Supervisory Banking Statistics

Data - ECB

Error in readChar(con, 5L, useBytes = TRUE) : 
  impossible d'ouvrir la connexion

Info

source dataset .html .RData
ecb SUP 2024-12-29 2025-05-18

Data on monetary policy

source dataset Title Download Compile
ecb SUP Supervisory Banking Statistics 2025-05-18 [2024-12-29]
bdf FM Marché financier, taux 2025-03-27 [2025-03-27]
bdf MIR Taux d'intérêt - Zone euro 2025-01-22 [2025-03-09]
bdf MIR1 Taux d'intérêt - France 2025-01-22 [2025-03-09]
bis CBPOL Policy Rates, Daily 2024-12-29 [2024-12-29]
ecb BSI Balance Sheet Items 2024-11-19 [2025-05-18]
ecb BSI_PUB Balance Sheet Items - Published series 2025-05-18 [2025-05-18]
ecb FM Financial market data 2025-05-18 [2025-05-18]
ecb ILM Internal Liquidity Management 2025-05-18 [2025-05-18]
ecb ILM_PUB Internal Liquidity Management - Published series 2024-09-10 [2025-05-18]
ecb MIR MFI Interest Rate Statistics 2025-05-18 [2024-06-19]
ecb RAI Risk Assessment Indicators 2025-05-18 [2025-05-18]
ecb YC Financial market data - yield curve 2024-11-19 [2024-12-29]
ecb YC_PUB Financial market data - yield curve - Published series 2025-05-18 [2024-12-29]
ecb liq_daily Daily Liquidity 2024-09-11 [2025-05-18]
eurostat ei_mfir_m Interest rates - monthly data 2025-04-28 [2025-04-28]
eurostat irt_st_m Money market interest rates - monthly data 2025-05-18 [2025-02-07]
fred r Interest Rates 2025-05-18 [2025-05-18]
oecd MEI Main Economic Indicators 2025-02-25 [2024-04-16]
oecd MEI_FIN Monthly Monetary and Financial Statistics (MEI) 2025-02-25 [2024-09-15]

LAST_COMPILE

LAST_COMPILE
2025-05-18

Last

Code
SUP %>%
  group_by(TIME_PERIOD, FREQ) %>%
  summarise(Nobs = n()) %>%
  ungroup %>%
  group_by(FREQ) %>%
  arrange(desc(TIME_PERIOD)) %>%
  filter(row_number() == 1) %>%
  print_table_conditional()
TIME_PERIOD FREQ Nobs
2024-S2 H 1768
2024-Q4 Q 18136

Info

  • Data Structure Definition (DSD). html

TITLE

Code
SUP %>%
  group_by(TITLE) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

BS_SUFFIX

Code
SUP %>%
  left_join(BS_SUFFIX,  by = "BS_SUFFIX") %>%
  group_by(BS_SUFFIX, Bs_suffix) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()
BS_SUFFIX Bs_suffix Nobs
E Euro 325007
PCT Percentage 107239
LAF NA 29583
Z Not applicable 14652

CB_EXP_TYPE

Code
SUP %>%
  left_join(CB_EXP_TYPE,  by = "CB_EXP_TYPE") %>%
  group_by(CB_EXP_TYPE, Cb_exp_type) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()
CB_EXP_TYPE Cb_exp_type Nobs
ALL All exposures 322659
_Z Not applicable 110554
N_ Non-performing exposures 17429
ST2 Assets with significant increase in credit risk since initial recognition but not credit-impaired (Stage 2) 9128
P_ Performing exposures 4386
NFM Non-performing exposures with forbearance measures 3948
PFM Performing exposures with forbearance measures 3941
ST1 Assets without significant increase in credit risk since initial recognition (Stage 1) 1588
ST3 Credit-impaired assets (Stage 3) 1588
PCI Purchased or originated credit-impaired financial assets 1260

CB_ITEM

Code
SUP %>%
  left_join(CB_ITEM,  by = "CB_ITEM") %>%
  group_by(CB_ITEM, Cb_item) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()

