source | dataset | .html | .RData |
---|---|---|---|
oecd | MEI | 2024-04-15 | 2024-04-15 |
source | dataset | .html | .RData |
---|---|---|---|
bdf | FM | 2024-04-15 | 2024-04-15 |
bdf | MIR | 2024-04-15 | 2024-04-15 |
bdf | MIR1 | 2024-04-15 | 2024-04-15 |
bis | CBPOL_D | 2024-04-03 | 2024-04-15 |
bis | CBPOL_M | 2024-04-15 | 2024-04-15 |
ecb | FM | 2024-03-05 | 2024-04-15 |
ecb | MIR | 2024-04-15 | 2024-04-15 |
eurostat | ei_mfir_m | 2024-04-15 | 2024-04-09 |
eurostat | irt_lt_mcby_d | 2024-04-15 | 2024-03-26 |
eurostat | irt_st_m | 2024-04-15 | 2024-04-15 |
fred | r | 2024-04-15 | 2024-04-15 |
oecd | MEI | 2024-04-15 | 2024-04-15 |
oecd | MEI_FIN | 2024-04-16 | 2024-03-26 |
wdi | FR.INR.RINR | 2024-01-06 | 2024-04-14 |
LAST_COMPILE |
---|
2024-04-16 |
obsTime | Nobs |
---|---|
2024-Q1 | 44 |
MEI %>%
left_join(MEI_var$SUBJECT, by = c("SUBJECT")) %>%
{if (!is_html_output()) mutate(., Subject = substr(Subject, 1, 87)) else .} %>%
group_by(SUBJECT, Subject, MEASURE, FREQUENCY) %>%
filter(!is.na(obsValue)) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}
MEI %>%
left_join(MEI_var$FREQUENCY, by = c("FREQUENCY")) %>%
group_by(FREQUENCY, Frequency) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
FREQUENCY | Frequency | Nobs |
---|---|---|
M | Monthly | 6678832 |
Q | Quarterly | 4101353 |
A | Annual | 1165451 |
MEI %>%
left_join(MEI_var$LOCATION, by = c("LOCATION")) %>%
group_by(LOCATION, Location) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Location))),
Flag = paste0('<img src="../../icon/flag/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}
MEI %>%
filter(LOCATION %in% c("FRA", "USA", "JPN", "DEU"),
SUBJECT == "MANMM101",
MEASURE == "IXOB",
FREQUENCY == "M") %>%
month_to_date %>%
#filter(date >= as.Date("1990-01-01")) %>%
left_join(MEI_var$LOCATION, by = "LOCATION") %>%
left_join(colors, by = c("Location" = "country")) %>%
group_by(LOCATION) %>%
mutate(obsValue = obsValue/obsValue[1]) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
scale_color_identity() + add_2flags + theme_minimal() + xlab("") + ylab("M1") +
scale_x_date(breaks = seq(1960, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = c(seq(1, 50, 1), 100, 150, 200, 500, 1000))
MEI %>%
filter(LOCATION %in% c("FRA", "USA", "JPN", "DEU"),
SUBJECT == "MANMM101",
MEASURE == "IXOB",
FREQUENCY == "M") %>%
month_to_date %>%
filter(date >= as.Date("1990-01-01")) %>%
left_join(MEI_var$LOCATION, by = "LOCATION") %>%
left_join(colors, by = c("Location" = "country")) %>%
group_by(LOCATION) %>%
mutate(obsValue = obsValue/obsValue[1]) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
scale_color_identity() + add_2flags + theme_minimal() + xlab("") + ylab("M1") +
scale_x_date(breaks = seq(1960, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = c(seq(1, 50, 1), 100, 150, 200, 500, 1000))
MEI %>%
filter(LOCATION %in% c("FRA", "USA", "JPN", "DEU"),
SUBJECT == "MABMM301",
MEASURE == "IXOB",
FREQUENCY == "M") %>%
month_to_date %>%
left_join(MEI_var$LOCATION, by = "LOCATION") %>%
left_join(colors, by = c("Location" = "country")) %>%
group_by(LOCATION) %>%
mutate(obsValue = obsValue/obsValue[1]) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
scale_color_identity() + add_2flags + theme_minimal() + xlab("") + ylab("M3") +
scale_x_date(breaks = seq(1960, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = c(seq(1, 50, 1), 100, 150, 200, 500, 1000))
MEI %>%
filter(LOCATION %in% c("FRA", "USA", "JPN", "DEU"),
SUBJECT == "MABMM301",
MEASURE == "IXOB",
