color2, color)) %>%
  ggplot(.) + theme_minimal() + xlab("") + ylab("Net Interest Margin") +
  geom_line(aes(x = date, y = OBS_VALUE, color = color)) + 
  add_flags(8) + scale_color_identity() +
  scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 50, 0.1),
                     labels = percent_format(accuracy = .1)) +
  theme(legend.position = c(0.25, 0.90),
        legend.title = element_blank())

2018-

Code
SUP %>%
  filter(grepl("Net interest margin", TITLE),
         REF_AREA %in% c("U2", "FR", "IT", "DE", "ES", "NL", "BE", "AT", "PT"),
         SBS_DI_1 == "SII") %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  quarter_to_date %>%
  filter(date >= as.Date("2018-01-01")) %>%
  arrange(desc(date)) %>%
  left_join(SBS_DI_1,  by = "SBS_DI_1") %>%
  select_if(~ n_distinct(.) > 1) %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  mutate(OBS_VALUE = OBS_VALUE/100) %>%
  mutate(color = ifelse(REF_AREA == "FR", color2, color)) %>%
  ggplot(.) + theme_minimal() + xlab("") + ylab("Net Interest Margin") +
  geom_line(aes(x = date, y = OBS_VALUE, color = color)) + 
  add_flags(8) + scale_color_identity() +
  scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 50, 0.1),
                     labels = percent_format(accuracy = .1)) +
  theme(legend.position = c(0.25, 0.90),
        legend.title = element_blank())

Liquidity

Liquidity coverage ratios (LCR)

The LCR is the percentage resulting from dividing the bank’s stock of high-quality assets by the estimated total net cash outflows over a 30 calendar day stress scenario.

Code
SUP %>%
  filter(CB_ITEM == "I3017",
         REF_AREA %in% c("U2", "FR", "IT", "DE"),
         !(SBS_DI_1 == "_Z")) %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  left_join(SBS_DI_1,  by = "SBS_DI_1") %>%
  quarter_to_date %>%
  select_if(~ n_distinct(.) > 1) %>%
  arrange(desc(date)) %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  mutate(OBS_VALUE = OBS_VALUE/100) %>%
  ggplot(.) + theme_minimal() + xlab("") + ylab("Liquidity coverage ratio") +
  geom_line(aes(x = date, y = OBS_VALUE, color = color, linetype = Sbs_di_1)) + 
  add_flags(6) + scale_color_identity() +
  scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(0, 500, 50),
                     labels = percent_format(accuracy = 1),
                     limits = c(0, 3.5)) +
  theme(legend.position = c(0.2, 0.90),
        legend.title = element_blank())

Liquidity buffer

Code
SUP %>%
  filter(CB_ITEM == "A6310",
         REF_AREA %in% c("U2", "FR", "IT", "DE")) %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  left_join(SBS_DI_1,  by = "SBS_DI_1") %>%
  quarter_to_date %>%
  select_if(~ n_distinct(.) > 1) %>%
  arrange(desc(date)) %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  mutate(OBS_VALUE = OBS_VALUE/100) %>%
  ggplot(.) + theme_minimal() + xlab("") + ylab("Liquidity buffer") +
  geom_line(aes(x = date, y = OBS_VALUE, color = color, linetype = Sbs_di_1)) + 
  add_flags(6) + scale_color_identity() +
  scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = seq(0, 1000, 2)) +
  theme(legend.position = c(0.2, 0.90),
        legend.title = element_blank())

Net liquidity outflow

Code
SUP %>%
  filter(CB_ITEM == "A6320",
         REF_AREA %in% c("U2", "FR", "IT", "DE")) %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  left_join(SBS_DI_1,  by = "SBS_DI_1") %>%
  quarter_to_date %>%
  select_if(~ n_distinct(.) > 1) %>%
  arrange(desc(date)) %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  mutate(OBS_VALUE = OBS_VALUE/100) %>%
  ggplot(.) + theme_minimal() + xlab("") + ylab("Net liquidity outflow") +
  geom_line(aes(x = date, y = OBS_VALUE, color = color, linetype = Sbs_di_1)) + 
  add_flags(6) + scale_color_identity() +
  scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = seq(0, 1000, 2)) +
  theme(legend.position = c(0.2, 0.90),
        legend.title = element_blank())

Net liquidity outflow

Code
SUP %>%
  filter(grepl("Net liquidity outflow", TITLE),
         REF_AREA %in% c("B01", "FR", "IT", "DE")) %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  left_join(SBS_DI_1,  by = "SBS_DI_1") %>%
  quarter_to_date %>%
  mutate(OBS_VALUE = OBS_VALUE/100,
         Ref_area = ifelse(REF_AREA == "B01", "Europe", Ref_area)) %>%
  select_if(~ n_distinct(.) > 1) %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  na.omit %>%
  ggplot(.) + theme_minimal() + xlab("") + ylab("Net liquidity outflow") +
  geom_line(aes(x = date, y = OBS_VALUE, color = color, linetype = paste0(SBS_DI_1, SBS_BREAKDOWN))) + 
  add_flags(6) + scale_color_identity() +
  scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(0, 500, 50),
                     labels = percent_format(accuracy = 1),
                     limits = c(0, 3.5)) +
  theme(legend.position = c(0.55, 0.50),
        legend.title = element_blank())

Net Liquidity outflow - EU

B01 - EU countries participating in the Single Supervisory Mechanism (SSM)

Capital adequacy

  • Common equity Tier 1 ratio

  • Tier 1 ratio

https://www.bankingsupervision.europa.eu/press/pr/date/2023/html/ssm.pr2301114cb4953fd6.en.html#::text=The%20aggregate%20capital%20ratios%20of,capital%20ratio%20stood%20at%2018.68%25.

Code
SUP %>%
  filter(grepl("Common equity Tier 1 ratio", TITLE),
         REF_AREA %in% c("U2", "FR", "IT", "DE")) %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  left_join(SBS_DI_1,  by = "SBS_DI_1") %>%
  quarter_to_date %>%
  select_if(~ n_distinct(.) > 1) %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  mutate(OBS_VALUE = OBS_VALUE/100) %>%
  ggplot(.) + theme_minimal() + xlab("") + ylab("Net Interest Margin") +
  geom_line(aes(x = date, y = OBS_VALUE, color = color, linetype = Sbs_di_1)) + 
  add_flags(6) + scale_color_identity() +
  scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 50, 1),
                     labels = percent_format(accuracy = .1)) +
  theme(legend.position = c(0.25, 0.90),
        legend.title = element_blank())