SBS_DI_1

Code
SUP %>%
  left_join(SBS_DI_1,  by = "SBS_DI_1") %>%
  group_by(SBS_DI_1, Sbs_di_1) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()
SBS_DI_1 Sbs_di_1 Nobs
SII Significant institutions 359408
LSI Less significant institutions 117073

SBS_BREAKDOWN

Code
SUP %>%
  left_join(SBS_BREAKDOWN,  by = "SBS_BREAKDOWN") %>%
  group_by(SBS_BREAKDOWN, Sbs_breakdown) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()
SBS_BREAKDOWN Sbs_breakdown Nobs
_T Total 277695
AMC Classification by business model - asset manager & custodian 11899
CWH Classification by business model - corporate/wholesale lenders 11899
DEV Classification by business model - development/promotional lenders 11899
DIV Classification by business model - diversified lenders 11899
NC Classification by business model - others/ not classified 11899
RCCL Classification by business model - retail lenders and consumer credit lenders 11899
UNI Classification by business model - universal and investment banks 11899
GSIB Classification by size/business model - G-SIBs 8526
SL30 Classification by size - banks with total assets less than 30 billion of EUR 8526
SM20 Classification by size - banks with total assets more than 200 billion of EUR 8526
ST10 Classification by size - banks with total assets between 30 billion and 100 billion of EUR 8526
ST20 Classification by size - banks with total assets between 100 billion and 200 billion of EUR 8526
LORI Classification by risk - banks with low risk 8205
MHRI Classification by risk - banks with medium, high risk and non-rated 8205
SML Classification by business model - small market lenders 8205
DOM Classification by geographical diversification - banks with significant domestic exposures 8172
EEA Classification by geographical diversification - banks with largest non-domestic exposures in non-SSM EEA 8172
NEEA Classification by geographical diversification - banks with largest non-domestic exposures in non-EEA Europe 8172
ROW Classification by geographical diversification - banks with largest non-domestic exposures in RoW 8172
SSM Classification by geographical diversification - banks with largest non-domestic exposures in the SSM 8172
CSCB Classification by business model-central savings and cooperative banks 3694
EML Classification by business model-emerging markets lenders 3694

COUNT_AREA

Code
SUP %>%
  left_join(COUNT_AREA,  by = "COUNT_AREA") %>%
  group_by(COUNT_AREA, Count_area) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()

FREQ

Code
SUP %>%
  left_join(FREQ,  by = "FREQ") %>%
  group_by(FREQ, Freq) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()
FREQ Freq Nobs
Q Quarterly 455673
H Half-yearly 20808

REF_AREA

Code
SUP %>%
  left_join(REF_AREA,  by = "REF_AREA") %>%
  group_by(REF_AREA, Ref_area) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()
REF_AREA Ref_area Nobs
B01 EU countries participating in the Single Supervisory Mechanism (SSM) (changing composition) 225575
AT Austria 12334
BE Belgium 12334
CY Cyprus 12334
DE Germany 12334
EE Estonia 12334
ES Spain 12334
FI Finland 12334
FR France 12334
GR Greece 12334
IE Ireland 12334
IT Italy 12334
LT Lithuania 12334
LU Luxembourg 12334
LV Latvia 12334
MT Malta 12334
NL Netherlands 12334
PT Portugal 12334
SI Slovenia 12334
SK Slovakia 12334
BG Bulgaria 8280
HR Croatia 8280

COUNTERPART_SECTOR

Code
SUP %>%
  left_join(COUNTERPART_SECTOR,  by = "COUNTERPART_SECTOR") %>%
  group_by(COUNTERPART_SECTOR, Counterpart_sector) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()
COUNTERPART_SECTOR Counterpart_sector Nobs
_Z Not applicable 372750
S13 General government 27985
S11 Non financial corporations 22566
S14 Households 21058
S12R Other financial corporations 11276
S122Z Deposit-taking corporations except the central bank and excluding electronic money institutions principally engaged in financial intermediation 7170
S121 Central bank 7139
S1V Non-financial corporations, households and NPISH 6537