FREQUENCY == "M") %>%
month_to_date %>%
filter(date >= as.Date("1990-01-01")) %>%
left_join(MEI_var$LOCATION, by = "LOCATION") %>%
left_join(colors, by = c("Location" = "country")) %>%
group_by(LOCATION) %>%
mutate(obsValue = obsValue/obsValue[1]) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
scale_color_identity() + add_2flags + theme_minimal() + xlab("") + ylab("M3") +
scale_x_date(breaks = seq(1960, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = c(seq(1, 50, 1), 100, 150, 200, 500, 1000))
MEI %>%
filter(LOCATION %in% c("FRA", "DEU", "JPN"),
SUBJECT == "IRLTLT01",
FREQUENCY == "M") %>%
month_to_date %>%
filter(date >= as.Date("2010-01-01")) %>%
left_join(MEI_var$LOCATION, by = "LOCATION") %>%
left_join(colors, by = c("Location" = "country")) %>%
mutate(obsValue = obsValue / 100) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
scale_color_identity() +
theme_minimal() + xlab("") + ylab("Long-Term Interest Rates (%)") +
add_3flags +
scale_x_date(breaks = seq(1960, 2024, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 50, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = "none") +
geom_hline(yintercept = 0, linetype = "dashed")
MEI %>%
filter(LOCATION %in% c("FRA", "DEU", "JPN"),
SUBJECT == "IRLTLT01",
FREQUENCY == "M") %>%
month_to_date %>%
filter(date >= as.Date("2014-02-01")) %>%
left_join(MEI_var$LOCATION, by = "LOCATION") %>%
group_by(LOCATION) %>%
mutate(obsValue = obsValue / 100) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = Location)) +
theme_minimal() + xlab("") + ylab("Taux Nominal sur la Dette, 10 ans (%)") +
add_3flags +
scale_x_date(breaks = "1 year",
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 50, .2),
labels = percent_format(accuracy = .1)) +
scale_color_manual(values = c("#002395", "#000000", "#BC002D")) +
theme(legend.position = "none") +
geom_hline(yintercept = 0, linetype = "dashed")
MEI %>%
filter(LOCATION %in% c("FRA", "USA", "DEU", "JPN"),
SUBJECT == "IRLTLT01",
FREQUENCY == "M") %>%
month_to_date %>%
left_join(MEI_var$LOCATION, by = "LOCATION") %>%
left_join(colors, by = c("Location" = "country")) %>%
group_by(LOCATION) %>%
mutate(obsValue = obsValue / 100) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
add_4flags +
theme_minimal() + xlab("") + ylab("Long-Term Interest Rates (%)") +
scale_x_date(breaks = seq(1960, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 50, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.8, 0.80),
legend.title = element_blank()) +
scale_color_identity()
MEI %>%
filter(LOCATION %in% c("FRA", "USA", "DEU", "JPN"),
SUBJECT == "IRLTLT01",
FREQUENCY == "M") %>%
month_to_date %>%
filter(date >= as.Date("1990-01-01")) %>%
left_join(MEI_var$LOCATION, by = "LOCATION") %>%
left_join(colors, by = c("Location" = "country")) %>%
group_by(LOCATION) %>%
mutate(obsValue = obsValue / 100) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
scale_color_identity() + add_4flags +
theme_minimal() + xlab("") + ylab("Long-Term Interest Rates (%)") +
scale_x_date(breaks = seq(1960, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 50, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.8, 0.80),
legend.title = element_blank())
MEI %>%
filter(LOCATION %in% c("FRA", "USA", "DEU", "JPN"),
SUBJECT == "IRLTLT01",
FREQUENCY == "M") %>%
month_to_date %>%
filter(date >= as.Date("2010-01-01")) %>%
left_join(MEI_var$LOCATION, by = "LOCATION") %>%
left_join(colors, by = c("Location" = "country")) %>%
group_by(LOCATION) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue / 100, color = color)) +
theme_minimal() + xlab("") + ylab("Long-Term Interest Rates (%)") +
geom_image(data = . %>%
filter(date == as.Date("2014-01-01")) %>%
mutate(image = paste0("../../icon/flag/round/", str_to_lower(gsub(" ", "-", Location)), ".png")),
aes(x = date, y = obsValue / 100, image = image), asp = 1.5) +
scale_x_date(breaks = seq(1960, 2024, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 50, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = "none") +
scale_color_identity()
MEI %>%
filter(LOCATION %in% c("USA"),
SUBJECT %in% c("LREM24TT", "LREM55TT", "LREM25TT", "LREM64TT", "LREMTTTT"),
FREQUENCY == "Q",
MEASURE == "STSA") %>%
quarter_to_date %>%
left_join(MEI_var$LOCATION, by = "LOCATION") %>%
left_join(MEI_var$SUBJECT, by = "SUBJECT") %>%
mutate(obsValue = obsValue / 100,
Subject = gsub("Labour Force Survey - quarterly rates > Employment rate > Aged ", "", Subject),
Subject = gsub(" > All persons", "", Subject)) %>%
filter(date >= as.Date("2000-01-01")) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = Subject)) +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 5),
labels = percent_format(accuracy = 1)) +
theme_minimal() + xlab("") + ylab("Employment Rates (%)") +
scale_x_date(breaks = seq(1960, 2024, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.4, 0.80),
legend.title = element_blank(),
legend.direction = "horizontal")
MEI %>%
filter(LOCATION %in% c("USA"),
SUBJECT %in% c("LREM24TT", "LREM55TT", "LREM25TT", "LREM64TT", "LREMTTTT"),
FREQUENCY == "Q",
MEASURE == "STSA") %>%
quarter_to_date %>%
left_join(MEI_var$LOCATION, by = "LOCATION") %>%
left_join(MEI_var$SUBJECT, by = "SUBJECT") %>%
mutate(obsValue = obsValue / 100,
Subject = gsub("Labour Force Survey - quarterly rates > Employment rate > Aged ", "", Subject),
Subject = gsub(" > All persons", "", Subject)) %>%
filter(date >= as.Date("2007-01-01")) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = Subject)) +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 5),
labels = percent_format(accuracy = 1)) +
theme_minimal() + xlab("") + ylab("Employment Rates (%)") +
scale_x_date(breaks = seq(1960, 2024, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.4, 0.80),
legend.title = element_blank(),
legend.direction = "horizontal")
MEI %>%
filter(LOCATION %in% c("FRA"),
SUBJECT %in% c("LREM24TT", "LREM55TT", "LREM25TT", "LREM64TT", "LREMTTTT"),
FREQUENCY == "Q",
MEASURE == "STSA") %>%
quarter_to_date %>%
left_join(MEI_var$LOCATION, by = "LOCATION") %>%
left_join(MEI_var$SUBJECT, by = "SUBJECT") %>%
mutate(obsValue = obsValue / 100,
Subject = gsub("Labour Force Survey - quarterly rates > Employment rate > Aged ", "", Subject),
Subject = gsub(" > All persons", "", Subject)) %>%
filter(date >= as.Date("2007-01-01")) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = Subject)) +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 5),
labels = percent_format(accuracy = 1)) +
theme_minimal() + xlab("") + ylab("Employment Rates (%)") +
scale_x_date(breaks = seq(1960, 2024, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.4, 0.80),
legend.title = element_blank(),
legend.direction = "horizontal")
MEI %>%
filter(LOCATION %in% c("FRA"),
SUBJECT %in% c("LREM24MA", "LREM55MA", "LREM25MA", "LREM64MA", "LREMTTMA"),
FREQUENCY == "Q",
MEASURE == "STSA") %>%
quarter_to_date %>%
left_join(MEI_var$LOCATION, by = "LOCATION") %>%
left_join(MEI_var$SUBJECT, by = "SUBJECT") %>%
mutate(obsValue = obsValue / 100,