TIME_FORMAT

Code
SUP %>%
  group_by(TIME_FORMAT) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()
TIME_FORMAT Nobs
P3M 455673
P6M 20808

Performance Indicators

https://www.bankingsupervision.europa.eu/banking/statistics/html/index.en.html

Return on equity

Graph

significant institutions (SIs) and less significant institutions (LSIs):

Code
SUP %>%
  filter(grepl("Return on equity", TITLE),
         REF_AREA %in% c("U2", "FR", "IT", "DE"),
         BS_SUFFIX == "PCT") %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  left_join(SBS_DI_1,  by = "SBS_DI_1") %>%
  quarter_to_date %>%
  select_if(~ n_distinct(.) > 1) %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  mutate(OBS_VALUE = OBS_VALUE/100) %>%
  ggplot(.) + theme_minimal() + xlab("") + ylab("Return on equity") +
  geom_line(aes(x = date, y = OBS_VALUE, color = color, linetype = Sbs_di_1)) + 
  add_flags(7) + scale_color_identity() +
  scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-100, 100, 2),
                     labels = percent_format(accuracy = 1)) +
  theme(legend.position = c(0.25, 0.90),
        legend.title = element_blank())

Cost-to-income ratio

Code
SUP %>%
  filter(grepl("Cost-to-income ratio", TITLE),
         REF_AREA %in% c("U2", "FR", "IT", "DE"),
         BS_SUFFIX == "PCT") %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  left_join(SBS_DI_1,  by = "SBS_DI_1") %>%
  quarter_to_date %>%
  select_if(~ n_distinct(.) > 1) %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  mutate(OBS_VALUE = OBS_VALUE/100) %>%
  ggplot(.) + theme_minimal() + xlab("") + ylab("Cost-to-income Ratio") +
  geom_line(aes(x = date, y = OBS_VALUE, color = color, linetype = Sbs_di_1)) + 
  add_flags(7) + scale_color_identity() +
  scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 100, 10),
                     labels = percent_format(accuracy = .1)) +
  theme(legend.position = c(0.25, 0.90),
        legend.title = element_blank())

Net interest income

FR, IT, DE

Code
SUP %>%
  filter(grepl("Net interest income", TITLE),
         REF_AREA %in% c("U2", "FR", "IT", "DE"),
         BS_SUFFIX == "PCT") %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  left_join(SBS_DI_1,  by = "SBS_DI_1") %>%
  quarter_to_date %>%
  select_if(~ n_distinct(.) > 1) %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  mutate(OBS_VALUE = OBS_VALUE/100) %>%
  ggplot(.) + theme_minimal() + xlab("") + ylab("Net Interest Income/Total operating income") +
  geom_line(aes(x = date, y = OBS_VALUE, color = color, linetype = Sbs_di_1)) + 
  add_flags(7) + scale_color_identity() +
  scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 100, 10),
                     labels = percent_format(accuracy = .1)) +
  theme(legend.position = c(0.25, 0.90),
        legend.title = element_blank())

FR, IT, DE, ES, NL, SI

Net interest margin

FR, IT, DE

Code
SUP %>%
  filter(grepl("Net interest margin", TITLE),
         REF_AREA %in% c("U2", "FR", "IT", "DE")) %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  left_join(SBS_DI_1,  by = "SBS_DI_1") %>%
  quarter_to_date %>%
  select_if(~ n_distinct(.) > 1) %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  mutate(OBS_VALUE = OBS_VALUE/100) %>%
  ggplot(.) + theme_minimal() + xlab("") + ylab("Net Interest Margin") +
  geom_line(aes(x = date, y = OBS_VALUE, color = color, linetype = Sbs_di_1)) + 
  add_flags(6) + scale_color_identity() +
  scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 50, 0.1),
                     labels = percent_format(accuracy = .1)) +
  theme(legend.position = c(0.25, 0.90),
        legend.title = element_blank())