Subject = gsub("Labour Force Survey - quarterly rates > Employment rate > Aged ", "", Subject),
Subject = gsub(" > Males", "", Subject)) %>%
filter(date >= as.Date("2007-01-01")) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = Subject)) +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 5),
labels = percent_format(accuracy = 1)) +
theme_minimal() + xlab("") + ylab("Male Employment Rates (%)") +
scale_x_date(breaks = seq(1960, 2024, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.4, 0.80),
legend.title = element_blank(),
legend.direction = "horizontal")
MEI %>%
filter(LOCATION %in% c("FRA"),
SUBJECT %in% c("LREM24FE", "LREM55FE", "LREM25FE", "LREM64FE", "LREMTTFE"),
FREQUENCY == "Q",
MEASURE == "STSA") %>%
quarter_to_date %>%
left_join(MEI_var$LOCATION, by = "LOCATION") %>%
left_join(MEI_var$SUBJECT, by = "SUBJECT") %>%
mutate(obsValue = obsValue / 100,
Subject = gsub("Labour Force Survey - quarterly rates > Employment rate > Aged ", "", Subject),
Subject = gsub(" > Females", "", Subject)) %>%
filter(date >= as.Date("2007-01-01")) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = Subject)) +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 5),
labels = percent_format(accuracy = 1)) +
theme_minimal() + xlab("") + ylab("Female Employment Rates (%)") +
scale_x_date(breaks = seq(1960, 2024, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.4, 0.80),
legend.title = element_blank(),
legend.direction = "horizontal")
MEI %>%
filter(LOCATION %in% c("FRA"),
SUBJECT %in% c("LREM24FE", "LREM55FE", "LREM25FE", "LREM64FE", "LREMTTFE",
"LREM24MA", "LREM55MA", "LREM25MA", "LREM64MA", "LREMTTMA"),
FREQUENCY == "Q",
MEASURE == "STSA") %>%
quarter_to_date %>%
left_join(MEI_var$LOCATION, by = "LOCATION") %>%
left_join(MEI_var$SUBJECT, by = "SUBJECT") %>%
mutate(Gender = ifelse(grepl("Males", Subject), "Males", "Females")) %>%
mutate(obsValue = obsValue / 100,
Subject = gsub("Labour Force Survey - quarterly rates > Employment rate > Aged ", "", Subject),
Subject = gsub(" > Females", "", Subject),
Subject = gsub(" > Males", "", Subject)) %>%
filter(date >= as.Date("2007-01-01")) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = Subject, linetype = Gender)) +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 5),
labels = percent_format(accuracy = 1)) +
theme_minimal() + xlab("") + ylab("Female Employment Rates (%)") +
scale_x_date(breaks = seq(1960, 2024, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.4, 0.75),
legend.title = element_blank(),
legend.direction = "horizontal")
MEI %>%
filter(LOCATION %in% c("DEU"),
SUBJECT %in% c("LREM24FE", "LREM55FE", "LREM25FE", "LREM64FE", "LREMTTFE",
"LREM24MA", "LREM55MA", "LREM25MA", "LREM64MA", "LREMTTMA"),
FREQUENCY == "Q",
MEASURE == "STSA") %>%
quarter_to_date %>%
left_join(MEI_var$LOCATION, by = "LOCATION") %>%
left_join(MEI_var$SUBJECT, by = "SUBJECT") %>%
mutate(Gender = ifelse(grepl("Males", Subject), "Males", "Females")) %>%
mutate(obsValue = obsValue / 100,
Subject = gsub("Labour Force Survey - quarterly rates > Employment rate > Aged ", "", Subject),
Subject = gsub(" > Females", "", Subject),
Subject = gsub(" > Males", "", Subject)) %>%
filter(date >= as.Date("2007-01-01")) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = Subject, linetype = Gender)) +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 5),
labels = percent_format(accuracy = 1)) +
theme_minimal() + xlab("") + ylab("Male, Female Employment Rates in Germany (%)") +
scale_x_date(breaks = seq(1960, 2024, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.4, 0.75),
legend.title = element_blank(),
legend.direction = "horizontal")
MEI %>%
filter(LOCATION %in% c("FRA", "DEU", "JPN", "USA", "ITA", "ESP", "CHE"),
SUBJECT == "LREM24TT",
FREQUENCY == "Q",
MEASURE == "STSA") %>%
quarter_to_date %>%
left_join(MEI_var$LOCATION, by = "LOCATION") %>%
left_join(MEI_var$SUBJECT, by = "SUBJECT") %>%
left_join(colors, by = c("Location" = "country")) %>%
mutate(obsValue = obsValue / 100) %>%
filter(date >= as.Date("2007-01-01")) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
scale_color_identity() + add_7flags +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 2),
labels = percent_format(accuracy = 1)) +
theme_minimal() + xlab("") + ylab("Employment Rates 15-24 (%)") +
scale_x_date(breaks = seq(1960, 2024, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none")
MEI %>%
filter(LOCATION %in% c("FRA", "DEU", "JPN", "USA", "ITA", "ESP", "CHE"),
SUBJECT == "LREM55TT",
FREQUENCY == "Q",
MEASURE == "STSA") %>%
quarter_to_date %>%
left_join(MEI_var$LOCATION, by = "LOCATION") %>%
left_join(MEI_var$SUBJECT, by = "SUBJECT") %>%
left_join(colors, by = c("Location" = "country")) %>%
mutate(obsValue = obsValue / 100) %>%
#filter(date >= as.Date("2000-01-01")) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
scale_color_identity() + add_7flags +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 2),
labels = percent_format(accuracy = 1)) +
theme_minimal() + xlab("") + ylab("Employment Rates 55-64 (%)") +
scale_x_date(breaks = seq(1960, 2024, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none")
MEI %>%
filter(LOCATION %in% c("FRA", "DEU", "JPN", "USA", "ITA", "ESP", "CHE"),
SUBJECT == "LREM55TT",
FREQUENCY == "Q",
MEASURE == "STSA") %>%
quarter_to_date %>%
left_join(MEI_var$LOCATION, by = "LOCATION") %>%
left_join(MEI_var$SUBJECT, by = "SUBJECT") %>%
left_join(colors, by = c("Location" = "country")) %>%
mutate(obsValue = obsValue / 100) %>%
filter(date >= as.Date("2007-01-01")) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
scale_color_identity() + add_7flags +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 2),
labels = percent_format(accuracy = 1)) +
theme_minimal() + xlab("") + ylab("Employment Rates 55-64 (%)") +
scale_x_date(breaks = seq(1960, 2024, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none")
MEI %>%
filter(LOCATION %in% c("FRA", "DEU", "JPN", "USA", "ITA"),
SUBJECT == "LREM25TT",
FREQUENCY == "Q",
MEASURE == "STSA") %>%
quarter_to_date %>%
left_join(MEI_var$LOCATION, by = "LOCATION") %>%
left_join(MEI_var$SUBJECT, by = "SUBJECT") %>%
left_join(colors, by = c("Location" = "country")) %>%
mutate(obsValue = obsValue / 100) %>%
filter(date >= as.Date("2007-01-01")) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
scale_color_identity() + add_5flags +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 2),
labels = percent_format(accuracy = 1)) +
theme_minimal() + xlab("") + ylab("Employment Rates 55-64 (%)") +
scale_x_date(breaks = seq(1960, 2024, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none")
MEI %>%
filter(LOCATION %in% c("FRA", "DEU", "JPN", "USA", "ITA", "ESP", "CHE"),
SUBJECT == "LREM64TT",
FREQUENCY == "Q",
MEASURE == "STSA") %>%
quarter_to_date %>%
left_join(MEI_var$LOCATION, by = "LOCATION") %>%
left_join(MEI_var$SUBJECT, by = "SUBJECT") %>%
left_join(colors, by = c("Location" = "country")) %>%
mutate(obsValue = obsValue / 100) %>%
filter(date >= as.Date("2007-01-01")) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