FR, IT, DE, ES, NL, SI

Code
SUP %>%
  filter(grepl("Net interest margin", TITLE),
         REF_AREA %in% c("U2", "FR", "IT", "DE", "ES", "NL", "SI"),
         SBS_DI_1 == "SII") %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  quarter_to_date %>%
  arrange(desc(date)) %>%
  left_join(SBS_DI_1,  by = "SBS_DI_1") %>%
  select_if(~ n_distinct(.) > 1) %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  mutate(OBS_VALUE = OBS_VALUE/100) %>%
  ggplot(.) + theme_minimal() + xlab("") + ylab("Net Interest Margin") +
  geom_line(aes(x = date, y = OBS_VALUE, color = color)) + 
  add_flags(6) + scale_color_identity() +
  scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 50, 0.1),
                     labels = percent_format(accuracy = .1)) +
  theme(legend.position = c(0.25, 0.90),
        legend.title = element_blank())

FR, IT, DE, ES, NL, BE, AT, PT

2015-

Code
SUP %>%
  filter(grepl("Net interest margin", TITLE),
         REF_AREA %in% c("U2", "FR", "IT", "DE", "ES", "NL", "BE", "AT", "PT"),
         SBS_DI_1 == "SII") %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  quarter_to_date %>%
  arrange(desc(date)) %>%
  left_join(SBS_DI_1,  by = "SBS_DI_1") %>%
  select_if(~ n_distinct(.) > 1) %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  mutate(OBS_VALUE = OBS_VALUE/100) %>%
  mutate(color = ifelse(REF_AREA == "FR", color2, color)) %>%
  ggplot(.) + theme_minimal() + xlab("") + ylab("Net Interest Margin") +
  geom_line(aes(x = date, y = OBS_VALUE, color = color)) + 
  add_flags(8) + scale_color_identity() +
  scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 50, 0.1),
                     labels = percent_format(accuracy = .1)) +
  theme(legend.position = c(0.25, 0.90),
        legend.title = element_blank())

2018-

Code
SUP %>%
  filter(grepl("Net interest margin", TITLE),
         REF_AREA %in% c("U2", "FR", "IT", "DE", "ES", "NL", "BE", "AT", "PT"),
         SBS_DI_1 == "SII") %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  quarter_to_date %>%
  filter(date >= as.Date("2018-01-01")) %>%
  arrange(desc(date)) %>%
  left_join(SBS_DI_1,  by = "SBS_DI_1") %>%
  select_if(~ n_distinct(.) > 1) %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  mutate(OBS_VALUE = OBS_VALUE/100) %>%
  mutate(color = ifelse(REF_AREA == "FR", color2, color)) %>%
  ggplot(.) + theme_minimal() + xlab("") + ylab("Net Interest Margin") +
  geom_line(aes(x = date, y = OBS_VALUE, color = color)) + 
  add_flags(8) + scale_color_identity() +
  scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 50, 0.1),
                     labels = percent_format(accuracy = .1)) +
  theme(legend.position = c(0.25, 0.90),
        legend.title = element_blank())

Liquidity

Liquidity coverage ratios (LCR)

The LCR is the percentage resulting from dividing the bank’s stock of high-quality assets by the estimated total net cash outflows over a 30 calendar day stress scenario.

Code
SUP %>%
  filter(CB_ITEM == "I3017",
         REF_AREA %in% c("U2", "FR", "IT", "DE"),
         !(SBS_DI_1 == "_Z")) %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  left_join(SBS_DI_1,  by = "SBS_DI_1") %>%
  quarter_to_date %>%
  select_if(~ n_distinct(.) > 1) %>%
  arrange(desc(date)) %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  mutate(OBS_VALUE = OBS_VALUE/100) %>%
  ggplot(.) + theme_minimal() + xlab("") + ylab("Liquidity coverage ratio") +
  geom_line(aes(x = date, y = OBS_VALUE, color = color, linetype = Sbs_di_1)) + 
  add_flags(6) + scale_color_identity() +
  scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(0, 500, 50),
                     labels = percent_format(accuracy = 1),
                     limits = c(0, 3.5)) +
  theme(legend.position = c(0.2, 0.90),
        legend.title = element_blank())