scale_color_identity() + add_7flags +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 2),
labels = percent_format(accuracy = 1)) +
theme_minimal() + xlab("") + ylab("Employment Rates 15-64 (%)") +
scale_x_date(breaks = seq(1960, 2024, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none")
MEI %>%
filter(LOCATION %in% c("FRA", "DEU", "JPN", "USA", "ITA"),
SUBJECT == "LREMTTTT",
FREQUENCY == "Q",
MEASURE == "STSA") %>%
quarter_to_date %>%
left_join(MEI_var$LOCATION, by = "LOCATION") %>%
left_join(MEI_var$SUBJECT, by = "SUBJECT") %>%
left_join(colors, by = c("Location" = "country")) %>%
mutate(obsValue = obsValue / 100) %>%
filter(date >= as.Date("2007-01-01")) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
scale_color_identity() + add_5flags +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 2),
labels = percent_format(accuracy = 1)) +
theme_minimal() + xlab("") + ylab("Employment Rates 15+ (%)") +
scale_x_date(breaks = seq(1960, 2024, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none")
MEI %>%
filter(SUBJECT == "CPALTT01",
FREQUENCY == "M",
MEASURE == "GY",
LOCATION %in% c("EA19", "EA20", "EU27_2020", "EU28")) %>%
month_to_date %>%
left_join(MEI_var$LOCATION, by = "LOCATION") %>%
#filter(date >= as.Date("2019-01-01")) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = Location)) +
theme_minimal() + xlab("") + ylab("Consumer Price Index, All items") +
scale_x_date(breaks = seq(1960, 2025, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 200, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.2, 0.80),
legend.title = element_blank())
MEI %>%
filter(LOCATION %in% c("FRA", "USA", "DEU", "JPN", "EA19"),
SUBJECT == "CPALTT01",
FREQUENCY == "M",
MEASURE == "GY") %>%
month_to_date %>%
left_join(MEI_var$LOCATION, by = "LOCATION") %>%
left_join(colors, by = c("Location" = "country")) %>%
filter(date >= as.Date("2019-01-01")) %>%
group_by(LOCATION) %>%
mutate(obsValue = obsValue/100) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
scale_color_identity() + add_4flags +
theme_minimal() + xlab("") + ylab("Consumer Price Index, All items") +
scale_x_date(breaks = seq(1960, 2025, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 200, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.2, 0.80),
legend.title = element_blank())
OECD descriptor ID: CPHPTT01 OECD unit ID: GY OECD country ID: EA17
MEI %>%
filter(LOCATION %in% c("FRA", "USA", "DEU", "JPN"),
SUBJECT == "B6BLTT02",
FREQUENCY == "Q") %>%
quarter_to_date %>%
left_join(MEI_var$LOCATION, by = "LOCATION") %>%
left_join(colors, by = c("Location" = "country")) %>%
group_by(LOCATION) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue / 100, color = color)) +
scale_color_identity() + add_3flags +
theme_minimal() + xlab("") + ylab("Total CA Balance, % of GDP") +
scale_x_date(breaks = seq(1960, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 50, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.2, 0.80),
legend.title = element_blank())
MEI %>%
filter(LOCATION %in% c("FRA", "USA", "DEU", "JPN"),
SUBJECT == "CPGRHO02",
MEASURE == "IXOB",
FREQUENCY == "Q") %>%
quarter_to_date %>%
left_join(MEI_var$LOCATION, by = "LOCATION") %>%
left_join(colors, by = c("Location" = "country")) %>%
group_by(LOCATION) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
scale_color_identity() + add_3flags +
theme_minimal() + xlab("") + ylab("CPI") +
scale_x_date(breaks = seq(1960, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(-10, 200, 10),
labels = dollar_format(accuracy = 1, prefix = "")) +
theme(legend.position = c(0.2, 0.80),
legend.title = element_blank())
Consumer Price Index, All items Consumer Price Index, All items
MEI %>%
filter(LOCATION %in% c("FRA", "USA", "DEU", "JPN"),
SUBJECT == "CPALTT01",
FREQUENCY == "Q",
MEASURE == "IXOB") %>%
quarter_to_date %>%
left_join(MEI_var$LOCATION, by = "LOCATION") %>%
left_join(colors, by = c("Location" = "country")) %>%
group_by(LOCATION) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
scale_color_identity() + add_3flags +
theme_minimal() + xlab("") + ylab("Consumer Price Index, All items") +
scale_x_date(breaks = seq(1960, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(-10, 200, 10),
labels = dollar_format(accuracy = 1, prefix = "")) +
theme(legend.position = c(0.2, 0.80),
legend.title = element_blank())
MEI %>%
filter(LOCATION %in% c("FRA", "USA", "DEU", "JPN"),
SUBJECT == "CPGRLH01",
FREQUENCY == "Q",
MEASURE == "IXOB") %>%
quarter_to_date %>%
left_join(MEI_var$LOCATION, by = "LOCATION") %>%
left_join(colors, by = c("Location" = "country")) %>%
group_by(LOCATION) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
scale_color_identity() + add_3flags +
theme_minimal() + xlab("") + ylab("Services less housing") +
scale_x_date(breaks = seq(1960, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(-10, 200, 10),
labels = dollar_format(accuracy = 1, prefix = "")) +
theme(legend.position = c(0.2, 0.80),
legend.title = element_blank())
MEI %>%
filter(LOCATION %in% c("FRA", "USA", "DEU", "JPN"),
SUBJECT == "CP010000",
FREQUENCY == "Q",
MEASURE == "IXOB") %>%
quarter_to_date %>%
left_join(MEI_var$LOCATION, by = "LOCATION") %>%
left_join(colors, by = c("Location" = "country")) %>%
group_by(LOCATION) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
scale_color_identity() + add_3flags +
theme_minimal() + xlab("") + ylab("CPI, Food and non-Alcoholic beverages") +
scale_x_date(breaks = seq(1960, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(-10, 200, 10),
labels = dollar_format(accuracy = 1, prefix = "")) +
theme(legend.position = c(0.2, 0.80),
legend.title = element_blank())
MEI %>%
filter(LOCATION %in% c("FRA", "USA", "DEU", "JPN"),
SUBJECT == "CP030000",
FREQUENCY == "Q",
MEASURE == "IXOB") %>%
quarter_to_date %>%
left_join(MEI_var$LOCATION, by = "LOCATION") %>%
left_join(colors, by = c("Location" = "country")) %>%
group_by(LOCATION) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
scale_color_identity() + add_3flags +
theme_minimal() + xlab("") + ylab("CPI, Clothing and Footware") +
scale_x_date(breaks = seq(1960, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(-10, 200, 10),
labels = dollar_format(accuracy = 1, prefix = "")) +
theme(legend.position = c(0.2, 0.80),
legend.title = element_blank())
MEI %>%
filter(LOCATION %in% c("FRA", "USA", "DEU", "JPN"),
SUBJECT == "CP110000",
FREQUENCY == "Q",
MEASURE == "IXOB") %>%
quarter_to_date %>%
left_join(MEI_var$LOCATION, by = "LOCATION") %>%
left_join(colors, by = c("Location" = "country")) %>%
group_by(LOCATION) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
scale_color_identity() + add_3flags +
theme_minimal() + xlab("") + ylab("CPI, Restaurants and hotels") +
scale_x_date(breaks = seq(1960, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(-10, 200, 10),
labels = dollar_format(accuracy = 1, prefix = "")) +
theme(legend.position = c(0.2, 0.80),
legend.title = element_blank())
MEI %>%
filter(LOCATION %in% c("FRA", "USA", "DEU", "JPN"),