Liquidity buffer

Code
SUP %>%
  filter(CB_ITEM == "A6310",
         REF_AREA %in% c("U2", "FR", "IT", "DE")) %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  left_join(SBS_DI_1,  by = "SBS_DI_1") %>%
  quarter_to_date %>%
  select_if(~ n_distinct(.) > 1) %>%
  arrange(desc(date)) %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  mutate(OBS_VALUE = OBS_VALUE/100) %>%
  ggplot(.) + theme_minimal() + xlab("") + ylab("Liquidity buffer") +
  geom_line(aes(x = date, y = OBS_VALUE, color = color, linetype = Sbs_di_1)) + 
  add_flags(6) + scale_color_identity() +
  scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = seq(0, 1000, 2)) +
  theme(legend.position = c(0.2, 0.90),
        legend.title = element_blank())

Net liquidity outflow

Code
SUP %>%
  filter(CB_ITEM == "A6320",
         REF_AREA %in% c("U2", "FR", "IT", "DE")) %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  left_join(SBS_DI_1,  by = "SBS_DI_1") %>%
  quarter_to_date %>%
  select_if(~ n_distinct(.) > 1) %>%
  arrange(desc(date)) %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  mutate(OBS_VALUE = OBS_VALUE/100) %>%
  ggplot(.) + theme_minimal() + xlab("") + ylab("Net liquidity outflow") +
  geom_line(aes(x = date, y = OBS_VALUE, color = color, linetype = Sbs_di_1)) + 
  add_flags(6) + scale_color_identity() +
  scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = seq(0, 1000, 2)) +
  theme(legend.position = c(0.2, 0.90),
        legend.title = element_blank())

Net liquidity outflow

Code
SUP %>%
  filter(grepl("Net liquidity outflow", TITLE),
         REF_AREA %in% c("B01", "FR", "IT", "DE")) %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  left_join(SBS_DI_1,  by = "SBS_DI_1") %>%
  quarter_to_date %>%
  mutate(OBS_VALUE = OBS_VALUE/100,
         Ref_area = ifelse(REF_AREA == "B01", "Europe", Ref_area)) %>%
  select_if(~ n_distinct(.) > 1) %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  na.omit %>%
  ggplot(.) + theme_minimal() + xlab("") + ylab("Net liquidity outflow") +
  geom_line(aes(x = date, y = OBS_VALUE, color = color, linetype = paste0(SBS_DI_1, SBS_BREAKDOWN))) + 
  add_flags(6) + scale_color_identity() +
  scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(0, 500, 50),
                     labels = percent_format(accuracy = 1),
                     limits = c(0, 3.5)) +
  theme(legend.position = c(0.55, 0.50),
        legend.title = element_blank())

Net Liquidity outflow - EU

B01 - EU countries participating in the Single Supervisory Mechanism (SSM)

Capital adequacy

  • Common equity Tier 1 ratio

  • Tier 1 ratio

https://www.bankingsupervision.europa.eu/press/pr/date/2023/html/ssm.pr2301114cb4953fd6.en.html#::text=The%20aggregate%20capital%20ratios%20of,capital%20ratio%20stood%20at%2018.68%25.

Code
SUP %>%
  filter(grepl("Common equity Tier 1 ratio", TITLE),
         REF_AREA %in% c("U2", "FR", "IT", "DE")) %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  left_join(SBS_DI_1,  by = "SBS_DI_1") %>%
  quarter_to_date %>%
  select_if(~ n_distinct(.) > 1) %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  mutate(OBS_VALUE = OBS_VALUE/100) %>%
  ggplot(.) + theme_minimal() + xlab("") + ylab("Net Interest Margin") +
  geom_line(aes(x = date, y = OBS_VALUE, color = color, linetype = Sbs_di_1)) + 
  add_flags(6) + scale_color_identity() +
  scale_x_date(breaks = seq(1960, 2030, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 50, 1),
                     labels = percent_format(accuracy = .1)) +
  theme(legend.position = c(0.25, 0.90),
        legend.title = element_blank())