SUBJECT == "CP040100",
FREQUENCY == "Q",
MEASURE == "IXOB") %>%
quarter_to_date %>%
left_join(MEI_var$LOCATION, by = "LOCATION") %>%
left_join(colors, by = c("Location" = "country")) %>%
group_by(LOCATION) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
scale_color_identity() + add_3flags +
theme_minimal() + xlab("") + ylab("CPI, Actual rentals for housing") +
scale_x_date(breaks = seq(1960, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(-10, 200, 10),
labels = dollar_format(accuracy = 1, prefix = "")) +
theme(legend.position = c(0.2, 0.80),
legend.title = element_blank())
MEI %>%
filter(LOCATION %in% c("FRA", "DEU", "ITA"),
# CCUSMA02: Average of daily rates > National currency:USD
SUBJECT == "CCUSMA02",
# ST: Level, rate or national currency
MEASURE == "ST",
FREQUENCY == "Q") %>%
quarter_to_date %>%
left_join(MEI_var$LOCATION, by = "LOCATION") %>%
left_join(colors, by = c("Location" = "country")) %>%
group_by(LOCATION) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
scale_color_identity() + add_3flags +
theme_minimal() + xlab("") + ylab("Exchange Rate ($1 = ?National Currency)") +
scale_x_date(breaks = seq(1960, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 10, 0.2),
labels = dollar_format(accuracy = 0.1, prefix = "", suffix = "../$")) +
theme(legend.position = c(0.8, 0.80),
legend.title = element_blank())
MEI %>%
filter(LOCATION %in% c("FRA", "DEU", "ITA"),
# SLRTCR03: Passenger cars
SUBJECT == "SLRTCR03",
# ML: Monthly level
MEASURE == "ML",
FREQUENCY == "M") %>%
month_to_date %>%
left_join(MEI_var$LOCATION, by = "LOCATION") %>%
left_join(colors, by = c("Location" = "country")) %>%
group_by(LOCATION) %>%
mutate(obsValue = obsValue/10^3) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
scale_color_identity() + add_3flags +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 1000, 50),
labels = dollar_format(accuracy = 1, prefix = "", suffix = "K")) +
theme(legend.position = c(0.2, 0.80),
legend.title = element_blank())
MEI %>%
filter(LOCATION %in% c("FRA", "DEU", "ITA","USA"),
# SLRTCR03: Passenger cars
SUBJECT == "SLRTCR03",
# ML: Monthly level
MEASURE == "ML",
FREQUENCY == "A") %>%
year_to_date %>%
left_join(MEI_var$LOCATION, by = "LOCATION") %>%
left_join(colors, by = c("Location" = "country")) %>%
group_by(LOCATION) %>%
mutate(obsValue = obsValue/10^3) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
scale_color_identity() + add_3flags +
theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1960, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 1000, 50),
labels = dollar_format(accuracy = 1, prefix = "", suffix = "K")) +
theme(legend.position = c(0.2, 0.80),
legend.title = element_blank())
MEI %>%
filter(LOCATION %in% c("FRA", "DEU", "ITA"),
# B6BLTT01: Balance of payments BPM6 > Current account Balance > Total > Total Balance
SUBJECT == "B6BLTT01",
# CXCUSA: US Dollars, sum over component sub-periods, s.a
MEASURE == "CXCUSA",
FREQUENCY == "Q") %>%
quarter_to_date %>%
left_join(MEI_var$LOCATION, by = "LOCATION") %>%
left_join(colors, by = c("Location" = "country")) %>%
group_by(LOCATION) %>%
mutate(obsValue = obsValue/10^3) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
scale_color_identity() + add_3flags +
theme_minimal() +
theme(legend.title = element_blank(),
legend.position = c(0.2, 0.8)) +
scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(-20000, 400000, 10),
labels = dollar_format(accuracy = 1, suffix = " Bn", prefix = "$ ")) +
xlab("") + ylab("Current account Balance, Total")